CONTENTS

SE	CTION	11	GENERAL	
	Group	1	Safety Hints	1-1
	•		Specifications	
	•			
SE	CTION	12	STRUCTURE AND FUNCTION	
	Group	1	Pump Device ·····	2-1
	Group	2	Main Control Valve	2-17
	Group	3	Swing Device	2-51
	Group	4	Travel Motor	2-60
	Group	5	RCV Lever	2-70
	Group	6	Accelerator Pedal ·····	2-77
	Group	7	Brake Device	2-78
	Group	8	Transmission	2-80
	Group	9	Travel Control Valve	2-87
	Group ⁻	10	Steering Valve	2-89
	Group '	11	Front Axle and Rear Axle	2-91
SE			HYDRAULIC SYSTEM	
	•		Hydraulic Circuit ·····	
			Main Circuit	
	•		Pilot Circuit	
	•		Single Operation	
	Group	5	Combined Operation	3-30
SE	CTION	I 4	ELECTRICAL SYSTEM	
	Group	4	Component Location	⊿ ₋1
	Group	ı	Component Ecoducin	T I
	-		Electrical Circuit	
	Group	2		4-3
	Group Group	2	Electrical Circuit	4-3 4-25
SE	Group Group Group	2 3 4	Electrical Circuit	4-3 4-25
	Group Group Group	2 3 4	Electrical Circuit Electrical Component Specification Connectors	4-3 4-25 4-37

(Group	3	Automatic Deceleration System	5-6
(Group	4	Power Boost System	5-7
(Group	5	Travel Speed Control System	5-8
(Group	6	Automatic Warming Up Function	5-9
(Group	7	Engine Overheat Prevention Function	5-10
(Group	8	Variable Power Control System ·····	5-11
(Group	9	Attachment Flow Control System	5-12
(Group 1	10	Boom Floating Control System	5-13
(Group 1	11	Intelligent Power Control System ·····	5-14
(Group 1	12	Anti-Restart System	5-16
(Group 1	13	Self-Diagnostic System ····	5-17
(Group 1	14	Engine Control System ·····	5-63
(Group 1	15	EPPR Valve	5-64
(Group 1	16	Monitoring System	5-67
(Group 1	17	Fuel Warmer System ····	5-113
(Group 1	18	1 or 2-Way Optional Piping Pressure Removal System ·····	5-114
SE	CTION	l 6	TROUBLESHOOTING	
(Group	1	Before Troubleshooting	6-1
	•		Hydraulic and Mechanical System	
	-		Electrical System	
	-		Mechatronics System ·····	
	-		Air conditioner and Heater System	
SE	CTION	۱7	MAINTENANCE STANDARD	
(Group	1	Operational Performance Test	7-1
			Major Components	
	-		Track and Work Equipment	
OE/	OTION!	10	DICACCEMBLY AND ACCEMBLY	
SE		10	DISASSEMBLY AND ASSEMBLY	
(Group	1	Precaution	8-1
(Group	2	Tightening Torque ·····	8-4
(Group	3	Pump Device	8-7
(Group	4	Main Control Valve	8-43
(Group	5	Swing Device	8-49
(Group	6	Travel Motor	8-53
(Group	7	Transmission	8-80

Group	8 Steering Valve ·····	8-177
Group	9 Front Axle ·····	8-202
Group	10 Rear Axle ·····	8-273
Group	11 RCV Lever ·····	8-315
Group	12 Turning Joint	8-329
Group	13 Boom, Arm, Bucket, Dozer and Outrigger Cylinders	8-335
Group	14 Work Equipment	8-359

1. STRUCTURE

This service manual has been prepared as an aid to improve the quality of repairs by giving the serviceman an accurate understanding of the product and by showing him the correct way to perform repairs and make judgements. Make sure you understand the contents of this manual and use it to full effect at every opportunity.

This service manual mainly contains the necessary technical information for operations performed in a service workshop.

For ease of understanding, the manual is divided into the following sections.

SECTION 1 GENERAL

This section explains the safety hints and gives the specification of the machine and major components.

SECTION 2 STRUCTURE AND FUNCTION

This section explains the structure and function of each component. It serves not only to give an understanding of the structure, but also serves as reference material for troubleshooting.

SECTION 3 HYDRAULIC SYSTEM

This section explains the hydraulic circuit, single and combined operation.

SECTION 4 ELECTRICAL SYSTEM

This section explains the electrical circuit, monitoring system and each component. It serves not only to give an understanding electrical system, but also serves as reference material for trouble shooting.

SECTION 5 MECHATRONICS SYSTEM

This section explains the computer aided power optimization system and each component.

SECTION 6 TROUBLESHOOTING

This section explains the troubleshooting charts correlating **problems** to **causes**.

SECTION 7 MAINTENANCE STANDARD

This section gives the judgement standards when inspecting disassembled parts.

SECTION 8 DISASSEMBLY AND ASSEMBLY

This section explains the order to be followed when removing, installing, disassembling or assembling each component, as well as precautions to be taken for these operations.

SECTION 9 COMPONENT MOUNTING TORQUE

This section shows bolt specifications and standard torque values needed when mounting components to the machine.

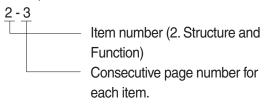
The specifications contained in this shop manual are subject to change at any time and without any advance notice. Contact your HD Hyundai Construction Equipment distributor for the latest information.

2. HOW TO READ THE SERVICE MANUAL

Distribution and updating

Any additions, amendments or other changes will be sent to HD Hyundai Construction Equipment distributors.

Get the most up-to-date information before you start any work.


Filing method

1. See the page number on the bottom of the page.

File the pages in correct order.

2. Following examples shows how to read the page number.

Example 1

3. Additional pages: Additional pages are indicated by a hyphen(-) and number after the page number. File as in the example.

Revised edition mark (123...)

When a manual is revised, an edition mark is recorded on the bottom outside corner of the pages.

Revisions

Revised pages are shown at the list of revised pages on the between the contents page and section 1 page.

Symbols

So that the shop manual can be of ample practical use, important places for safety and quality are marked with the following symbols.

Symbol	Item	Remarks				
		Special safety precautions are necessary when performing the work.				
	Safety	Extra special safety precautions are necessary when performing the work because it is under internal pressure.				
*	Caution	Special technical precautions or other precautions for preserving standards are necessary when performing the work.				

3. CONVERSION TABLE

Method of using the Conversion Table

The Conversion Table in this section is provided to enable simple conversion of figures. For details of the method of using the Conversion Table, see the example given below.

Example

1. Method of using the Conversion Table to convert from millimeters to inches Convert 55 mm into inches.

- (1) Locate the number 50 in the vertical column at the left side, take this as ⓐ, then draw a horizontal line from ⓐ.
- (2) Locate the number 5 in the row across the top, take this as (b), then draw a perpendicular line down from (b).
- (3) Take the point where the two lines cross as ©. This point © gives the value when converting from millimeters to inches. Therefore, 55 mm = 2.165 inches.

2. Convert 550 mm into inches.

- (1) The number 550 does not appear in the table, so divide by 10 (Move the decimal point one place to the left) to convert it to 55 mm.
- (2) Carry out the same procedure as above to convert 55 mm to 2.165 inches.
- (3) The original value (550 mm) was divided by 10, so multiply 2.165 inches by 10 (Move the decimal point one place to the right) to return to the original value.

 This gives 550 mm = 21.65 inches.

	Millimete	rs to inche	es			(b)					1 mm = 0.03937 in	
		0	1	2	3	4	5	6	7	8	9	
	0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354	
	10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748	
	20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142	
	30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536	
	40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929	
							c					
(a)	50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323	
	60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717	
	70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110	
	80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504	
	90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898	

Millimeters to inches 1 mm = 0.03937 in

	1 11111 = 0.00007									
	0	1	2	3	4	5	6	7	8	9
0		0.039	0.079	0.118	0.157	0.197	0.236	0.276	0.315	0.354
10	0.394	0.433	0.472	0.512	0.551	0.591	0.630	0.669	0.709	0.748
20	0.787	0.827	0.866	0.906	0.945	0.984	1.024	1.063	1.102	1.142
30	1.181	1.220	1.260	1.299	1.339	1.378	1.417	1.457	1.496	1.536
40	1.575	1.614	1.654	1.693	1.732	1.772	1.811	1.850	1.890	1.929
50	1.969	2.008	2.047	2.087	2.126	2.165	2.205	2.244	2.283	2.323
60	2.362	2.402	2.441	2.480	2.520	2.559	2.598	2.638	2.677	2.717
70	2.756	2.795	2.835	2.874	2.913	2.953	2.992	3.032	3.071	3.110
80	3.150	3.189	3.228	3.268	3.307	3.346	3.386	3.425	3.465	3.504
90	3.543	3.583	3.622	3.661	3.701	3.740	3.780	3.819	3.858	3.898

Kilogram to Pound 1 kg = 2.2046 lb

	0	1	2	3	4	5	6	7	8	9
0		2.20	4.41	6.61	8.82	11.02	13.23	15.43	17.64	19.84
10	22.05	24.25	26.46	28.66	30.86	33.07	35.27	37.48	39.68	41.89
20	44.09	46.30	48.50	50.71	51.91	55.12	57.32	59.5.	61.73	63.93
30	66.14	68.34	70.55	72.75	74.96	77.16	79.37	81.57	83.78	85.98
40	88.18	90.39	92.59	94.80	97.00	99.21	101.41	103.62	105.82	108.03
50	110.23	112.44	114.64	116.85	119.05	121.25	123.46	125.66	127.87	130.07
60	132.28	134.48	136.69	138.89	141.10	143.30	145.51	147.71	149.91	152.12
70	154.32	156.53	158.73	160.94	163.14	165.35	167.55	169.76	171.96	174.17
80	176.37	178.57	180.78	182.98	185.19	187.39	189.60	191.80	194.01	196.21
90	198.42	200.62	202.83	205.03	207.24	209.44	211.64	213.85	216.05	218.26

Liter to U.S. Gallon 1 ℓ = 0.2642 U.S.Gal

	0	1	2	3	4	5	6	7	8	9
0		0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.113	2.378
10	2.642	2.906	3.170	3.434	3.698	3.963	4.227	4.491	4.755	5.019
20	5.283	5.548	5.812	6.6076	6.340	6.604	6.869	7.133	7.397	7.661
30	7.925	8.189	8.454	8.718	8.982	9.246	9.510	9.774	10.039	10.303
40	10.567	10.831	11.095	11.359	11.624	11.888	12.152	12.416	12.680	12.944
50	13.209	13.473	13.737	14.001	14.265	14.529	14.795	15.058	15.322	15.586
60	15.850	16.115	16.379	16.643	16.907	17.171	17.435	17.700	17.964	18.228
70	18.492	18.756	19.020	19.285	19.549	19.813	20.077	20.341	20.605	20.870
80	21.134	21.398	21.662	21.926	22.190	22.455	22.719	22.983	23.247	23.511
90	23.775	24.040	24.304	24.568	24.832	25.096	25.631	25.625	25.889	26.153

Liter to U.K. Gallon 1 ℓ = 0.21997 U.K.Gal

	0	1	2	3	4	5	6	7	8	9	ĺ
0		0.220	0.440	0.660	0.880	1.100	1.320	1.540	1.760	1.980	ĺ
10	2.200	2.420	2.640	2.860	3.080	3.300	3.520	3.740	3.950	4.179	
20	4.399	4.619	4.839	5.059	5.279	5.499	5.719	5.939	6.159	6.379	ı
30	6.599	6.819	7.039	7.259	7.479	7.969	7.919	8.139	8.359	8.579	ı
40	8.799	9.019	9.239	9.459	9.679	9.899	10.119	10.339	10.559	10.778	ì
											ı
50	10.998	11.281	11.438	11.658	11.878	12.098	12.318	12.528	12.758	12.978	ı
60	13.198	13.418	13.638	13.858	14.078	14.298	14.518	14.738	14.958	15.178	ı
70	15.398	15.618	15.838	16.058	16.278	16.498	16.718	16.938	17.158	17.378	ı
80	17.598	17.818	18.037	18.257	18.477	18.697	18.917	19.137	19.357	19.577	ı
90	19.797	20.017	20.237	20.457	20.677	20.897	21.117	21.337	21.557	21.777	ı

 $kgf \cdot m \text{ to } lbf \cdot ft$ 1 $kgf \cdot m = 7.233 \text{ lbf} \cdot ft$

	0	1	2	3	4	5	6	7	8	9
		7.2	14.5	21.7	28.9	36.2	43.4	50.6	57.9	65.1
10	72.3	79.6	86.8	94.0	101.3	108.5	115.7	123.0	130.2	137.4
20	144.7	151.9	159.1	166.4	173.6	180.8	188.1	195.3	202.5	209.8
30	217.0	224.2	231.5	238.7	245.9	253.2	260.4	267.6	274.9	282.1
40	289.3	396.6	303.8	311.0	318.3	325.5	332.7	340.0	347.2	354.4
50	361.7	368.9	376.1	383.4	390.6	397.8	405.1	412.3	419.5	426.8
60	434.0	441.2	448.5	455.7	462.9	470.2	477.4	484.6	491.8	499.1
70	506.3	513.5	520.8	528.0	535.2	542.5	549.7	556.9	564.2	571.4
80	578.6	585.9	593.1	600.3	607.6	614.8	622.0	629.3	636.5	643.7
90	651.0	658.2	665.4	672.7	679.9	687.1	694.4	701.6	708.8	716.1
100	723.3	730.5	737.8	745.0	752.2	759.5	766.7	773.9	781.2	788.4
110	795.6	802.9	810.1	817.3	824.6	831.8	839.0	846.3	853.5	860.7
120	868.0	875.2	882.4	889.7	896.9	904.1	911.4	918.6	925.8	933.1
130	940.3	947.5	954.8	962.0	969.2	976.5	983.7	990.9	998.2	10005.4
140	1012.6	1019.9	1027.1	1034.3	1041.5	1048.8	1056.0	1063.2	1070.5	1077.7
150	1084.9	1092.2	1099.4	1106.6	1113.9	1121.1	1128.3	1135.6	1142.8	1150.0
160	1157.3	1164.5	1171.7	1179.0	1186.2	1193.4	1200.7	1207.9	1215.1	1222.4
170	1129.6	1236.8	1244.1	1251.3	1258.5	1265.8	1273.0	1280.1	1287.5	1294.7
180	1301.9	1309.2	1316.4	1323.6	1330.9	1338.1	1345.3	1352.6	1359.8	1367.0
190	1374.3	1381.5	1388.7	1396.0	1403.2	1410.4	1417.7	1424.9	1432.1	1439.4

kgf/cm² to lbf/in²

 $1 \text{ kgf} / \text{cm}^2 = 14.2233 \text{ lbf} / \text{in}^2$

J								i kgi /	CIII ² = 14.2	2233 lbt / ln2
	0	1	2	3	4	5	6	7	8	9
		14.2	28.4	42.7	56.9	71.1	85.3	99.6	113.8	128.0
10	142.2	156.5	170.7	184.9	199.1	213.4	227.6	241.8	256.0	270.2
20	284.5	298.7	312.9	327.1	341.4	355.6	369.8	384.0	398.3	412.5
30	426.7	440.9	455.1	469.4	483.6	497.8	512.0	526.3	540.5	554.7
40	568.9	583.2	597.4	611.6	625.8	640.1	654.3	668.5	682.7	696.9
50	711.2	725.4	739.6	753.8	768.1	782.3	796.5	810.7	825.0	839.2
60	853.4	867.6	881.8	896.1	910.3	924.5	938.7	953.0	967.2	981.4
70	995.6	1010	1024	1038	1053	1067	1081	1095	1109	1124
80	1138	1152	1166	1181	1195	1209	1223	1237	1252	1266
90	1280	1294	1309	1323	1337	1351	1365	1380	1394	1408
100	1422	1437	1451	1465	1479	1493	1508	1522	1536	1550
110	1565	1579	1593	1607	1621	1636	1650	1664	1678	1693
120	1707	1721	1735	1749	1764	1778	1792	1806	1821	1835
130	1849	2863	1877	1892	1906	1920	1934	1949	1963	1977
140	1991	2005	2020	2034	2048	2062	2077	2091	2105	2119
150	2134	2148	2162	2176	2190	2205	2219	2233	2247	2262
160	2276	2290	2304	2318	2333	2347	2361	2375	2389	2404
170	2418	2432	2446	2460	2475	2489	2503	2518	2532	2546
180	2560	2574	2589	5603	2617	2631	2646	2660	2674	2688
200	2845	2859	2873	2887	2901	2916	2930	2944	2958	2973
210	2987	3001	3015	3030	3044	3058	3072	3086	3101	3115
220	3129	3143	3158	3172	3186	3200	3214	3229	3243	3257
230	3271	3286	3300	3314	3328	3343	3357	3371	3385	3399
240	3414	3428	3442	3456	3470	3485	3499	3513	3527	3542

TEMPERATURE

Fahrenheit-Centigrade Conversion.

A simple way to convert a fahrenheit temperature reading into a centigrade temperature reading or vice verse is to enter the accompanying table in the center or boldface column of figures.

These figures refer to the temperature in either Fahrenheit or Centigrade degrees.

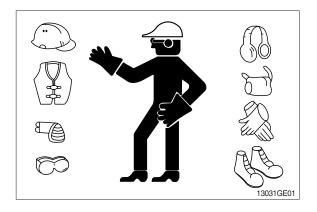
If it is desired to convert from Fahrenheit to Centigrade degrees, consider the center column as a table of Fahrenheit temperatures and read the corresponding Centigrade temperature in the column at the left.

If it is desired to convert from Centigrade to Fahrenheit degrees, consider the center column as a table of Centigrade values, and read the corresponding Fahrenheit temperature on the right.

°C		°F	°C		°F	°C		°F	°C		°F
-40.4	-40	-40.0	-11.7	11	51.8	7.8	46	114.8	27.2	81	117.8
-37.2	-35	-31.0	-11.1	12	53.6	8.3	47	116.6	27.8	82	179.6
-34.4	-30	-22.0	-10.6	13	55.4	8.9	48	118.4	28.3	83	181.4
-31.7	-25	-13.0	-10.0	14	57.2	9.4	49	120.2	28.9	84	183.2
-28.9	-20	-4.0	-9.4	15	59.0	10.0	50	122.0	29.4	85	185.0
-28.3	-19	-2.2	-8.9	16	60.8	10.6	51	123.8	30.0	86	186.8
-27.8	-18	-0.4	-8.3	17	62.6	11.1	52	125.6	30.6	87	188.6
-27.2	-17	1.4	-7.8	18	64.4	11.7	53	127.4	31.1	88	190.4
-26.7	-16	3.2	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-26.1	-15	5.0	-6.7	20	68.0	12.8	55	131.0	32.2	90	194.0
-25.6	-14	6.8	-6.1	21	69.8	13.3	56	132.8	32.8	91	195.8
-25.0	-13	8.6	-5.6	22	71.6	13.9	57	134.6	33.3	92	197.6
-24.4	-12	10.4	-5.0	23	73.4	14.4	58	136.4	33.9	93	199.4
-23.9	-11	12.2	-4.4	24	75.2	15.0	59	138.2	34.4	94	201.2
-23.3	-10	14.0	-3.9	25	77.0	15.6	60	140.0	35.0	95	203.0
-22.8	-9	15.8	-3.3	26	78.8	16.1	61	141.8	35.6	96	204.8
-22.2	-8	17.6	-2.8	27	80.6	16.7	62	143.6	36.1	97	206.6
-21.7	-7	19.4	-2.2	28	82.4	17.2	63	145.4	36.7	98	208.4
-21.1	-6	21.2	-1.7	29	84.2	17.8	64	147.2	37.2	99	210.2
-20.6	-5	23.0	-1.1	35	95.0	21.1	70	158.0	51.7	125	257.0
-20.0	-4	24.8	-0.6	31	87.8	18.9	66	150.8	40.6	105	221.0
-19.4	-3	26.6	0	32	89.6	19.4	67	152.6	43.3	110	230.0
-18.9	-2	28.4	0.6	33	91.4	20.0	68	154.4	46.1	115	239.0
-18.3	-1	30.2	1.1	34	93.2	20.6	69	156.2	48.9	120	248.0
-17.8	0	32.0	1.7	35	95.0	21.1	70	158.0	51.7	125	257.0
-17.2	1	33.8	2.2	36	96.8	21.7	71	159.8	54.4	130	266.0
-16.7	2	35.6	2.8	37	98.6	22.2	72	161.6	57.2	135	275.0
-16.1	3	37.4	3.3	38	100.4	22.8	73	163.4	60.0	140	284.0
-15.6	4	39.2	3.9	39	102.2	23.3	74	165.2	62.7	145	293.0
-15.0	5	41.0	4.4	40	104.0	23.9	75	167.0	65.6	150	302.0
-14.4	6	42.8	5.0	41	105.8	24.4	76	168.8	68.3	155	311.0
-13.9	7	44.6	5.6	42	107.6	25.0	77	170.6	71.1	160	320.0
-13.3	8	46.4	6.1	43	109.4	25.6	78	172.4	73.9	165	329.0
-12.8	9	48.2	6.7	44	111.2	26.1	79	174.2	76.7	170	338.0
-12.2	10	50.0	7.2	45	113.0	26.7	80	176.0	79.4	172	347.0

SECTION 1 GENERAL

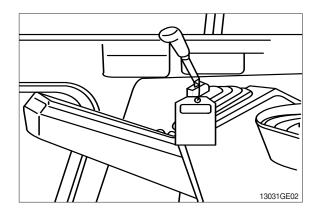
Group	1	Safety Hints	1-1	l
Group	2	Specifications	1-9	9


GROUP 1 SAFETY

FOLLOW SAFE PROCEDURE

Unsafe work practices are dangerous. Understand service procedure before doing work; do not attempt shortcuts.

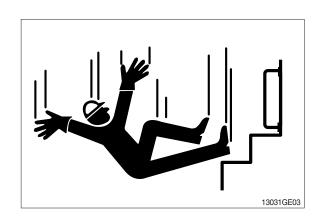
WEAR PROTECTIVE CLOTHING


Wear close fitting clothing and safety equipment appropriate to the job.

WARN OTHERS OF SERVICE WORK

Unexpected machine movement can cause serious injury.

Before performing any work on the excavator, attach a 「Do Not Operate」 tag on the right side control lever.

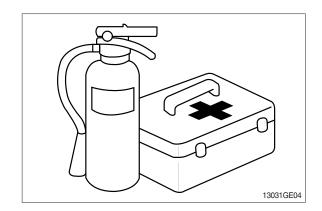

USE HANDHOLDS AND STEPS

Falling is one of the major causes of personal injury.

When you get on and off the machine, always maintain a three point contact with the steps and handrails and face the machine. Do not use any controls as handholds.

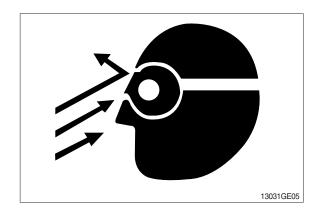
Never jump on or off the machine. Never mount or dismount a moving machine.

Be careful of slippery conditions on platforms, steps, and handrails when leaving the machine.



PREPARE FOR EMERGENCIES

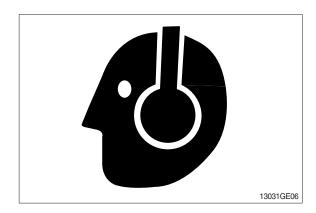
Be prepared if a fire starts.


Keep a first aid kit and fire extinguisher handy.

Keep emergency numbers for doctors, ambulance service, hospital, and fire department near your telephone.

PROTECT AGAINST FLYING DEBRIS

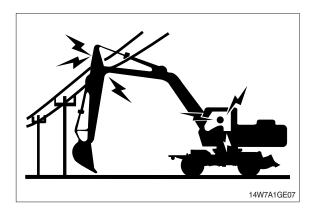
Guard against injury from flying pieces of metal or debris; wear goggles or safety glasses.



PROTECT AGAINST NOISE

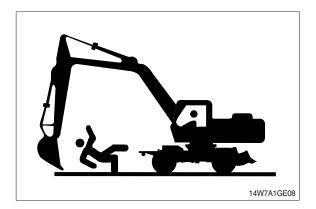
Prolonged exposure to loud noise can cause impairment or loss of hearing.

Wear a suitable hearing protective device such as ear-


muffs or earplugs to protect against objectionable or uncomfortable loud noises.

AVOID POWER LINES

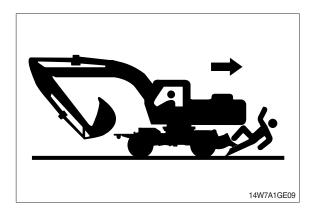
Serious injury or death can result from contact with electric lines.


Never move any part of the machine or load closer to electric line than 3m(10ft) plus twice the line insulator length.

KEEP RIDERS OFF EXCAVATOR

Only allow the operator on the excavator. Keep riders off.

Riders on excavator are subject to injury such as being struck by foreign objects and being thrown off the excavator. Riders also obstruct the operator's view resulting in the excavator being operated in an unsafe manner.



MOVE AND OPERATE MACHINE SAFELY

Bystanders can be run over. Know the location of bystanders before moving, swinging, or operating the machine.

Always keep the travel alarm in working condition. It warns people when the excavator starts to move.

Use a signal person when moving, swinging, or operating the machine in congested areas. Coordinate hand signals before starting the excavator.

OPERATE ONLY FORM OPERATOR'S SEAT

Avoid possible injury machine damage. Do not start engine by shorting across starter terminals.

NEVER start engine while standing on ground. Start engine only from operator's seat.

PARK MACHINE SAFELY

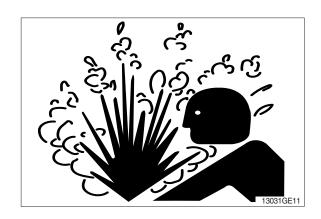
Before working on the machine:

- · Park machine on a level surface.
- · Lower bucket to the ground.
- · Turn auto idle switch off.
- · Run engine at 1/2 speed without load for 2
- Turn key switch to OFF to stop engine. Remove key from switch.
- · Move pilot control shutoff lever to locked position.
- · Allow engine to cool.

SUPPORT MACHINE PROPERLY

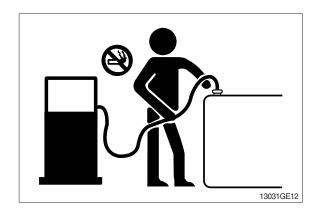
Always lower the attachment or implement to the ground before you work on the machine. If you must work on a lifted machine or attachment, securely support the machine or attachment.

Do not support the machine on cinder blocks, hollow tiles, or props that may crumble under continuous load.


Do not work under a machine that is supported solely by a jack. Follow recommended procedures in this manual.

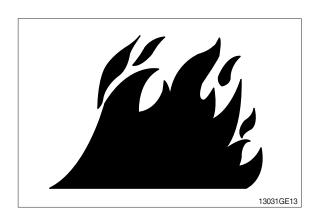
SERVICE COOLING SYSTEM SAFELY

Explosive release of fluids from pressurized cooling system can cause serious burns.


Shut off engine. Only remove filler cap when cool enough to touch with bare hands.

HANDLE FLUIDS SAFELY-AVOID FIRES

Handle fuel with care; it is highly flammable. Do not refuel the machine while smoking or when near open flame or sparks. Always stop engine before refueling machine.


Fill fuel tank outdoors.

Store flammable fluids away from fire hazards. Do not incinerate or puncture pressurized containers.

Make sure machine is clean of trash, grease, and debris.

Do not store oily rags; they can ignite and burn spontaneously.

BEWARE OF EXHAUST FUMES

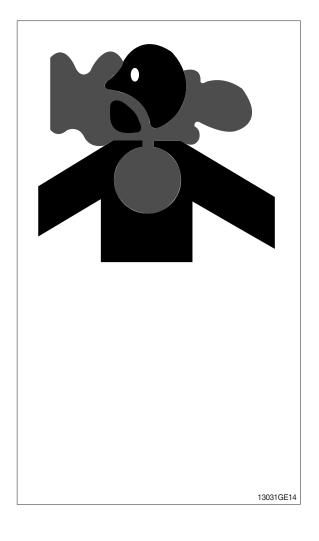
Prevent asphyxiation. Engine exhaust fumes can cause sickness or death.

If you must operate in a building, be positive there is adequate ventilation. Either use an exhaust pipe extension to remove the exhaust fumes or open doors and windows to bring enough outside air into the area.

REMOVE PAINT BEFORE WELDING OR HEATING

Avoid potentially toxic fumes and dust.

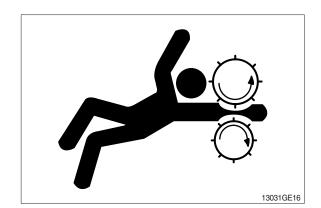
Hazardous fumes can be generated when paint is heated by welding, soldering, or using a torch.


Do all work outside or in a well ventilated area. Dispose of paint and solvent properly.

Remove paint before welding or heating:

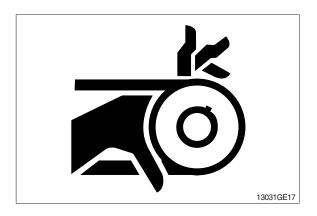
- · If you sand or grind paint, avoid breathing the dust.
 - Wear an approved respirator.
- · If you use solvent or paint stripper, remove stripper with soap and water before welding. Remove solvent or paint stripper containers and other flammable material from area. Allow fumes to disperse at least 15 minutes before welding or heating.

Illuminate your work area adequately but safely. Use a portable safety light for working inside or under the machine. Make sure the bulb is enclosed by a wire cage. The hot filament of an accidentally broken bulb can ignite spilled fuel or oil.



SERVICE MACHINE SAFELY

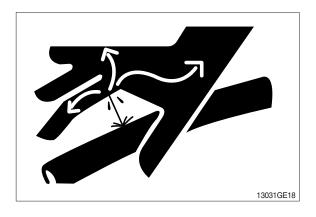
Tie long hair behind your head. Do not wear a necktie, scarf, loose clothing or necklace when you work near machine tools or moving parts. If these items were to get caught, severe injury could result.

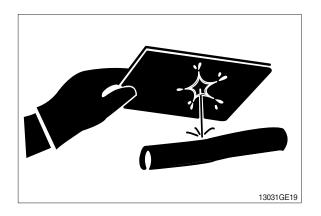

Remove rings and other jewelry to prevent electrical shorts and entanglement in moving parts.

STAY CLEAR OF MOVING PARTS

Entanglements in moving parts can cause serious injury.

To prevent accidents, use care when working around rotating parts.


AVOID HIGH PRESSURE FLUIDS


Escaping fluid under pressure can penetrate the skin causing serious injury.

Avoid the hazard by relieving pressure before disconnecting hydraulic or other lines. Tighten all connections before applying pressure.

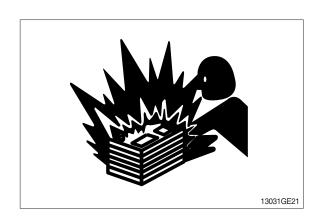
Search for leaks with a piece of cardboard. Protect hands and body from high pressure fluids.

If an accident occurs, see a doctor immediately. Any fluid injected into the skin must be surgically removed within a few hours or gangrene may result.

AVOID HEATING NEAR PRESSURIZED FLUID LINES

Flammable spray can be generated by heating near pressurized fluid lines, resulting in severe burns to yourself and bystanders. Do not heat by welding, soldering, or using a torch near pressurized fluid lines or other flammable materials.

Pressurized lines can be accidentally cut when heat goes beyond the immediate flame area. Install fire resisting guards to protect hoses or other materials.



PREVENT BATTERY EXPLOSIONS

Keep sparks, lighted matches, and flame away from the top of battery. Battery gas can explode.

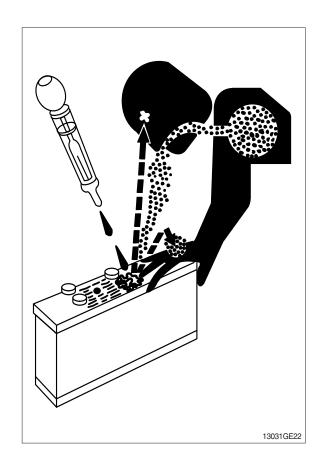
Never check battery charge by placing a metal object across the posts. Use a volt-meter or hydrometer.

Do not charge a frozen battery; it may explode. Warm battery to 16°C(60°F).

PREVENT ACID BURNS

Sulfuric acid in battery electrolyte is poisonous. It is strong enough to burn skin, eat holes in clothing, and cause blindness if splashed into eyes.

Avoid the hazard by:

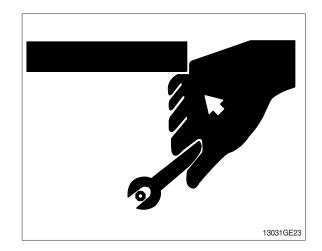

- 1. Filling batteries in a well-ventilated area.
- 2. Wearing eye protection and rubber gloves.
- 3. Avoiding breathing fumes when electrolyte is added.
- 4. Avoiding spilling of dripping electrolyte.
- 5. Use proper jump start procedure.

If you spill acid on yourself:

- 1. Flush your skin with water.
- 2. Apply baking soda or lime to help neutralize the acid.
- 3. Flush your eyes with water for 10-15 minutes. Get medical attention immediately.

If acid is swallowed:

- 1. Drink large amounts of water or milk.
- 2. Then drink milk of magnesia, beaten eggs, or vegetable oil.
- 3. Get medical attention immediately.

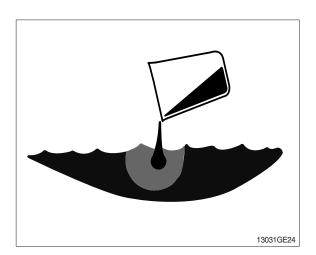

USE TOOLS PROPERLY

Use tools appropriate to the work. Makeshift tools, parts, and procedures can create safety hazards.

Use power tools only to loosen threaded tools and fasteners.

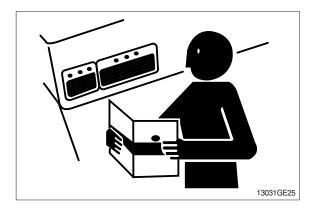
For loosening and tightening hardware, use the correct size tools. DO NOT use U.S. measurement tools on metric fasteners. Avoid bodily injury caused by slipping wrenches.

Use only recommended replacement parts. (See Parts manual.)



DISPOSE OF FLUIDS PROPERLY

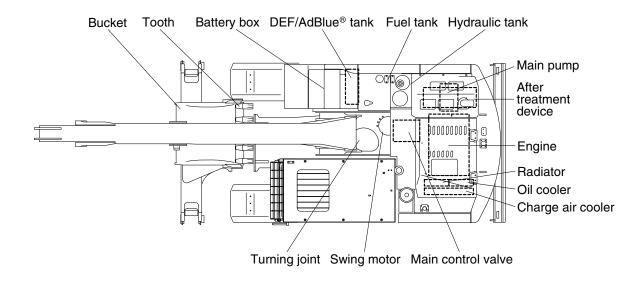
Improperly disposing of fluids can harm the environment and ecology. Before draining any fluids, find out the proper way to dispose of waste from your local environmental agency.

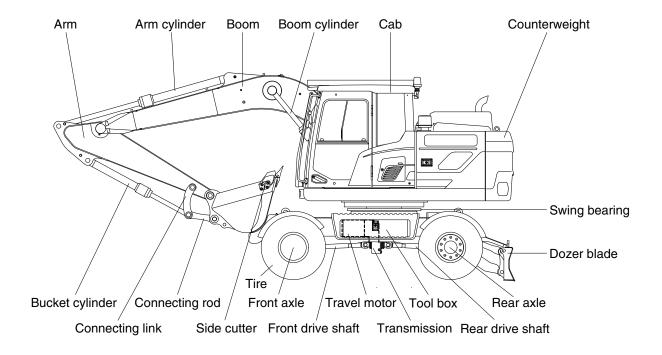

Use proper containers when draining fluids. Do not use food or beverage containers that may mislead someone into drinking from them.

DO NOT pour oil into the ground, down a drain, or into a stream, pond, or lake. Observe relevant environmental protection regulations when disposing of oil, fuel, coolant, brake fluid, filters, batteries, and other harmful waste.

REPLACE SAFETY SIGNS

Replace missing or damaged safety signs. See the machine operator's manual for correct safety sign placement.

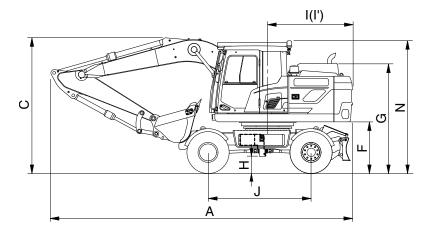


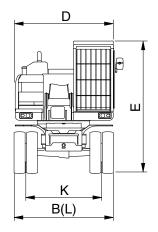

LIVE WITH SAFETY

Before returning machine to customer, make sure machine is functioning properly, especially the safety systems. Install all guards and shields.

GROUP 2 SPECIFICATIONS

1. MAJOR COMPONENT

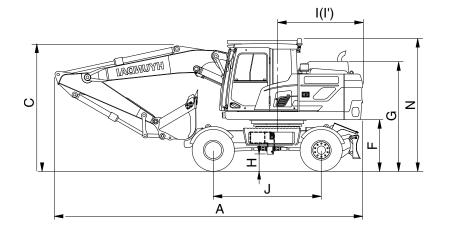


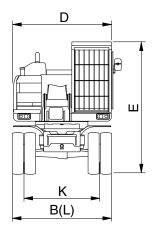


140WA2SP01

2. SPECIFICATIONS

1) HW140A. MONO BOOM

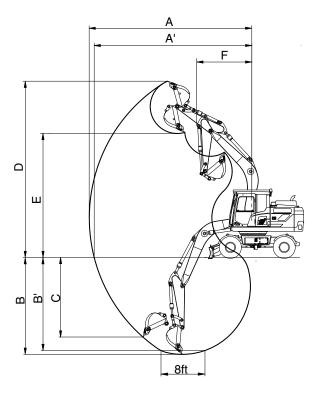




140WF2SP02A

		U	nit		Specifi	cation			
Description		m	Boom		4.6 (1	5' 1")			
		(ft-in)	Arm	2.45 (8' 0")	2.00 (6' 50")	2.60 (8' 5")	3.10 (10' 20")		
Operating weight		kg	(lb)	14900 (32850)	14840 (32720)	14920 (32890)	14970 (33000)		
Bucket capacity (SAE heaped), star	ndard	m³ ((yd³)	0.58 (0.76)	0.58 (0.76)	0.58 (0.76)	0.58 (0.76)		
Overall length (traveling)	^			7560 (24' 10")	7740 (25' 5")	7470 (24' 6")	7360 (24' 2")		
Overall length (shipping)	Α			7660 (25' 2")	7600 (24' 11")	7670 (25' 2")	7600 (24' 11")		
Overall width	В			2530 (8' 4")	2530 (8' 4")	2530 (8' 4")	2530 (8' 4")		
Overall height of boom	С			3805 (12' 6")	3420 (11' 3")	3925 (12' 11")	4000 (13' 1")		
Upperstructure width	D			2485 (8' 2")	2485 (8' 2")	2485 (8' 2")	2485 (8' 2")		
Cab height	Е			3255 (10' 8")	3255 (10' 8")	3255 (10' 8")	3255 (10' 8")		
Ground clearance of counterweight	F			1260 (4' 2")	1260 (4' 2")	1260 (4' 2")	1260 (4' 2")		
Engine cover height	G	mm (ft-in)		2760 (9' 1")	2760 (9' 1")	2760 (9' 1")	2760 (9' 1")		
Minimum ground clearance	Н			390 (1' 3")	390 (1' 3")	390 (1' 3")	390 (1' 3")		
Rear-end distance	I					2150 (7' 1")	2150 (7' 1")	2150 (7' 1")	2150 (7' 1")
Rear-end swing radius	ľ			2170 (7' 1")	2170 (7' 1")	2170 (7' 1")	2170 (7' 1")		
Wheel base	J			2600 (8' 6")	2600 (8' 6")	2600 (8' 6")	2600 (8' 6")		
Tread	K			1944 (6' 5")	1944 (6' 5")	1944 (6' 5")	1944 (6' 5")		
Dozer blade width	L			2490 (8' 2")	2490 (8' 2")	2490 (8' 2")	2490 (8' 2")		
Overall height of guardrail	N			3475 (11' 5")	3475 (11' 5")	3475 (11' 5")	3475 (11' 5")		
	Low			10 (6.2)	10 (6.2)	10 (6.2)	10 (6.2)		
Travel speed	High	km/hr	(mph)	40 (24.9)	40 (24.9)	(24.9) 40 (24.9)	40 (24.9)		
	Creep			3 (1.9)	3 (1.9)	3 (1.9)	3 (1.9)		
Swing speed	rp	om	9.50	9.50	9.50	9.50			
Gradeability	Degree (%)		35 (70)	35 (70)	35 (70) 35 (70)				
Max traction force	kg	(lb)	8163 (17996)	8163 (17996)	8163 (17996)	8163 (17996)			

2) HW140A, 2-PIECE BOOM

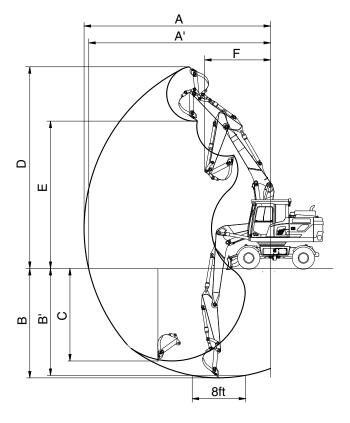


140WA2SP03A

		U	nit		Specification	
Description		m	Boom		4.71 (15' 5")	
		(ft-in)	Arm	2.45 (8' 0")	2.00 (6' 50")	2.60 (8' 5")
Operating weight		kg	(lb)	15860 (34970)	15800 (34830)	15880 (35010)
Bucket capacity (SAE heaped), star	ndard	m³ (yd³)		0.58 (0.76)	58 (0.76) 0.58 (0.76)	
Overall length (traveling)	Α			5810 (19' 1")	5840 (19' 2")	5785 (19' 0")
Overall length (shipping)	A			7770 (25' 6")	7770 (25' 6")	7780 (25' 6")
Overall width	В			2530 (8' 4")	2530 (8' 4")	2530 (8' 4")
Overall height of boom	С			3990 (13' 1")	4000 (13' 1")	4000 (13' 1")
Upperstructure width	D			2485 (8' 2")	2485 (8' 2")	2485 (8' 2")
Cab height	Е			3255 (10' 8")	3255 (10' 8")	3255 (10' 8")
Ground clearance of counterweight	F			1260 (4' 2")	1260 (4' 2")	1260 (4' 2")
Engine cover height	G	mm	(ft-in)	2760 (9' 1")	2760 (9' 1")	2760 (9' 1")
Minimum ground clearance	Н			390 (1' 3")	390 (1' 3")	390 (1' 3")
Rear-end distance	I			2150 (7' 1")	2150 (7' 1")	2150 (7' 1")
Rear-end swing radius	ľ			2170 (7' 1")	2170 (7' 1")	2170 (7' 1")
Wheel base	J			2600 (8' 6")	2600 (8' 6")	2600 (8' 6")
Tread	K			1944 (6' 5")	1944 (6' 5")	1944 (6' 5")
Dozer blade width	L			2490 (8' 2")	2490 (8' 2")	2490 (8' 2")
Overall height of guardrail	N			3475 (11' 5")	3475 (11' 5")	3475 (11' 5")
	Low			10 (6.2)	10 (6.2)	10 (6.2)
Travel speed	High	km/hr	(mph)	40 (24.9)	40 (24.9)	40 (24.9)
	Creep			3 (1.9)	3 (1.9)	3 (1.9)
Swing speed	rp	m	9.50	9.50	9.50	
Gradeability	Degre	ee (%)	35 (70)	35 (70)	35 (70)	
Max traction force	kg	(lb)	8163 (17996)	8163 (17996)	8163 (17996)	

3. WORKING RANGE AND DIGGING POWER

1) HW140A, MONO BOOM



140WA2SP04

					I	
Description		2.45 m (8' 0") Arm	2.00 m (6' 7") Arm	2.60 m (8' 6") Arm	3.10 m (10' 2") Arm	
Max digging reach	Α	8310 (27' 3")	7880 (25' 10")	8450 (27' 9")	8910 (29' 3")	
Max digging reach on ground	A'	8080 (26' 6")	7640 (25' 1")	8230 (27' 0")	8700 (28' 7")	
Max digging depth	В	5110 (16' 9")	4660 (15' 3")	5260 (17' 3")	5760 (18' 11")	
Max digging depth (8 ft level)	В'	4895 (16' 1")	4400 (14' 5")	5060 (16' 7")	5580 (18' 4")	
Max vertical wall digging depth	С	4655 (15' 3")	4200 (13' 9")	4800 (15' 9")	5310 (17' 5")	
Max digging height	D	8850 (29' 0")	8540 (28' 0")	8940 (29' 4")	9210 (30' 3")	
Max dumping height	Е	6400 (21' 0")	6100 (20' 0")	6490 (21' 4")	6760 (22' 2")	
Min swing radius	F	2680 (8' 10")	2670 (8' 9")	2690 (8' 10")	2720 (8' 11")	
		87.9 [95.9]	87.8 [95.8]	87.9 [95.9]	87.8 [95.8]	
	SAE	8961 [9780]	8957 [9770]	8961 [9780]	8957 [9770]	
Punkot diaging force		19760 [21560]	19750 [21540]	19760 [21560]	19750 [21540]	
Bucket digging force		102.9 [112.3]	102.9 [112.2]	102.9 [112.3]	102.9 [112.2]	
	ISO	10494 [11450]	10489.4 [11440]	10494 [11450]	10488.6 [11440]	
		23140 [25240]	23130 [25220]	23140 [25240]	23120 [25220]	
		63.6 [69.3]	74.2 [81.0]	61.1 [66.7]	54.7 [59.7]	
	SAE	6485 [7070]	7569 [8260]	6230 [6800]	5579 [6090]	
Arm diaging force		14300 [15590]	16690 [18210]	13740 [14990]	12300 [13430]	
Arm digging force		66.3 [72.4]	77.9 [84.9]	63.6 [69.4]	56.7 [61.9]	
	ISO	6764 [7380]	7942 [8660]	6486 [7080]	5782 [6310]	
		14910 [16270]	17510 [19090]	14300 [15610]	12750 [13910]	

[]: Power boost

2) HW140A, 2-PIECE BOOM

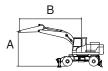
140WA2SP05

Description		2.45 m (8' 0") Arm	2.00 m (6' 7") Arm	2.60 m (8' 6") Arm
Max digging reach	Α	8490 (27' 10")	8050 (26' 5")	8630 (28' 4")
Max digging reach on ground	A'	8270 (27' 2")	7820 (25' 8")	8420 (27' 7")
Max digging depth	В	5000 (16' 5")	4550 (14' 11")	5150 (16' 11")
Max digging depth (8 ft level)	B'	4890 (16' 1")	4430 (14' 6")	5040 (16' 6")
Max vertical wall digging depth	С	4410 (14' 6")	3930 (12' 11")	4555 (14' 11")
Max digging height	D	9480 (31' 1")	9120 (29' 11")	9600 (31' 6")
Max dumping height	Е	6990 (22' 11")	6640 (21' 9")	7110 (23' 4")
Min swing radius	F	2600 (8' 6")	2620 (8' 7")	2650 (8' 8")
		87.9 [95.9]	87.8 [95.8]	87.9 [95.9]
	SAE	8961 [9780]	8957 [9770]	8961 [9780]
Puelvet digging force		19760 [21560]	19750 [21540]	19760 [21560]
Bucket digging force		102.9 [112.3]	102.9 [112.2]	102.9 [112.3]
	ISO	10494 [11450]	10489 [11440]	10494 [11450]
		23140 [25240]	23130 [25220]	23140 [25240]
		63.6 [69.3]	74.2 [81.0]	61.1 [66.7]
	SAE	6485 [7070]	7569 [8260]	6230 [6800]
A was allowed as force		14300 [15590]	16690 [18210]	13740 [14990]
Arm digging force		66.3 [72.4]	77.9 [84.9]	63.6 [69.4]
	ISO	6764 [7380]	7942 [8660]	6486 [7080]
		14910 [16270]	17510 [19090]	14300 [15610]

[]: Power boost

4. WEIGHT

lla	HW1	40A
Item	kg	lb
Upperstructure assembly	7005	15440
· Main frame weld assembly	1273	2810
· Engine assembly	378	830
· Aftertreatment assembly	64	140
· Main pump assembly	91	200
· Main control valve assembly	144	320
· Swing motor assembly	148	330
· Hydraulic oil tank WA	135	300
· Fuel tank WA	138	300
· Counterweight	1704	3760
· Cab assembly	495	1090
Lower chassis assembly	5145	11340
· Lower frame weld assembly	1255	2770
· Swing bearing	260	570
Travel motor assembly (2EA)	56	120
· Turning joint	117	260
Transmission assembly	135	300
· Front axle assembly	637	1400
· Rear axle assembly	534	1180
Dozer blade assembly (front)	632	1390
Dozer blade assembly (north) Dozer blade assembly (rear)	632	1390
Front attachment assembly (4.6 m boom, 2.45 m arm, 0.58 m³ SAE heaped bucket)	2750	6060
· 4.6 m boom assembly	829	1830
· 4.75 m 2pcs boom assembly	938	2070
· 2.00 m arm assembly	380	840
· 2.45 m arm assembly	437	960
· 2.60 m arm assembly	457	1010
· 3.10 m arm assembly	492	1080
· 0.58 m³ SAE heaped bucket assembly	484	1070
· 0.52 m³ SAE heaped bucket assembly	461	1020
· 0.65 m³ SAE heaped bucket assembly	513	1130
· 0.71 m³ SAE heaped bucket assembly	536	1180
· 0.50 m³ SAE heaped bucket assembly	439	970
· 0.61 m³ SAE heaped bucket assembly	490	1080
· 0.45 m³ SAE heaped bucket assembly	410	900
0.55 m³ SAE heaped bucket assembly	585	1290
Bucket control link assembly	113	250
Boom cylinder assembly (2EA)	238	520
Adjustable boom cylinder assembly (2EA)	246	540
Arm cylinder assembly	145	320
Bucket cylinder assembly	104	230
Adjustable cylinder assembly	168	370
Oscillating cylinder assembly (2EA)	98	220
Outrigger cylinder assembly (2EA)	136	300
Blade cylinder assembly (front) (2EA)	102	220
Blade cylinder assembly (non) (2EA) Blade cylinder assembly (rear) (2EA)	102	220
Front outrigger assembly	833	1840
		1840
· Rear outrigger assembly	833	1640


5. LIFTING CAPACITIES

1) 4.6 m MONO BOOM+1700 kg COUNTERWEIGHT

Model	Type	Boom	Boom Arm		Shoe	Wheel	Dozer		Outrigger	
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4600	2000	1700	-	500	-	Down	-	-

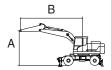
· Pating over-front

· 📥 : Rating over-side or 360 degree

					Lift-point	radius (B)				At	max. rea	ch
Lift-po	int	1.5 m	(4.9 ft)	3.0 m (9.8 ft)		4.5 m (14.8 ft)		6.0 m (19.7 ft)		Capacity		Reach
height	(A)	Ů		ŀ	#	ŀ		P	#	Ů		m (ft)
6.0 m	kg					*4420	3670			*3330	2910	5.15
(19.7 ft)	lb					*9740	8090			*7340	6420	(16.9)
4.5 m	kg					*4790	3570	3560	2240	*3110	2190	6.08
(14.8 ft)	lb					*10560	7870	7850	4940	*6860	4830	(19.9)
3.0 m	kg					5500	3350	3490	2180	3050	1900	6.53
(9.8 ft)	lb					12130	7390	7690	4810	6720	4190	(21.4)
1.5 m	kg					5250	3140	3400	2090	2940	1810	6.62
(4.9 ft)	lb					11570	6920	7500	4610	6480	3990	(21.7)
0.0 m	kg			*6510	5520	5120	3020	3340	2040	3090	1890	6.34
(0.0 ft)	lb			*14350	12170	11290	6660	7360	4500	6810	4170	(20.8)
-1.5 m	kg	*6490	*6490	*9460	5580	5120	3020			3650	2230	5.66
(-4.9 ft)	lb	*14310	*14310	*20860	12300	11290	6660			8050	4920	(18.6)
-3.0 m	kg			*6990	5760					*4600	3300	4.37
(-9.8 ft)	lb			*15410	12700					*10140	7280	(14.3)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

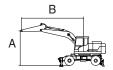
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4600	2000	1700	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

					Lift-point	radius (B)				At	max. rea	ch
Lift-po	int	1.5 m	(4.9 ft)	3.0 m (9.8 ft)		4.5 m (14.8 ft)		6.0 m (19.7 ft)		Capacity		Reach
height	(A)	·	#	U	#	ŀ	#		#	·		m (ft)
6.0 m	kg					*4420	3330			*3330	2640	5.15
(19.7 ft)	lb					*9740	7340			*7340	5820	(16.9)
4.5 m	kg					*4790	3230	3560	2020	*3110	1970	6.08
(14.8 ft)	lb					*10560	7120	7850	4450	*6860	4340	(19.9)
3.0 m	kg					5500	3010	3490	1960	3050	1710	6.53
(9.8 ft)	lb					12130	6640	7690	4320	6720	3770	(21.4)
1.5 m	kg					5250	2810	3400	1880	2940	1620	6.62
(4.9 ft)	lb					11570	6190	7500	4140	6480	3570	(21.7)
0.0 m	kg			*6510	4840	5120	2700	3340	1820	3090	1700	6.34
(0.0 ft)	lb			*14350	10670	11290	5950	7360	4010	6810	3750	(20.8)
-1.5 m	kg	*6490	*6490	*9460	4900	5120	2690			3650	1990	5.66
(-4.9 ft)	lb	*14310	*14310	*20860	10800	11290	5930			8050	4390	(18.6)
-3.0 m	kg			*6990	5080					*4600	2950	4.37
(-9.8 ft)	lb			*15410	11200					*10140	6500	(14.3)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

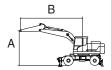
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4600	2450	1700	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

					Lift-point	radius (B)				At	max. rea	ch
Lift-poir	nt	1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height (/	A)	U	#	·		ŀ		P	#	H		m (ft)
7.5 m (24.6 ft)	kg lb									*2890 *6370	*2890 *6370	4.16 (13.6)
	kg					*3880	3740			*2390	*2390	5.70
(19.7 ft)	lb					*8550	8250			*5270	*5270	(18.7)
4.5 m	kg					*4330	3620	3590	2270	*2250	1940	6.55
(14.8 ft)	lb					*9550	7980	7910	5000	*4960	4280	(21.5)
3.0 m	kg			*7850	6310	*5330	3390	3500	2180	*2260	1700	6.97
(9.8 ft)	lb			*17310	13910	*11750	7470	7720	4810	*4980	3750	(22.9)
1.5 m	kg			*5690	5650	5270	3150	3390	2080	*2410	1630	7.05
(4.9 ft)	lb			*12540	12460	11620	6940	7470	4590	*5310	3590	(23.1)
0.0 m	kg			*6760	5460	5100	3000	3310	2010	*2740	1690	6.79
(0.0 ft)	lb			*14900	12040	11240	6610	7300	4430	*6040	3730	(22.3)
-1.5 m	kg	*5600	*5600	*9980	5480	5060	2960	3300	2000	3190	1940	6.16
(-4.9 ft)	lb	*12350	*12350	*22000	12080	11160	6530	7280	4410	7030	4280	(20.2)
-3.0 m	kg			*7990	5620	5160	3050			4400	2650	5.01
(-9.8 ft)	lb			*17610	12390	11380	6720			9700	5840	(16.4)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

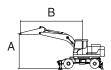
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2450	1700	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

				I	_ift-point :	radius (B)				At	max. rea	ch
Lift-poi	nt	1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Сара	acity	Reach
height ((A)	P	#	ŀ	#	ŀ	#	P	#	ŀ		m (ft)
7.5 m (24.6 ft)	kg lb									*2890 *6370	*2890 *6370	4.16 (13.6)
6.0 m	kg					*3880	3390			*2390	2250	5.70
(19.7 ft)	lb_					*8550 *4330	7470	2500	0050	*5270	4960	(18.7)
4.5 m (14.8 ft)	kg lb					*9550	3280 7230	3590 7910	2050 4520	*2250 *4960	1750 3860	6.55 (21.5)
3.0 m	kg			*7850	5600	*5330	3050	3500	1970	*2260	1530	6.97
(9.8 ft)	lb			*17310	12350	*11750	6720	7720	4340	*4980	3370	(22.9)
1.5 m	kg			*5690	4970	5270	2810	3390	1860	*2410	1460	7.05
(4.9 ft)	lb			*12540	10960	11620	6190	7470	4100	*5310	3220	(23.1)
0.0 m	kg			*6760	4790	5100	2670	3310	1790	*2740	1510	6.79
(0.0 ft)	lb			*14900	10560	11240	5890	7300	3950	*6040	3330	(22.3)
-1.5 m	kg	*5600	*5600	*9980	4800	5060	2640	3300	1790	3190	1730	6.16
(-4.9 ft)	lb	*12350	*12350	*22000	10580	11160	5820	7280	3950	7030	3810	(20.2)
-3.0 m	kg			*7990	4940	5160	2720			4400	2370	5.01
(-9.8 ft)	lb			*17610	10890	11380	6000			9700	5220	(16.4)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

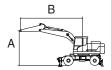
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2600	1700	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

				I	Lift-point	radius (B)				At	max. rea	ch
Lift-poi	nt	1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Сара	acity	Reach
height ((A)	U	#	·		ŀ	#	P	#	<u> </u>		m (ft)
7.5 m	kg									*2660	*2660	4.40
(24.6 ft)	lb									*5860	*5860	(14.4)
6.0 m	kg									*2230	*2230	5.87
(19.7 ft)	lb									*4920	*4920	(19.3)
4.5 m	kg					*4180	3650	3610	2280	*2100	1870	6.70
(14.8 ft)	lb					*9220	8050	7960	5030	*4630	4120	(22.0)
3.0 m	kg			*7510	6380	*5190	3410	3510	2190	*2110	1650	7.12
(9.8 ft)	lb			*16560	14070	*11440	7520	7740	4830	*4650	3640	(23.3)
1.5 m	kg			*6430	5680	5280	3150	3390	2080	*2250	1580	7.19
(4.9 ft)	lb			*14180	12520	11640	6940	7470	4590	*4960	3480	(23.6)
0.0 m	kg			*6820	5440	5090	2990	3300	2000	*2540	1630	6.94
(0.0 ft)	lb			*15040	11990	11220	6590	7280	4410	*5600	3590	(22.8)
-1.5 m	kg	*5360	*5360	*10110	5440	5040	2950	3290	1990	3060	1860	6.33
(-4.9 ft)	lb	*11820	*11820	*22290	11990	11110	6500	7250	4390	6750	4100	(20.8)
-3.0 m	kg	*9520	*9520	*8270	5580	5120	3020			4130	2490	5.21
(-9.8 ft)	lb	*20990	*20990	*18230	12300	11290	6660			9110	5490	(17.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

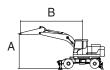
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2600	1700	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

				I	Lift-point	radius (B)				At	max. rea	ch
Lift-poi	nt	1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height ((A)	U	#	·		ŀ	#	P	#	U		m (ft)
7.5 m	kg									*2660	*2660	4.40
(24.6 ft)	lb									*5860	*5860	(14.4)
6.0 m	kg									*2230	2140	5.87
(19.7 ft)	lb									*4920	4720	(19.3)
4.5 m	kg					*4180	3300	3610	2060	*2100	1690	6.70
(14.8 ft)	lb					*9220	7280	7960	4540	*4630	3730	(22.0)
3.0 m	kg			*7510	5670	*5190	3070	3510	1970	*2110	1480	7.12
(9.8 ft)	lb			*16560	12500	*11440	6770	7740	4340	*4650	3260	(23.3)
1.5 m	kg			*6430	5000	5280	2820	3390	1870	*2250	1410	7.19
(4.9 ft)	lb			*14180	11020	11640	6220	7470	4120	*4960	3110	(23.6)
0.0 m	kg			*6820	4770	5090	2660	3300	1790	*2540	1460	6.94
(0.0 ft)	lb			*15040	10520	11220	5860	7280	3950	*5600	3220	(22.8)
-1.5 m	kg	*5360	*5360	*10110	4760	5040	2620	3290	1770	3060	1660	6.33
(-4.9 ft)	lb	*11820	*11820	*22290	10490	11110	5780	7250	3900	6750	3660	(20.8)
-3.0 m	kg	*9520	*9520	*8270	4900	5120	2690			4130	2220	5.21
(-9.8 ft)	lb	*20990	*20990	*18230	10800	11290	5930			9110	4890	(17.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	3100	1700	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

					L	ift-point i	radius (B)				At	max. rea	ıch
Lift-po	int	1.5 m ((4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capa	acity	Reach
height	(A)	Ů	#	P	#	U	#	U	#	J	#	H	#	m (ft)
7.5 m (24.6 ft)	kg lb											*2150 *4740	*2150 *4740	5.13 (16.8)
6.0 m	kg							*2670	2340			*1860	*1860	6.43
(19.7 ft)	lb							*5890	5160			*4100	*4100	(21.1)
4.5 m	kg							*3310	2310			*1770	1660	7.20
(14.8 ft)	lb							*7300	5090			*3900	3660	(23.6)
3.0 m	kg			*6350	*6350	*4690	3470	3530	2210	*2090	1510	*1790	1480	7.58
(9.8 ft)	lb			*14000	*14000	*10340	7650	7780	4870	*4610	3330	*3950	3260	(24.9)
1.5 m	kg			*9370	5840	5330	3190	3400	2080	2400	1460	*1900	1410	7.65
(4.9 ft)	lb			*20660	12870	11750	7030	7500	4590	5290	3220	*4190	3110	(25.1)
0.0 m	kg			*7170	5460	5100	2990	3290	1980			*2120	1450	7.42
(0.0 ft)	lb			*15810	12040	11240	6590	7250	4370			*4670	3200	(24.3)
-1.5 m	kg	*4710	*4710	*9570	5380	5010	2910	3240	1940			*2570	1620	6.85
(-4.9 ft)	lb	*10380	*10380	*21100	11860	11050	6420	7140	4280			*5670	3570	(22.5)
-3.0 m	kg	*7920	*7920	*9090	5470	5040	2940					3430	2070	5.84
(-9.8 ft)	lb	*17460	*17460	*20040	12060	11110	6480					7560	4560	(19.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	3100	1700	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

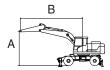
					L	ift-point i	radius (B)				At	max. rea	.ch
Lift-po	int	1.5 m ((4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capa	acity	Reach
height	(A)	H	#	H	#	U	#	U		J	#	P	#	m (ft)
7.5 m	kg											*2150	*2150	5.13
(24.6 ft)	lb											*4740	*4740	(16.8)
6.0 m	kg							*2670	2120			*1860	1850	6.43
(19.7 ft)	lb							*5890	4670			*4100	4080	(21.1)
4.5 m	kg							*3310	2090			*1770	1490	7.20
(14.8 ft)	lb							*7300	4610			*3900	3280	(23.6)
3.0 m	kg			*6350	5900	*4690	3130	3530	1990	*2090	1350	*1790	1320	7.58
(9.8 ft)	lb			*14000	13010	*10340	6900	7780	4390	*4610	2980	*3950	2910	(24.9)
1.5 m	kg			*9370	5150	5330	2860	3400	1870	2400	1310	*1900	1260	7.65
(4.9 ft)	lb			*20660	11350	11750	6310	7500	4120	5290	2890	*4190	2780	(25.1)
0.0 m	kg			*7170	4780	5100	2660	3290	1770			*2120	1290	7.42
(0.0 ft)	lb			*15810	10540	11240	5860	7250	3900			*4670	2840	(24.3)
-1.5 m	kg	*4710	*4710	*9570	4710	5010	2580	3240	1730			*2570	1440	6.85
(-4.9 ft)	lb	*10380	*10380	*21100	10380	11050	5690	7140	3810			*5670	3170	(22.5)
-3.0 m	kg	*7920	*7920	*9090	4790	5040	2610					3430	1840	5.84
(-9.8 ft)	lb	*17460	*17460	*20040	10560	11110	5750					7560	4060	(19.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.


Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

2) 4.6 m MONO BOOM+2200 kg COUNTERWEIGHT

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2000	2200	-	500	-	Down	-	-

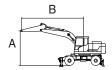
· P : Rating over-front

· 🖶 : Rating over-side or 360 degree

					Lift-point	radius (B)				At	max. rea	ch
Lift-po	int	1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	ŀ	#	U		·	#	U	#	ŀ		m (ft)
6.0 m	kg					*4420	4000			*3330	3180	5.15
(19.7 ft)	lb					*9740	8820			*7340	7010	(16.9)
4.5 m	kg					*4790	3890	*3600	2460	*3110	2410	6.08
(14.8 ft)	lb					*10560	8580	*7940	5420	*6860	5310	(19.9)
3.0 m	kg					*5740	3670	3780	2400	*3140	2100	6.53
(9.8 ft)	lb					*12650	8090	8330	5290	*6920	4630	(21.4)
1.5 m	kg					5680	3460	3680	2320	3190	2010	6.62
(4.9 ft)	lb					12520	7630	8110	5110	7030	4430	(21.7)
0.0 m	kg			*6510	6090	5550	3350	3620	2260	3350	2100	6.34
(0.0 ft)	lb			*14350	13430	12240	7390	7980	4980	7390	4630	(20.8)
-1.5 m	kg	*6490	*6490	*9460	6150	5540	3340			3960	2470	5.66
(-4.9 ft)	lb	*14310	*14310	*20860	13560	12210	7360			8730	5450	(18.6)
-3.0 m	kg			*6990	6340					*4600	3630	4.37
(-9.8 ft)	lb			*15410	13980					*10140	8000	(14.3)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

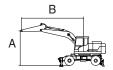
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Dozer		Outrigger	
HW140A	MONO BOOM	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
		4600	2000	2200	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

		Lift-point radius (B)									At max. reach		
Lift-point height (A)		1.5 m (4.9 ft)		3.0 m (9.8 ft)		4.5 m (14.8 ft)		6.0 m (19.7 ft)		Capacity		Reach	
		·	#	U	#	ŀ	#	·	#	·		m (ft)	
6.0 m	kg					*4420	3630			*3330	2900	5.15	
(19.7 ft)	lb					*9740	8000			*7340	6390	(16.9)	
4.5 m	kg					*4790	3540	*3600	2240	*3110	2190	6.08	
(14.8 ft)	lb					*10560	7800	*7940	4940	*6860	4830	(19.9)	
3.0 m	kg					*5740	3320	3780	2180	*3140	1900	6.53	
(9.8 ft)	lb					*12650	7320	8330	4810	*6920	4190	(21.4)	
1.5 m	kg					5680	3110	3680	2090	3190	1820	6.62	
(4.9 ft)	lb					12520	6860	8110	4610	7030	4010	(21.7)	
0.0 m	kg			*6510	5380	5550	3000	3620	2040	3350	1900	6.34	
(0.0 ft)	lb			*14350	11860	12240	6610	7980	4500	7390	4190	(20.8)	
-1.5 m	kg	*6490	*6490	*9460	5430	5540	3000			3960	2220	5.66	
(-4.9 ft)	lb	*14310	*14310	*20860	11970	12210	6610			8730	4890	(18.6)	
-3.0 m	kg			*6990	5610					*4600	3270	4.37	
(-9.8 ft)	lb			*15410	12370					*10140	7210	(14.3)	

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

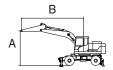
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2450	2200	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

					Lift-point	radius (B)				At	max. rea	ch
Lift-po		1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	·				!				Ů		m (ft)
7.5 m (24.6 ft)	kg lb									*2890 *6370	*2890 *6370	4.16 (13.6)
6.0 m	kg					*3880	*3880			*2390	*2390	5.70
(19.7 ft)	lb					*8550	*8550			*5270	*5270	(18.7)
4.5 m	kg					*4330	3940	*3790	2490	*2250	2140	6.55
(14.8 ft)	lb					*9550	8690	*8360	5490	*4960	4720	(21.5)
3.0 m	kg			*7850	6880	*5330	3710	3790	2410	*2260	1890	6.97
(9.8 ft)	lb			*17310	15170	*11750	8180	8360	5310	*4980	4170	(22.9)
1.5 m	kg			*5690	*5690	5700	3470	3670	2300	*2410	1810	7.05
(4.9 ft)	lb			*12540	*12540	12570	7650	8090	5070	*5310	3990	(23.1)
0.0 m	kg			*6760	6030	5530	3320	3590	2230	*2740	1880	6.79
(0.0 ft)	lb			*14900	13290	12190	7320	7910	4920	*6040	4140	(22.3)
-1.5 m	kg	*5600	*5600	*9980	6050	5490	3290	3590	2230	*3430	2150	6.16
(-4.9 ft)	lb	*12350	*12350	*22000	13340	12100	7250	7910	4920	*7560	4740	(20.2)
-3.0 m	kg			*7990	6200	*5350	3370			*4450	2930	5.01
(-9.8 ft)	lb			*17610	13670	*11790	7430			*9810	6460	(16.4)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

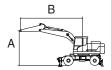
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2450	2200	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

				I	Lift-point	radius (B)				At	max. rea	ch
Lift-po		1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	·	#	U		ŀ				Ů		m (ft)
7.5 m (24.6 ft)	kg lb									*2890 *6370	*2890 *6370	4.16 (13.6)
6.0 m	kg					*3880	3700			*2390	*2390	5.70
(19.7 ft)	lb					*8550	8160			*5270	*5270	(18.7)
4.5 m	kg					*4330	3580	*3790	2260	*2250	1940	6.55
(14.8 ft)	lb					*9550	7890	*8360	4980	*4960	4280	(21.5)
3.0 m	kg			*7850	6130	*5330	3360	3790	2180	*2260	1710	6.97
(9.8 ft)	lb			*17310	13510	*11750	7410	8360	4810	*4980	3770	(22.9)
1.5 m	kg			*5690	5510	5700	3120	3670	2080	*2410	1630	7.05
(4.9 ft)	lb			*12540	12150	12570	6880	8090	4590	*5310	3590	(23.1)
0.0 m	kg			*6760	5320	5530	2980	3590	2010	*2740	1690	6.79
(0.0 ft)	lb			*14900	11730	12190	6570	7910	4430	*6040	3730	(22.3)
-1.5 m	kg	*5600	*5600	*9980	5330	5490	2940	3590	2000	*3430	1940	6.16
(-4.9 ft)	lb	*12350	*12350	*22000	11750	12100	6480	7910	4410	*7560	4280	(20.2)
-3.0 m	kg			*7990	5480	*5350	3020			*4450	2640	5.01
(-9.8 ft)	lb			*17610	12080	*11790	6660			*9810	5820	(16.4)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

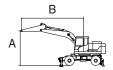
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2600	2200	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

				I	Lift-point	radius (B)				At	max. rea	ch
Lift-poi	nt	1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height ((A)	ŀ	#	y	#	ŀ	#	U	#	y	+	m (ft)
7.5 m	kg									*2660	*2660	4.40
(24.6 ft)	lb									*5860	*5860	(14.4)
6.0 m	kg									*2230	*2230	5.87
(19.7 ft)	lb									*4920	*4920	(19.3)
4.5 m	kg					*4180	3970	*3720	2510	*2100	2070	6.70
(14.8 ft)	lb					*9220	8750	*8200	5530	*4630	4560	(22.0)
3.0 m	kg			*7510	6950	*5190	3730	3800	2420	*2110	1830	7.12
(9.8 ft)	lb			*16560	15320	*11440	8220	8380	5340	*4650	4030	(23.3)
1.5 m	kg			*6430	6250	5710	3480	3680	2310	*2250	1760	7.19
(4.9 ft)	lb			*14180	13780	12590	7670	8110	5090	*4960	3880	(23.6)
0.0 m	kg			*6820	6020	5520	3320	3590	2230	*2540	1820	6.94
(0.0 ft)	lb			*15040	13270	12170	7320	7910	4920	*5600	4010	(22.8)
-1.5 m	kg	*5360	*5360	*10110	6010	5470	3270	3570	2210	*3140	2070	6.33
(-4.9 ft)	Ιb	*11820	*11820	*22290	13250	12060	7210	7870	4870	*6920	4560	(20.8)
-3.0 m	kg	*9520	*9520	*8270	6150	5550	3340			*4400	2760	5.21
(-9.8 ft)	lb	*20990	*20990	*18230	13560	12240	7360			*9700	6080	(17.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

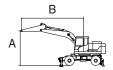
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	2600	2200	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

				I	Lift-point	radius (B)				At	max. rea	ch
Lift-po		1.5 m	(4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)		#	U		ŀ				Ů		m (ft)
7.5 m (24.6 ft)	kg lb									*2660 *5860	*2660 *5860	4.40
6.0 m	kg									*2230	*2230	(14.4) 5.87
(19.7 ft)	lb									*4920	*4920	(19.3)
4.5 m	kg					*4180	3610	*3720	2280	*2100	1870	6.70
(14.8 ft)	lb					*9220	7960	*8200	5030	*4630	4120	(22.0)
3.0 m	kg			*7510	6200	*5190	3380	3800	2190	*2110	1660	7.12
(9.8 ft)	lb			*16560	13670	*11440	7450	8380	4830	*4650	3660	(23.3)
1.5 m	kg			*6430	5530	5710	3130	3680	2080	*2250	1580	7.19
(4.9 ft)	lb			*14180	12190	12590	6900	8110	4590	*4960	3480	(23.6)
0.0 m	kg			*6820	5300	5520	2970	3590	2000	*2540	1640	6.94
(0.0 ft)	lb			*15040	11680	12170	6550	7910	4410	*5600	3620	(22.8)
-1.5 m	kg	*5360	*5360	*10110	5300	5470	2930	3570	1990	*3140	1860	6.33
(-4.9 ft)	lb	*11820	*11820	*22290	11680	12060	6460	7870	4390	*6920	4100	(20.8)
-3.0 m	kg	*9520	*9520	*8270	5430	5550	3000			*4400	2480	5.21
(-9.8 ft)	lb	*20990	*20990	*18230	11970	12240	6610			*9700	5470	(17.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

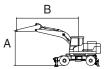
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	3100	2200	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

					L	ift-point	radius (B)				At	max. rea	ıch
Lift-po	int	1.5 m ((4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capa	acity	Reach
height	(A)	U	#	P	#	U	#	P	#	ŀ	#	P	#	m (ft)
7.5 m	kg											*2150	*2150	5.13
(24.6 ft)	lb											*4740	*4740	(16.8)
6.0 m	kg							*2670	2570			*1860	*1860	6.43
(19.7 ft)	lb							*5890	5670			*4100	*4100	(21.1)
4.5 m	kg							*3310	2530			*1770	*1770	7.20
(14.8 ft)	lb							*7300	5580			*3900	*3900	(23.6)
3.0 m	kg			*6350	*6350	*4690	3800	3820	2430	*2090	1680	*1790	1650	7.58
(9.8 ft)	lb			*14000	*14000	*10340	8380	8420	5360	*4610	3700	*3950	3640	(24.9)
1.5 m	kg			*9370	6410	5760	3520	3680	2310	*2510	1640	*1900	1580	7.65
(4.9 ft)	lb			*20660	14130	12700	7760	8110	5090	*5530	3620	*4190	3480	(25.1)
0.0 m	kg			*7170	6030	5530	3320	3570	2210			*2120	1630	7.42
(0.0 ft)	lb			*15810	13290	12190	7320	7870	4870			*4670	3590	(24.3)
-1.5 m	kg	*4710	*4710	*9570	5960	5430	3230	3530	2170			*2570	1810	6.85
(-4.9 ft)	lb	*10380	*10380	*21100	13140	11970	7120	7780	4780			*5670	3990	(22.5)
-3.0 m	kg	*7920	*7920	*9090	6040	5460	3260					*3610	2300	5.84
(-9.8 ft)	lb	*17460	*17460	*20040	13320	12040	7190					*7960	5070	(19.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	MONO	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
	BOOM	4600	3100	2200	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

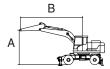
					L	ift-point	radius (B)				At	max. rea	ıch
Lift-po	int	1.5 m ((4.9 ft)	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	7.5 m (24.6 ft)	Capa	acity	Reach
height	(A)	U	#	ŀ	#	U	#	P	#	ŀ	#	P	#	m (ft)
7.5 m	kg											*2150	*2150	5.13
(24.6 ft)	lb											*4740	*4740	(16.8)
6.0 m	kg							*2670	2340			*1860	*1860	6.43
(19.7 ft)	lb							*5890	5160			*4100	*4100	(21.1)
4.5 m	kg							*3310	2300			*1770	1670	7.20
(14.8 ft)	lb							*7300	5070			*3900	3680	(23.6)
3.0 m	kg			*6350	*6350	*4690	3440	3820	2200	*2090	1520	*1790	1490	7.58
(9.8 ft)	lb			*14000	*14000	*10340	7580	8420	4850	*4610	3350	*3950	3280	(24.9)
1.5 m	kg			*9370	5680	5760	3170	3680	2080	*2510	1470	*1900	1420	7.65
(4.9 ft)	lb			*20660	12520	12700	6990	8110	4590	*5530	3240	*4190	3130	(25.1)
0.0 m	kg			*7170	5320	5530	2970	3570	1980			*2120	1460	7.42
(0.0 ft)	lb			*15810	11730	12190	6550	7870	4370			*4670	3220	(24.3)
-1.5 m	kg	*4710	*4710	*9570	5240	5430	2890	3530	1940			*2570	1630	6.85
(-4.9 ft)	lb	*10380	*10380	*21100	11550	11970	6370	7780	4280			*5670	3590	(22.5)
-3.0 m	kg	*7920	*7920	*9090	5320	5460	2920					*3610	2060	5.84
(-9.8 ft)	lb	*17460	*17460	*20040	11730	12040	6440					*7960	4540	(19.1)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.


Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

3) 4.71 m 2-PIECE BOOM+2200 kg COUNTERWEIGHT

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	2-PIECE	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HVV 140A	BOOM	4710	2000	2200	-	500	-	Down	-	-

· Pating over-front

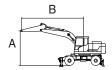
· 🖶 : Rating over-side or 360 degree

				Lift-point i	adius (B)			At	max. rea	ch
Lift-po	int	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	·	#	ŀ		U	#	U	#	m (ft)
7.5 m	kg							*4410	*4410	3.69
(24.6 ft)	lb							*9720	*9720	(12.1)
6.0 m	kg			*4210	4020			*3470	2970	5.37
(19.7 ft)	lb			*9280	8860			*7650	6550	(17.6)
4.5 m	kg	*5800	*5800	*4630	3890	3870	2460	*3200	2280	6.26
(14.8 ft)	lb	*12790	*12790	*10210	8580	8530	5420	*7050	5030	(20.6)
3.0 m	kg			*5580	3650	3780	2390	3170	2000	6.71
(9.8 ft)	lb			*12300	8050	8330	5270	6990	4410	(22.0)
1.5 m	kg			5670	3420	3680	2300	3070	1920	6.79
(4.9 ft)	lb			12500	7540	8110	5070	6770	4230	(22.3)
0.0 m	kg	*4830	*4830	5540	3310	3620	2240	3220	2010	6.52
(0.0 ft)	lb	*10650	*10650	12210	7300	7980	4940	7100	4430	(21.4)
-1.5 m	kg	*9500	6110	5540	3310			3780	2340	5.86
(-4.9 ft)	lb	*20940	13470	12210	7300			8330	5160	(19.2)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.


The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	2-PIECE	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4710	2000	2200	-	500	-	Up	-	-

· Pating over-front

· 🖶 : Rating over-side or 360 degree

				Lift-point i	radius (B)			At	max. rea	ch
Lift-po	int	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	U	#	·	#	P	#	H	#	m (ft)
7.5 m	kg							*4410	*4410	3.69
(24.6 ft)	lb							*9720	*9720	(12.1)
6.0 m	kg			*4210	3650			*3470	2690	5.37
(19.7 ft)	lb			*9280	8050			*7650	5930	(17.6)
4.5 m	kg	*5800	*5800	*4630	3530	3870	2230	*3200	2060	6.26
(14.8 ft)	lb	*12790	*12790	*10210	7780	8530	4920	*7050	4540	(20.6)
3.0 m	kg			*5580	3290	3780	2160	3170	1810	6.71
(9.8 ft)	lb			*12300	7250	8330	4760	6990	3990	(22.0)
1.5 m	kg			5670	3070	3680	2070	3070	1730	6.79
(4.9 ft)	lb			12500	6770	8110	4560	6770	3810	(22.3)
0.0 m	kg	*4830	*4830	5540	2960	3620	2010	3220	1810	6.52
(0.0 ft)	lb	*10650	*10650	12210	6530	7980	4430	7100	3990	(21.4)
-1.5 m	kg	*9500	5380	5540	2960			3780	2110	5.86
(-4.9 ft)	lb	*20940	11860	12210	6530			8330	4650	(19.2)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

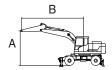
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	gger
HW140A	2-PIECE	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
I I I I I I I I I I I I I I I I I I I	BOOM	4710	2450	2200	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

				Lift-point i	radius (B)			At	max. rea	ch
Lift-po	int	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	U	#	ŀ					#	m (ft)
7.5 m	kg							*3030	*3030	4.46
(24.6 ft)	lb							*6680	*6680	(14.6)
6.0 m	kg			*3710	*3710			*2500	*2500	5.92
(19.7 ft)	lb			*8180	*8180			*5510	*5510	(19.4)
4.5 m	kg			*4190	3950	*3880	2490	*2320	2030	6.74
(14.8 ft)	lb			*9240	8710	*8550	5490	*5110	4480	(22.1)
3.0 m	kg			*5190	3690	3800	2400	*2300	1800	7.15
(9.8 ft)	lb			*11440	8140	8380	5290	*5070	3970	(23.5)
1.5 m	kg			5690	3440	3670	2280	*2410	1730	7.23
(4.9 ft)	lb			12540	7580	8090	5030	*5310	3810	(23.7)
0.0 m	kg	*5270	*5270	5520	3290	3590	2210	*2670	1800	6.98
(0.0 ft)	lb	*11620	*11620	12170	7250	7910	4870	*5890	3970	(22.9)
-1.5 m	kg	*9410	6000	5480	3250	3580	2200	*3220	2050	6.37
(-4.9 ft)	lb	*20750	13230	12080	7170	7890	4850	*7100	4520	(20.9)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

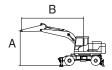
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	2-PIECE	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4710	2450	2200	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

				Lift-point i	radius (B)			At	max. rea	ch
Lift-po	int	3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)	U	#	·	#	P	#	P	#	m (ft)
7.5 m	kg							*3030	*3030	4.46
(24.6 ft)	lb							*6680	*6680	(14.6)
6.0 m	kg			*3710	*3710			*2500	2310	5.92
(19.7 ft)	lb			*8180	*8180			*5510	5090	(19.4)
4.5 m	kg			*4190	3580	*3880	2260	*2320	1830	6.74
(14.8 ft)	lb			*9240	7890	*8550	4980	*5110	4030	(22.1)
3.0 m	kg			*5190	3330	3800	2160	*2300	1620	7.15
(9.8 ft)	lb			*11440	7340	8380	4760	*5070	3570	(23.5)
1.5 m	kg			5690	3080	3670	2060	*2410	1550	7.23
(4.9 ft)	lb			12540	6790	8090	4540	*5310	3420	(23.7)
0.0 m	kg	*5270	5250	5520	2940	3590	1980	*2670	1610	6.98
(0.0 ft)	lb	*11620	11570	12170	6480	7910	4370	*5890	3550	(22.9)
-1.5 m	kg	*9410	5280	5480	2900	3580	1970	*3220	1840	6.37
(-4.9 ft)	lb	*20750	11640	12080	6390	7890	4340	*7100	4060	(20.9)

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

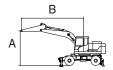
Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	2-PIECE	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4710	2600	2200	-	500	-	Down	-	-

· 🖶 : Rating over-side or 360 degree

				Lift-point	radius (B)			At	max. rea	ch
Lift-po		3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height	(A)					H			#	m (ft)
7.5 m	kg			*3340	*3340			*2790	*2790	4.70
(24.6 ft)	lb			*7360	*7360			*6150	*6150	(15.4)
6.0 m	kg			*3560	*3560	*2730	2520	*2330	*2330	6.10
(19.7 ft)	lb			*7850	*7850	*6020	5560	*5140	*5140	(20.0)
4.5 m	kg			*4050	3980	*3770	2510	*2170	1960	6.90
(14.8 ft)	lb			*8930	8770	*8310	5530	*4780	4320	(22.6)
3.0 m	kg	*7450	6900	*5050	3710	3810	2400	*2150	1750	7.30
(9.8 ft)	lb	*16420	15210	*11130	8180	8400	5290	*4740	3860	(23.9)
1.5 m	kg			5700	3440	3680	2290	*2250	1680	7.37
(4.9 ft)	lb			12570	7580	8110	5050	*4960	3700	(24.2)
0.0 m	kg	*5350	*5350	5510	3280	3580	2200	*2480	1740	7.13
(0.0 ft)	lb	*11790	*11790	12150	7230	7890	4850	*5470	3840	(23.4)
-1.5 m	kg	*9050	5960	5460	3240	3570	2190	*2970	1970	6.53
(-4.9 ft)	lb	*19950	13140	12040	7140	7870	4830	*6550	4340	(21.4)
-3.0 m	kg			5550	3310					` '
(-9.8 ft)	lb			12240	7300					

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.


Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

Model	Type	Boom	Arm	Counterweight	Shoe	Wheel	Do	zer	Outri	igger
HW140A	2-PIECE	Length [mm]	Length [mm]	weight [kg]	width [mm]	width [mm]	Front	Rear	Front	Rear
HW 140A	BOOM	4710	2600	2200	-	500	-	Up	-	-

· 🖶 : Rating over-side or 360 degree

				Lift-point	radius (B)			At	max. rea	ch
Lift-poi		3.0 m	(9.8 ft)	4.5 m (14.8 ft)	6.0 m (19.7 ft)	Capa	acity	Reach
height ((A)	H	#	·	#	H	#	P	#	m (ft)
7.5 m	kg			*3340	*3340			*2790	*2790	4.70
(24.6 ft)	lb			*7360	*7360			*6150	*6150	(15.4)
6.0 m	kg			*3560	*3560	*2730	2280	*2330	2210	6.10
(19.7 ft)	lb			*7850	*7850	*6020	5030	*5140	4870	(20.0)
4.5 m	kg			*4050	3610	*3770	2270	*2170	1770	6.90
(14.8 ft)	lb			*8930	7960	*8310	5000	*4780	3900	(22.6)
3.0 m	kg	*7450	6140	*5050	3350	3810	2170	*2150	1570	7.30
(9.8 ft)	lb	*16420	13540	*11130	7390	8400	4780	*4740	3460	(23.9)
1.5 m	kg			5700	3090	3680	2060	*2250	1510	7.37
(4.9 ft)	lb			12570	6810	8110	4540	*4960	3330	(24.2)
0.0 m	kg	*5350	5230	5510	2930	3580	1980	*2480	1560	7.13
(0.0 ft)	lb	*11790	11530	12150	6460	7890	4370	*5470	3440	(23.4)
-1.5 m	kg	*9050	5240	5460	2890	3570	1960	*2970	1760	6.53
(-4.9 ft)	lb	*19950	11550	12040	6370	7870	4320	*6550	3880	(21.4)
-3.0 m	kg			5550	2960					` '
(-9.8 ft)	lb			12240	6530					

Note 1. Lifting capacity are based on ISO 10567.

- 2. Lifting capacity of the HX series does not exceed 75% of tipping load with the machine on firm, level ground or 87% of full hydraulic capacity.
- 3. The Lift-point is bucket pivot mounting pin on the arm (without bucket mass).
- 4. *Indicates load limited by hydraulic capacity.
- * Lifting capacities are based upon a standard machine conditions.

Lifting capacities will vary with different work tools, ground conditions and attachments.

The difference between the weight of a work tool attachment must be subtracted.

Consult with your local HD Hyundai Construction Equipment dealer regarding the lifting capacities for specific work tools and attachments.

6. BUCKET SELECTION GUIDE

1) MONO BOOM, 1700 kg COUNTERWEIGHT

	Capacity		Width				MONO			
							Recon	nmendati	on m	m (ft-in)
Туре	SAE Heaped	CECE heaped	Without side cutter	With side cutter	Weight	Tooth			(15' 1") om	
	m³ (yd³)	m³ (yd³)	mm (in)	mm (in)	kg (lb)	EA	2.0 m (6' 7') Arm	2.45 m (8' 0") Arm	2.6 m (8' 6") Arm	3.1 m (10' 2') Arm
	0.58 (0.76)	0.50 (0.65)	950 (37.4")	1110 (43.7")	480 (1060)	5	0		A	A
General bucket	0.52 (0.68)	0.45 (0.59)	870 (34.3")	1020 (40.2")	460 (1010)	5	0			A
	0.65 (0.85)	0.55 (0.72)	1060 (41.7")	1210 (47.6")	513 (1130)	5		A		Х
Heavy duty	0.71 (0.93)	0.60 (0.78)	1140 (44.9")	1300 (51.2")	536 (1180)	5	A	A	Х	Х
Ditch cleaning	0.45 (0.59)	0.40 (0.52)	1520 (59.8")	-	410 (900)	0	•	•	0	
Slope finishing	0.55 (0.72)	0.45 (0.59)	1800 (70.9")	-	585 (1290)	0	•		•	A
Hammer	0.50 (0.65)	0.45 (0.59)	762 (30.0")	821 (32.3")	439 (970)	4	•	•		
-less tooth	0.61 (0.80)	0.54 (0.71)	914 (36.0")	974 (38.3")	490 (1080)	5		_	A	A

	Applicable for materials with density of 2100 kg/m³ (3500 lb/yd³) or less	
•	Applicable for materials with density of 1800 kg/m³ (3000 lb/yd³) or less	
	Applicable for materials with density of 1500 kg/m³ (2500 lb/yd³) or less	
	Applicable for materials with density of 1200 kg/m³ (2000 lb/yd³) or less	
Χ	Not recommended	

^{*} These recommendations are for general conditions and average use.

Work tools and ground conditions have effects on machine performance.

Select an optimum combination according to the working conditions and the type of work that is being done.

Consult your HD Hyundai Construction Equipment dealer for information on selecting the correct boom-arm-bucket combination.

2) MONO BOOM, 2200 kg COUNTERWEIGHT

	Capacity		Width				MON Recommendatio				
Туре	SAE Heaped	CECE heaped	Without side cutter	With side cutter	Weight	Tooth	Recon	4.6 m (m (it-in)	
	m³ (yd³)	m³ (yd³)	mm (in)	mm (in)	kg (lb)	EA	2.0 m (6' 7') Arm	2.45 m (8' 0") Arm	2.6 m (8' 6") Arm	3.1 m (10' 2') Arm	
	0.58 (0.76)	0.50 (0.65)	950 (37.4")	1110 (43.7")	480 (1060)	5	0	•		A	
General bucket	0.52 (0.68)	0.45 (0.59)	870 (34.3")	1020 (40.2")	460 (1010)	5	•	0	0		
	0.65 (0.85)	0.55 (0.72)	1060 (41.7")	1210 (47.6")	513 (1130)	5	0			A	
Heavy duty	0.71 (0.93)	0.60 (0.78)	1140 (44.9")	1300 (51.2")	536 (1180)	5		A	A	Х	
Ditch cleaning	0.45 (0.59)	0.40 (0.52)	1520 (59.8")	-	410 (900)	0	•	•	•	•	
Slope finishing	0.55 (0.72)	0.45 (0.59)	1800 (70.9")	-	585 (1290)	0	0			A	
Hammer	0.50 (0.65)	0.45 (0.59)	762 (30.0")	821 (32.3")	439 (970)	4	•	•	0		
-less tooth	0.61 (0.80)	0.54 (0.71)	914 (36.0")	974 (38.3")	490 (1080)	5	•			A	

		Applicable for materials with density of 2100 kg/m³ (3500	lb/yd³) or less
	•	Applicable for materials with density of 1800 kg/m³ (3000	lb/yd³) or less
ĺ		Applicable for materials with density of 1500 kg/m³ (2500	lb/yd³) or less
	A	Applicable for materials with density of 1200 kg/m³ (2000	lb/yd³) or less
	Χ	Not recommended	

* These recommendations are for general conditions and average use.

Work tools and ground conditions have effects on machine performance.

Select an optimum combination according to the working conditions and the type of work that is being done.

Consult your HD Hyundai Construction Equipment dealer for information on selecting the correct boom-arm-bucket combination.

3) 2-PIECE BOOM, 2200 kg COUNTERWEIGHT

	Capacity		Capacity Width				2-PIECE			
							Recom	nmendation m	m (ft-in)	
Туре	SAE Heaped	CECE heaped	Without side cutter	With side cutter	Weight	Tooth	2	I.71 m (15' 5") Boon	n	
	m³ (yd³)	m³ (yd³)	mm (in)	mm (in)	kg (lb)	EA	2.0 m (6' 7') Arm	2.45 m (8' 0") Arm	2.6 m (8' 6') Arm	
	0.58 (0.76)	0.50 (0.65)	950 (37.4")	1110 (43.7")	480 (1060)	5	0	•		
General bucket	0.52 (0.68)	0.45 (0.59)	870 (34.3")	1020 (40.2")	460 (1010)	5	•	•	•	
	0.65 (0.85)	0.55 (0.72)	1060 (41.7")	1210 (47.6")	513 (1130) 5	5	٠	A	A	
Heavy duty	0.71 (0.93)	0.60 (0.78)	1140 (44.9")	1300 (51.2")	536 (1180)	5	·	A	A	
Ditch cleaning	0.45 (0.59)	0.40 (0.52)	1520 (59.8")	-	410 (900)	0	•	•	•	
Slope finishing	0.55 (0.72)	0.45 (0.59)	1800 (70.9")	-	585 (1290)	0	0			
Hammer -less	0.50 (0.65)	0.45 (0.59)	762 (30.0")	821 (32.3")	439 (970)	4	•	0	•	
tooth	0.61 (0.80)	0.54 (0.71)	914 (36.0")	974 (38.3")	490 (1080)	5	0			

	Applicable for materials with density of 2100 kg/m³ (3500	lb/yd³) or less
	Applicable for materials with density of 1800 kg/m 3 (3000	lb/yd³) or less
	Applicable for materials with density of 1500 kg/m³ (2500	lb/yd³) or less
	Applicable for materials with density of 1200 kg/m³ (2000	lb/yd³) or less
Х	Not recommended	

* These recommendations are for general conditions and average use.

Work tools and ground conditions have effects on machine performance.

Select an optimum combination according to the working conditions and the type of work that is being done.

Consult your HD Hyundai Construction Equipment dealer for information on selecting the correct boom-arm-bucket combination.

7. SPECIFICATIONS FOR MAJOR COMPONENTS

1) ENGINE

Item	Specification
Maker / Model	CUMMINS / B4.5
Туре	4-cycle, turbocharged, charge air cooled, electronic controlled diesel engine
Cooling method	Water cooled
Number of cylinders and arrangement	4 cylinders, in-line
Firing order	1-3-4-2
Combustion chamber type	Direct injection type
Cylinder bore × stroke	$107 \times 124 \text{ mm } (4.21" \times 4.88")$
Displacement	4.5 ℓ (275 cu in)
Compression ratio	17.2 : 1
Gross power	173 Hp (129 kW) at 2200 rpm
Net power	170 Hp (127 kW) at 2200 rpm
Max. power	173 Hp (129 kW) at 2200 rpm
Peak Torque	780 N · m (575 lb · ft) at 1,500 rpm
Engine oil quantity	11 ℓ (2.9 U.S. gal)
Wet weight or Dry weight	378 kg (830 lb)
Starter motor	24 V-4.8 kW
Alternator	24 V-95 A

2) MAIN PUMP

Item	Specification
Туре	Variable displacement piston pump
Capacity	145 cc/rev
Maximum pressure	350 kgf/cm² (4980 psi) [380 kgf/cm² (5400 psi)]
Rated oil flow	230 \(\ell \) /min (60.8 U.S. gpm / 50.6 U.K. gpm)
Rated rpm	1600 rpm

[]: Power boost

3) STEERING PUMP

Item	Specification
Туре	Fixed displacement gear pump single stage
Capacity	35 cc/rev
Maximum pressure	210 kgf/cm² (2990 psi)
Rated oil flow	56 ℓ /min (14.8 U.S. gpm/12.3 U.K. gpm)

4) MAIN CONTROL VALVE

Item		Specification		
Туре		Section block		
Operating method		Hydraulic pilot system		
Main relief valve pressure		350 kgf/cm² (4980 psi) [380 kgf/cm² (5400 psi)]		
	Boom	420 kgf/cm² (5970 psi)		
Port relief valve pressure	Arm	420 kgf/cm² (5970 psi)		
	Bucket	420 kgf/cm² (5970 psi)		

[]: Power boost

5) SWING UNIT

Item	Specification
Туре	Radial piston motor
Capacity	1534 cc/rev
Relief pressure	270 kgf/cm² (3840 psi)
Braking system	Automatic, spring applied hydraulic released
Brake release pressure	15~40 kgf/cm² (213~569 psi) below
Reduction gear type	-

6) TRAVEL MOTOR

Item	Specification
Туре	Variable displacement bent-axis axial piston motor
Capacity	107/41 cc/rev
Relief pressure	380 kgf/cm² (5400 psi)

7) POWER TRAIN

Item	Description		Specification		
	Туре		2 speed power shift transmission		
Transmission	Coor ratio	1st	4.87		
Transmission	Gear ratio	2nd	1.20		
	Clutch pressure		30~32 kgf /cm² (427~455 psi)		
Darking broke	Туре		Multi disc brake integrated in transmission		
Parking brake	Maximum braking torque		2464 kgf · m (17820 lbf · ft)		
	Туре		4 wheel drive with differential		
	Gear ratio		16.0		
Axle	Brake		Multi disc brake		
	Brake pressure		81.6 kgf /cm² (1160 psi)		
	Steering pressure		180 kgf /cm² (2560 psi)		

8) POWER TRAIN GEAR PUMP

Item	Description		
Capacity	Steering + brake : 11.9 + 19.3 cc / rev (pump PTO)		
Rated flow	Steering + brake : 18 + 29 lpm (pump PTO) (4.8 + 7.7 U.S. gpm / 4.0 + 6.4 U.K. gpm)		

9) CYLINDER

	Specification			
Doom culindor	Bore dia × Stroke	Ø105 × 1105 mm		
Boom cylinder	Cushion	Extend only		
Armoulindor	Bore dia × Stroke	Ø115 × 1138 mm		
Arm cylinder	Cushion	Extend and retract		
Arm gulinder (2 piece beem)	Bore dia × Stroke	Ø105 × 992 mm		
Arm cylinder (2-piece boom)	Cushion	Extend only		
Adjust sulinder (2 piece beem)	Bore dia × Stroke	Ø 145 × 634 mm		
Adjust cylinder (2-piece boom)	Cushion	-		
Dualset eulinder	Bore dia × Stroke	Ø100 × 850 mm		
Bucket cylinder	Cushion	Extend only		
Dozar aulindar (frant roor)	Bore dia × Stroke	Ø100 × 241 mm		
Dozer cylinder (front, rear)	Cushion	-		
Outrigger a diader	Bore dia × Stroke	Ø110 × 446 mm		
Outrigger cylinder	Cushion	-		

^{*} Discoloration of cylinder rod can occur when the friction reduction additive of lubrication oil spreads on the rod surface.

^{*} Discoloration does not cause any harmful effect on the cylinder performance.

8. RECOMMENDED OILS

HD Hyundai Construction Equipment genuine lubricating oils have been developed to offer the best performance and service life for your equipment. These oils have been tested according to the specifications of HD Hyundai Construction Equipment and, therefore, will meet the highest safety and quality requirements. We recommend that you use only HD Hyundai Construction Equipment genuine lubricating oils and grease officially approved by HD Hyundai Construction Equipment.

	Kind of fluid	Capacity ℓ (U.S. gal)	Ambient temperature °C(°F)								
Service point					20 -	10	0	10	20	30	40
		(= 3 = 3 = 7	(-58) (-	22)	(-4)	14)	(32)	(50)	(68)	(86	(104)
Facina			*SAE 5W-40								
Engine oil pan		11 (2.9)							SAE 3	30	
on part	Engine oil			SAE 10W							
Transmission				SAE 10W-30							
case		2.5 (0.66)						15W-	40		
	Mixture of										
DEF/	urea and	40 (40 7)	10				<u> </u>				
AdBlue® tank	deionized	48 (12.7)	IS	O 22241,	High-p	urity urea	a + deioi	nized v	vater (32.5:67.	5)
tain	water										
Front axle		Center: 9.0 (2.38)									
110111 05110	Gear oil	Hub: 2.4×2 (0.63×2)	SAE 85W-90 LSD or UTTO								
Rear axle	Geal oil	Center : 11.2 (2.96) Hub : 2.4×2 (0.63×2)				_ 0011 01				T	
neal axie											
			★ISO VG 15								
Hydraulic	Hydraulic oil	Tank: 122 (32.2) System: 204 (53.9)				ISO VG	32				
_											
tank			ISO VG 46, HBHO★3								
							T	ISO V	/G 68		
			7	ASTM [) 0975 NO	0.1					
Fuel tank	Diesel fuel ★1	250 (66.0)					100	TM DO	975 NO	<u> </u>	
							AS	TIVI D	975 140	J.Z	
Fitting		e As required	*NLGI NO.1								
(Grease	Grease						NI (GI NO.	2		
nipple)	Miss										
Radiator	Mixture of antifreeze	freeze 23 (3.1)	Ethylene glycol base permanent type (50 : 50)								
(Reservoir	and soft		★ Ethylene	e glycol base	permanen	t type (60 : 4)	0)				
tank)	water*2			3.,000. 2000			7				

SAE : Society of Automotive Engineers
API : American Petroleum Institute

ISO : International Organization for Standardization

NLGI : National Lubricating Grease Institute
ASTM : American Society of Testing and Materia

DEF: Diesel Exhaust Fluid, DEF compatible with AdBlue®

* : Cold region (Russia, CIS, Mongolia)

★1 : Ultra low sulfur diesel- sulfur content ≤ 10 ppm

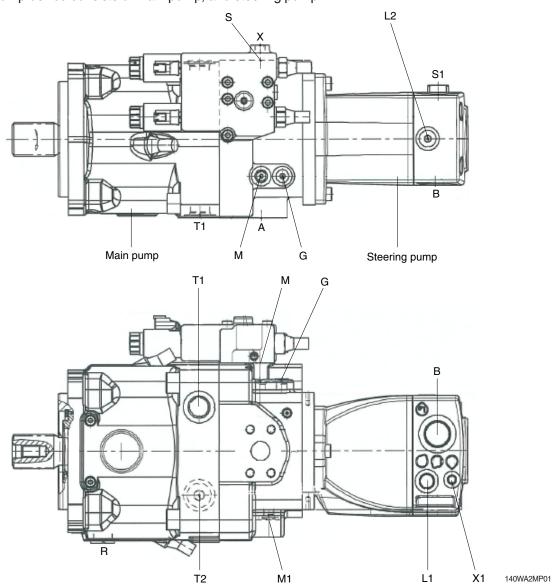
★2 : Soft water

City water or distilled water

*3 : HD Hyundai Construction Equipment Bio Hydraulic Oil

- * Using any lubricating oils other than HD Hyundai Construction Equipment genuine products may lead to a deterioration of performance and cause damage to major components.
- * Do not mix HD Hyundai Construction Equipment genuine oil with any other lubricating oil as it may result in damage to the systems of major components.
- * Do not use any engine oil other than that specified above, as it may clog the diesel particulate filter(DPF).
- * For HD Hyundai Construction Equipment genuine lubricating oils and grease for use in regions with extremely low temperatures, please contact your local HD Hyundai Construction Equipment dealers.

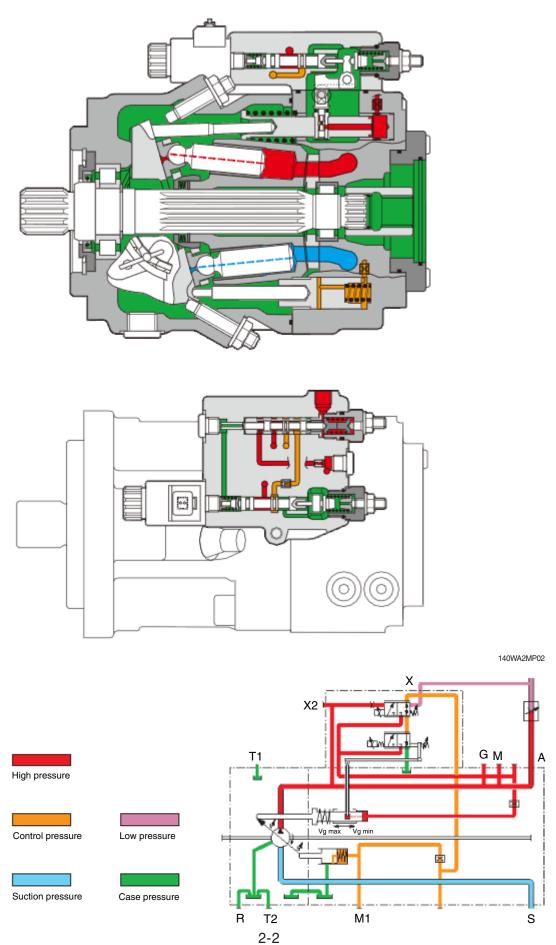
SECTION 2 STRUCTURE AND FUNCTION

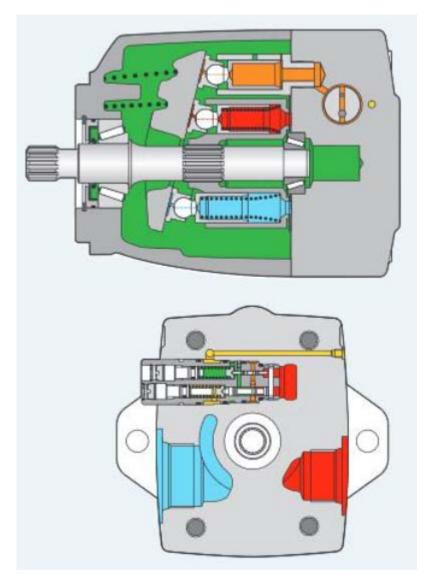

Group	1	Pump Device ·····	2-1
Group	2	Main Control Valve	2-17
Group	3	Swing Device ·····	2-51
Group	4	Travel Motor	2-60
Group	5	RCV Lever	2-70
Group	6	Accelerator Pedal ·····	2-77
Group	7	Brake Device	2-78
Group	8	Transmission	2-80
Group	9	Travel Control Valve	2-87
Group	10	Steering Valve	2-89
Group	11	Front Axle and Rear Axle	2-91

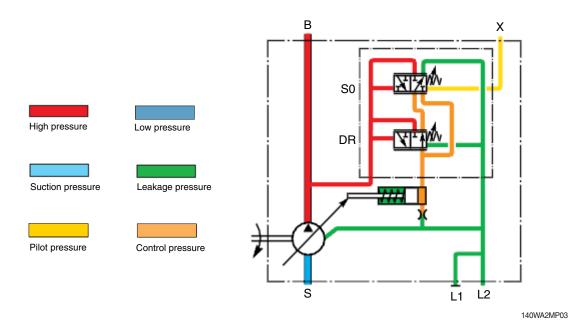
SECTION 2 STRUCTURE AND FUNCTION

GROUP 1 PUMP DEVICE

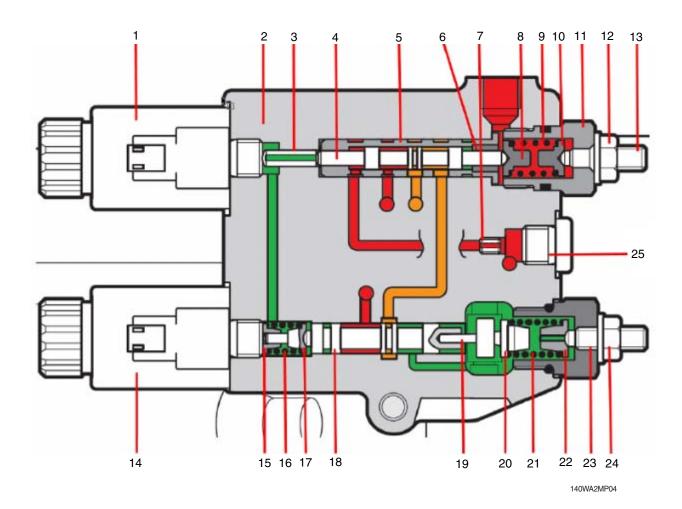
1. STRUCTURE


The pump device consists of main pump, and steering pump.


Port	Port name	Port size
Α	Service port	1"
S	Suction port	3"
T1	Tank port	1 1/16-12UN
T2	Tank port	1 1/16-12UN
M1	Measuring stroking chamber	9/16-18UNF
M	Measuring service line	9/16-18UNF
R	Air bleed port	-
G	Control pressure port	9/16-18UNF
Χ	Pilot pressure port	9/16-18UNF
В	Service port	1 5/8-12UN
S1	Suction port	1 9/16-12UN
L1	Case drain port	3/4-16UNF
L2	Case drain port	3/4-16UNF
X1	Load sense port	7/16-20UNF

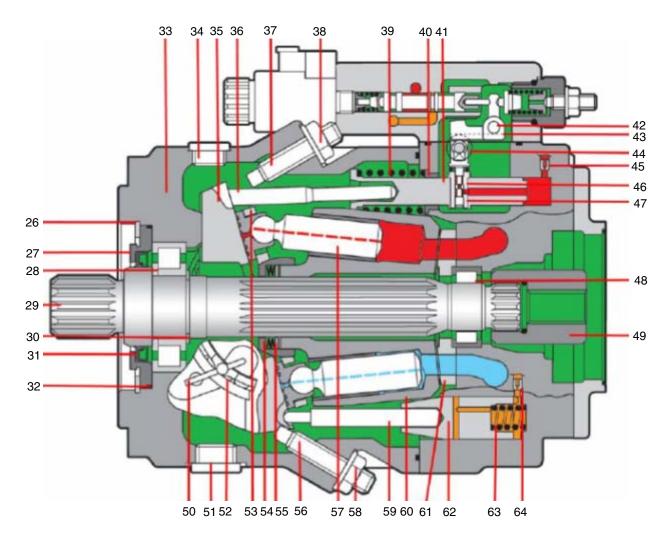

2. SCHEMATIC

1) MAIN PUMP


2) STEERING PUMP

3. PART LIST

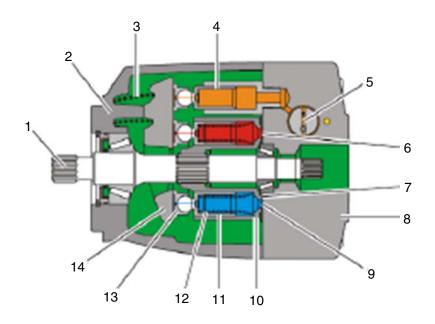
1) MAIN PUMP (1/2)


1	Prop.	sole	enoid
	1 100.	001	011010

- Control housing 2
- 3 Pin
- 4 Control piston LS
- Control bushing LS 5
- 6 Bushing
- 7 Orifice
- Spring cup 8
- 9 Spring LS

- Spring cup 10
- 11 Screw plug
- 12 Sealing nut
- Set screw 13
- 14 Prop. solenoid
- Spring cup 15
- 16
- Spring
- 17 Spring cup
- Control piston LR 18

- 19 Bolt
- 20 Spring bolt
- 21 Spring cup
- 22 Set screw
- 23 Sealing nut
- 24 Seal screw
- 25 Screw plug


MAIN PUMP (2/2)

140WA2MP05

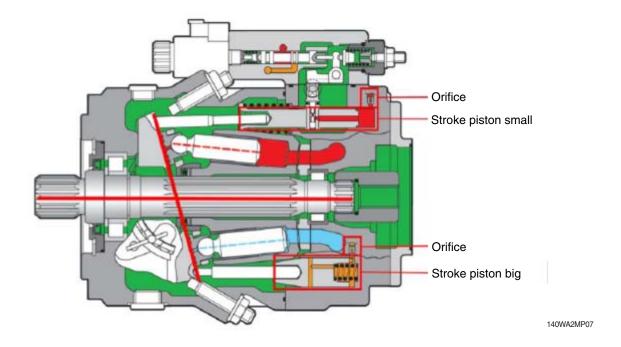
26	Snap ring	39	Spring	52	Cage pair
27	Locking ring	40	Bushing	53	Retaining plate
28	Cylinderical roller bearing	41	Adjusting bushing small	54	Retaining ball
29	Drive shaft	42	Bolt	55	Cup spring stack
30	Snap ring		Angle lever	56	Adjusting screw
31	Shaft seal ring	44	Measuring roll	57	Piston pad
32	O-ring	45	Orifice	58	Sealing nut
33	Housing	46	Measuring bushing	59	Adjusting rod big
34	Screw plug	47	Measuring piston	60	Cylinder
35	Cradle	48	Cylinderical roller bearing	61	Control plate
36	Adjusting rod small	49	Coupling hub	62	Adjusting bushing big
37	Adjusting screw	50	Wire	63	Spring
38	Sealing nut	51	Screw plug	64	Orifice

2) STEERING PUMP

140WA2MP06

- 1 Drive shaft
- 2 Case
- 3 Spring
- 4 Stroke piston
- 5 Control vavle
- 6 High pressure side
- 7 Control plate
- 8 Port plate
- 9 Suction side
- 10 Cylinder

- 11 Piston
- 12 Spring in piston
- 13 Slipper pad
- 4 Swash plate

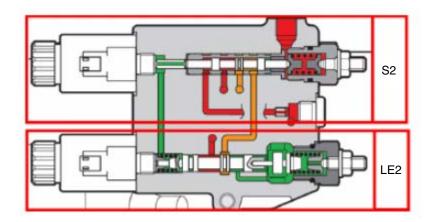

4. MAIN PUMP

1) FUNCTIONAL EXPLANATIONS

There is a priority between the individual controllers. The lowest priority has the LS controller with override function (S2).

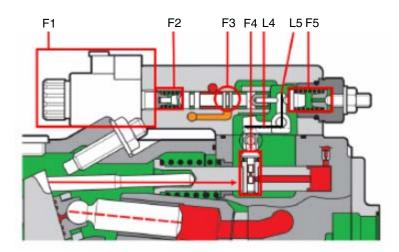
The controller with the highest priority is the power control with override (LE2). This protects the diesel engine from overloading when the diesel engine is over-loaded.

(1) Basic function


The basic function of the controllers is as follows. The high pressure (red) serves for the rotary group as a signal pressure. This pressure is send to a smaller stroke piston. This causes the rotary group to swivel to Vgmax (large swivel angle). This stroke pressure is send across the port plate to a bigger stroke piston. This is ensured by the larger piston area for the stroke pressure, inside the stroke piston we have area ratio of (2:1). If the forces of the stroke side are bigger than those of the high pressure side, then the unit swivel from Vgmax (large swivel angle) -> Vgmin (small swivel angle). The swivel time can additionally be influenced by two orifice.

You can measure the pressure of the smaller stroke piston at G and the pressure from the bigger stroke piston at M1.

As a special function, we also have a hydraulic Vgmin stop.


(2) Basic function controllers

The main pump has two controllers. A power controller (L) with electrical over-ride (E2) and a load sensing controller (S) with electrical override (2).

140WA2MP08

① Basic function power controller LE2

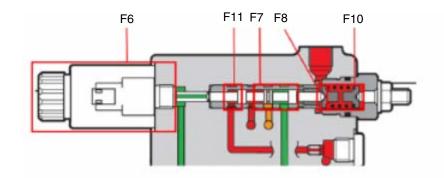
140WA2MP09

We first consider the basic function without the override.

The piston F3 has three functions.

- When the control edge is closed, the unit keeps its swing angle.
- When the control edge connects red and orange. The unit swivel until to Vgmin.
- When the control edge connects orange and green. The unit swivel until to Vgmax.

Two forces or torques act on the control piston. The first torque (D5) is set constantly. It consists of the spring force F5 and the lever arm L5. The second torque (D4) consists of the lever arm L4 and the force that is generated on the piston F4. F4 = (area x high pressure) If the torque of D4 is greater than that of D5. The unit swivel to Vgmin. This reduce the angle lever arm L4 until the torques are balanced again.


F4 X L4 = M = F5 X L5

Power override

The solenoid force F1 enables us to generate a new force that acts directly against the spring force F5 and thus reduces the force F4 required.

We can say: Higher current = lower power setting

② Load sensing controller S2

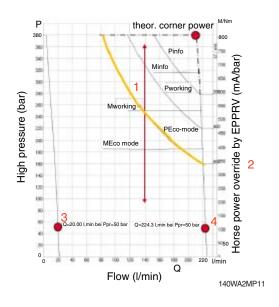
140WA2MP10

We first consider the basic function without the override.

The piston F7 has three functions.

- When the control edge is closed, the unit keeps its swivel angle.
- When the control edge connects red and orange. The unit swivel until to Vgmin.
- When the control edge connects orange and green. The unit swivel until to Vgmax.

With the load sensing controller, we consider the high pressure of the pump (F11) and the external load pressure (F8). The control Δp is set via the spring force (F10).


We can say F11 = F8 + F10.

If F11 is greater than F8 + F10, the unit swivel to Vgmin until it balances again. The spring force F8 is fixed. To change the Δp during the operation. We have the possi-bility to generate a new force via the solenoid F6.

We can say: higher current = smaller Δp setting.

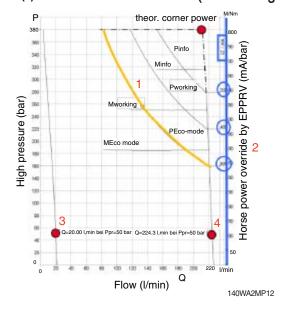
2) ADJUSTMENT

(1) Power controller

P-Q diagram

- Individual power control (hyperbolic regulator)
- 2 With load limiting control via solenoid
- 3. Qmin setting
- 4. Qmax setting

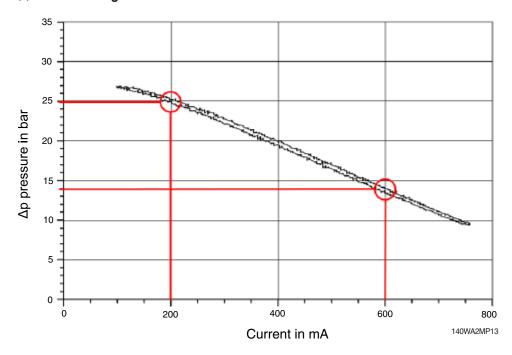
Because the power controller can be overridden with a solenoid. It need the following three points of information for the setting point.


Current, swivel angle of the pump and Δp pressure.

First we come to the swivel angle of the pump. Here is important that the unit stand on Vgman. You can check this over the measuring port G and M1. You should see the high pressure on G and no or a lower pressure than 1 (pressure on G) to 3 (pressure at M1). Than check, that you don't limited the Vg with the stroke limiter screw.

Current: You need the current from the diagram on the solenoid for the override function. Pressure: You need the high pressure from the p-Q diagram on the measuring port G.

Example for the yellow line: pressure: 160 bar, current 600mA, Vg=145ccm (q=145ccmX1600 l/min /1000=232 liter)


(2) Power controller override (load limiting control)

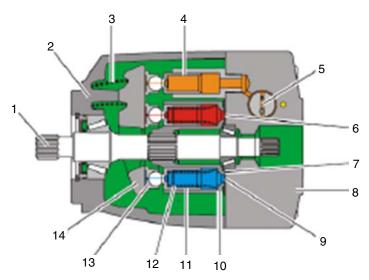
P-Q diagram

- Individual power control (hyperbolic regulator)
- 2 With load limiting control via solenoid
- 3. Qmin setting
- 4. Qmax setting
- Power override IX3 via ECU (enging control unit)

(3) Load sensing controller

Because the LS controller can be overridden with a solenoid. It need the following two pieces of information for the setting point. Current and Δp pressure. You can get this information individually from your HD Hyundai Construction Equipment dealer.

If you have this information, drive the current at the override to the desired value and set the desired Δp using the control screw on the LS controller.


In the picture you see two examples.

You can give current to the controller with 200 mA and 25 bar $\varDelta p$ or 600 mA and 14 bar $\varDelta p$. The result would be the same.

The controller moves on the characteristic from the diagram.

5. STEERING PUMP

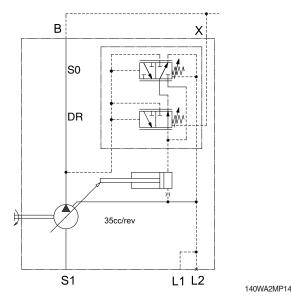
1) FUNCTIONAL DESCRIPTIOM

140WA2MP03

- 1 Drive shaft
- 2 Case
- 3 Spring
- 4 Stroke piston
- 5 Control vavle

- 6 High pressure side
- 7 Control plate
- 8 Port plate
- 9 Suction side
- 10 Cylinder

- 11 Piston
- 12 Spring in piston
- 13 Slipper pad
- 14 Swash plate


(1) Pump

Torque and rotational speed are applied to the drive shaft (1) by an engine. The drive shaft is connected by splines to the cylinder (10) to set this in motion. With every revolution, the pistons (11) in the cylinder bores execute one stroke whose magnitude depends on the setting of the swash plate (14). The slipper pads (13) are held on and guided along the glide surface of the swash plate by the spring in the piston (12). The swash plate setting during a rotation causes each piston to move over the bottom and top dead centers and back to its initial position. Here, hydraulic fluid is fed in and drained out through the two control slots in the control plate (7) according to the stroke displacement. On the suction side (9) hydraulic fluid flows into the piston chamber as the piston recedes. At the same time, on the high-pressure side (6) the fluid is pushed out of the cylinder chamber into the hydraulic system by the pistons.

(2) Control

The swivel angle of the swash plate (14) is steplessly variable. Controlling the swivel angle of the swash plate changes the piston stroke and therefore the displacement. The swivel angle is changed hydraulically by means of the stroke piston (4). The swash plate is mounted for easy motion in swivel bearings. When pressurized, the swash plate is held in balance by the swiveling forces of the rotary group, which are generated by the eccentrically mounted swash plate and by the control pressure. When depressurized, the spring (3) presses the swash plate to maximum swivel angle. Increasing the swivel angle increases the displacement; reducing the angle results in a corresponding reduction in displacement.

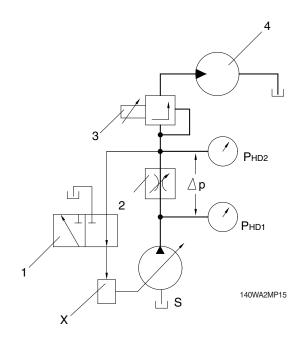
2) CONTROLLER (pressure controller with load sensing)

The pressure controller limits the maximum pressure at the pump outlet within the control range of the variable pump. The variable pump only supplies as much hy-draulic fluid as is required by the consumers. If the operating pressure exceeds the pressure setting at the pressure valve, the valve opens the connection from P-chan-nel (high pressure) to A-channel (stroking pressure) and the pump will regulate to a smaller displacement to reduce the control differential.

In addition to the pressure controller function, the load-sensing controller (S0) works as a flow controller to regulate the pump displacement to match the consumer flow requirement.

A variable orifice is used to adjust the differential pressure upstream and down-stream of the orifice. The flow controller is working like a pressure compensator to keep a constant delta p by comparing the high pressure against the load-sensing (LS) pressure plus spring preload. If the LS pressure plus spring preload exceeds the high pressure, the controller piston opens the connection from A-channel (stroking pressure) to T-channel (tank/housing) and the pump displacement will increase. If the high pressure exceeds the LS pressure plus spring preload, the controller pis-ton opens the connection from P-channel (high pressure) to A-channel (stroking pressure) and the pump displacement will decrease.

Basic position in depressurized state: Vg max

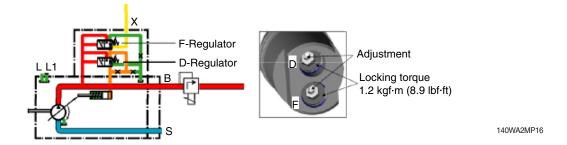

Flow qv=
$$\frac{Vg \times n \times \eta V}{1000} [\ell/min]$$

Vg - Displacement per revolution [cm³]

n - Rotatinal speed (rpm)

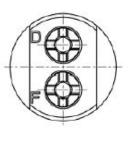
 η v - Volumetric efficiency

3) ADJUSTMENT OF PRESSURE CONTROLLER WITH LOAD SENSING



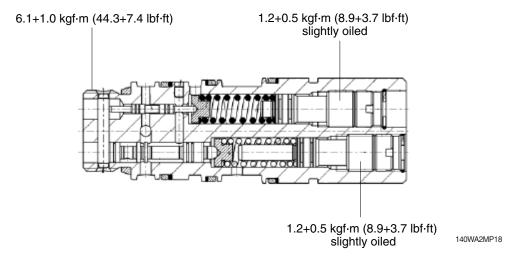
- 1 2/3 directional valve
- 2 Metering orifice/shut off valve
- 3 Load vavle
- 4 M1easuring motor, flow measuring device

Please note the mounting position of the controller and watch out for the notched letters:


D = Pressure controller

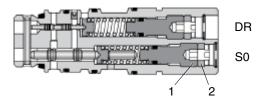
F = Flow controller

Special tool



140WA2MP17

For setting the controllers, we recommend using a special tool as you can see in the picture below. With this tool deviations of the values are prevented.


Tightening torque

(1) Adjustment of pressure controller (D)

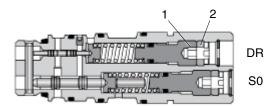
Setting range until 250 bar

- 1. Turn adjusting screw of F-controller on block
- 2. Release the adjusting screw of D-controller
- 3. Close load valve
- 4. Tighten setting screw (1) of D-controller with lock nut (2) and 1.2+0.5 kgf·m torque until the pressure to be adjusted is reached (one revolution + 59.5 bar).

140WA2MP19

1 Setting screw

2 Lock nut


We Upon setting without a special tool the following must be kept in mind:

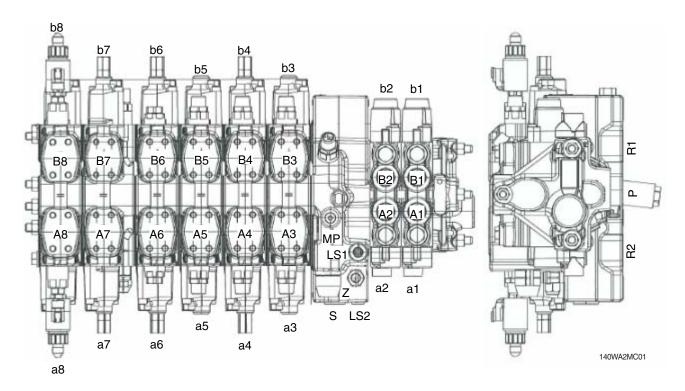
After setting the controller setting screw (AF4) the set value can show an increase of approx. 7 bar due to tightening of the lock nut. The set values of the controller should therefore be correspondingly lower. Since especially new controllers can change their setting values in operation, due to settling of the springs, testing of the settings must be repeated 2-3 times, if needed correct settings. Make sure, that the load valve and the and the pressure control valve are unloaded. Setting of the pressure controller via the load valve according to the performance diagram.

(2) Adjustment of delta p setting (F)

Setting range 14 – 35 bar

- 1. Release the adjusting screw of F-controller
- 2. Release X-channel
- 3. Adjust standby-pressure at setting screw (1) (one revolution = 12.3 bar) and secure the lock nut (2) with a slotted screw driver (width 8.8 mm) with a torque of 1.2+0.5 kgf·m.

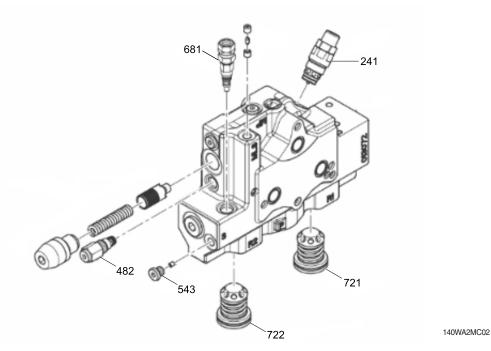
140WA2MP20


1 Setting screw

2 Lock nut

When settings are done without special tools, the following must be considered: After setting of the FR setting screw (AF4) the set value can be increased by approx. 1.5 bar through tightening of the lock nut. Therefore the set value of the FR controller should be set a bit lower. Since especially new controllers can change their setting values in operation, due to settling of the springs, testing of the settings must be repeated 2 to 3 times, if needed correct settings.

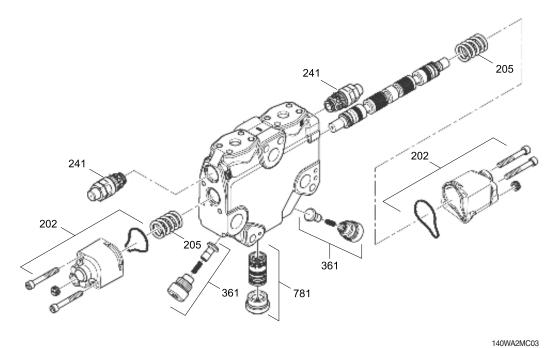
GROUP 2 MAIN CONTROL VALVE


1. OUTLINE

Mark	Port name		
Р	Pump port		
R1	Tank port (cooler)		
R2	Tank port		
S	Make up port		
LS1	Load sensing port		
LS2	Pressure switch		
MP	Plugged		
Z	Power boost port		
A1	Dozer down port		
B1	Dozer up port		
A2	2 pcs boom up port (opt)		
B2	2 pcs boom down port (opt)		
АЗ	Boom up port		
ВЗ	Boom down port		
A4	Arm out port		
B4	Arm in port		
A5	Bucket in port		
B5	Bucket out port		
A6	Travel port (FW)		
B6	Travel port (RR)		
	P R1 R2 S LS1 LS2 MP Z A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 A6		

Mark	Port name		
A7	Swing port (LH)		
B7	Swing port (RH)		
A8	Option port		
B8	Option port		
a1	Dozer down pilot port		
b1	Dozer up pilot port		
a2	2 pcs boom up pilot port (opt)		
b2	2 pcs boom down pilot port (opt)		
аЗ	Boom up pilot port		
b3	Boom down pilot port		
a4	Arm out pilot port		
b4	Arm in pilot port		
a5	Bucket in pilot port		
b5	Bucket out pilot port		
a6	Travel pilot port (FW)		
b6	Travel pilot port (RR)		
a7	Swing pilot port (LH)		
b7	Swing pilot port (RH)		
a8	Option pilot port		
b8	Option pilot port		

2. STRUCTURE 1) INLET SECTION



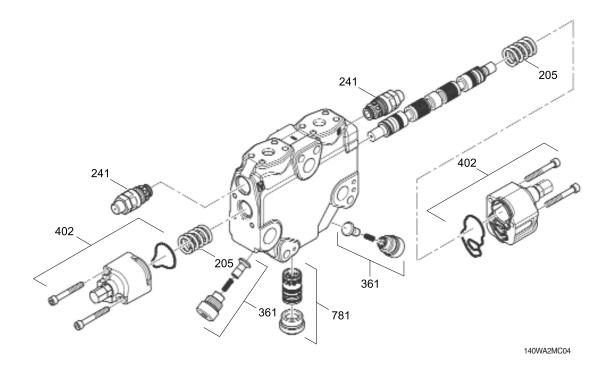
241 Pressure relief valve482 Flow valve

543 Screw681 Pressure relief valve

721 Check valve722 Check valve

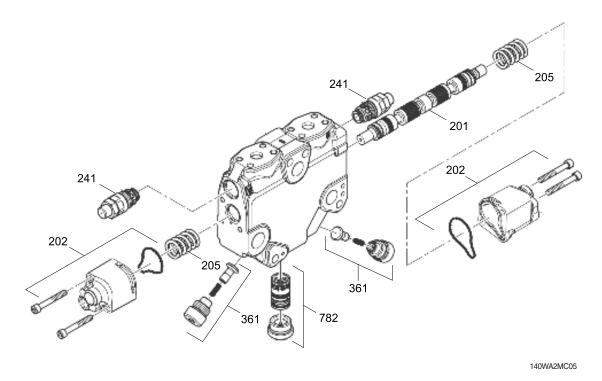
2) BOOM SECTION

202 Cover assy

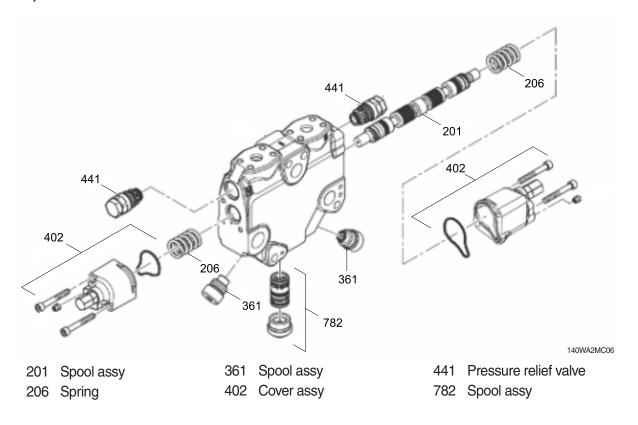

205 Spring

241 Pressure relief valve

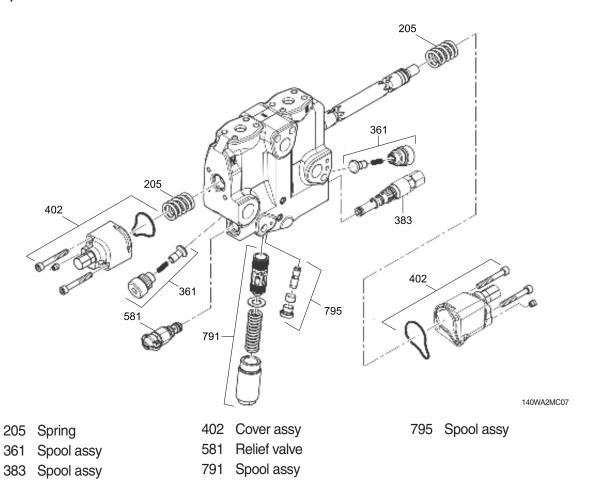
361 Spool assy


781 Spool assy

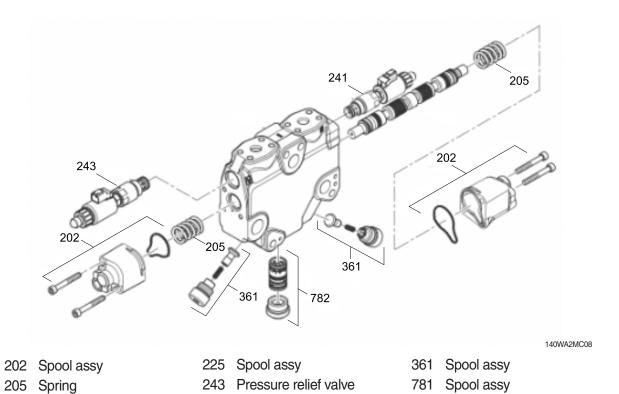
3) ARM SECTION

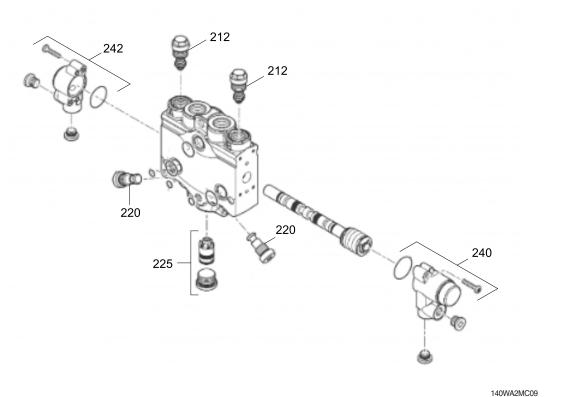

205 Spring
241 Pressure relief valve
361 Spool assy
402 Cover assy
781 Spool assy
782 Spool assy
783 Spool assy
784 Spool assy
785 Spool assy
786 Spool assy
787 Spool assy
788 Spool assy
789 Spool assy
780 Spool assy
781 Spool assy
781 Spool assy
781 Spool assy
782 Spool assy
783 Spool assy
784 Spool assy
785 Spool assy
786 Spool assy
787 Spool assy
788 Spool assy

4) BUCKET SECTION



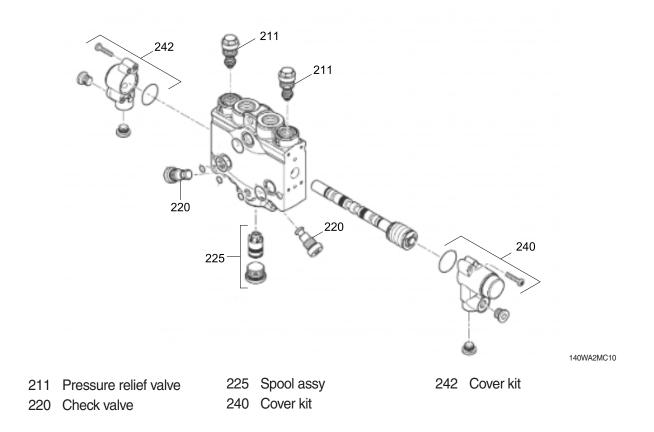
201Spool assy205Spring361Spool assy202Cover assy241Pressure relief valve782Spool assy


5) TRAVEL SECTION

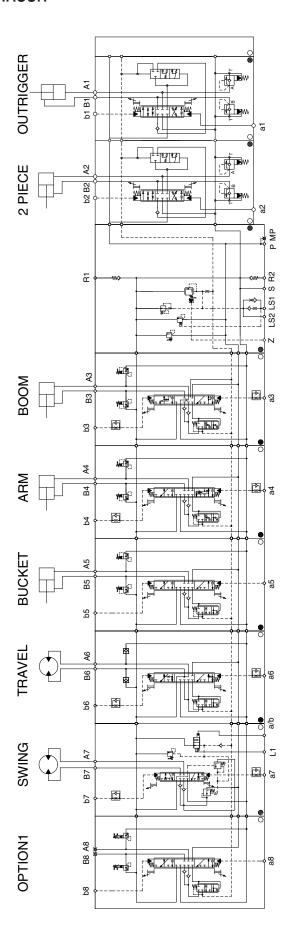

6) SWING SECTION

7) OPTION SECTION

8) 2 PIECE BOOM SECTION


140WA2MC

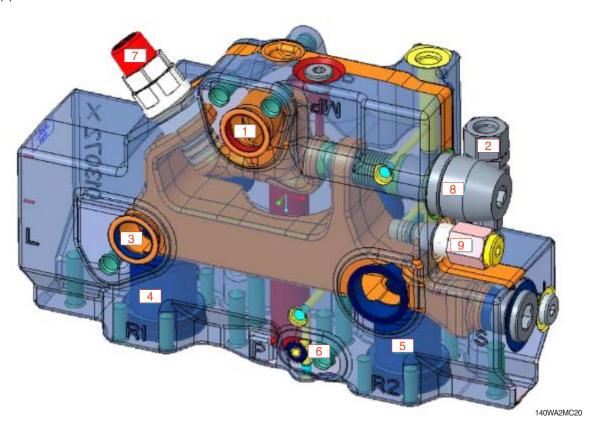
212 Pressure relief valve220 Check vavle

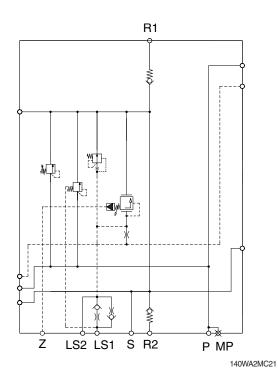

225 Spool assy240 Cover kit

242 Cover kit

9) DOZER (OUTRIGGER) SECTION

3. HYDRAULIC CIRCUIT

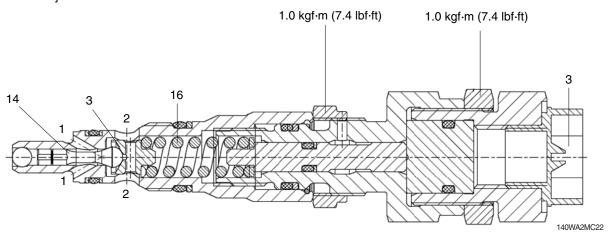



140WA2MC11

4. FUNCTION

1) INLET SECTION

(1) Structure



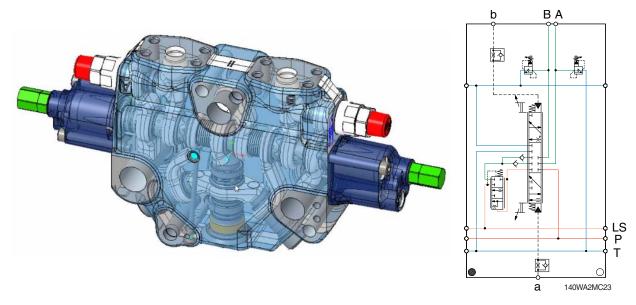
- 1 Pump channel (P)
- 2 2 stage LS pressure relief valve
- 3 Tank channel
- 4 Tank port (R1, cooler)
- 5 Tank port (R2)
- 6 LS channel
- 7 Primary relief valve
- 8 Unloading valve
- 9 LS drain valve

(2) 2 stage LS relief valve

The pressure valve type is a direct operated pressure relief valve for the installation in block designs. It is used to limit a system pressure. The system pressure can be set steplessly via the adjustment element.

* For the case of unintentional adjustment during assembly process, we would recommend to mark the positions by sealing wax.

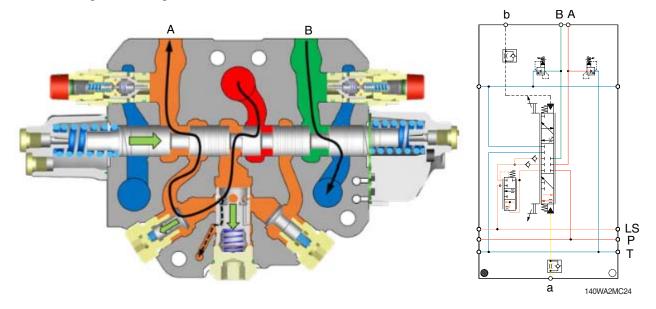
① Pressure relief function


In the initial position the valve is closed. The pressure in the main port 1 acts on the spring plate (4) via pilot line (1) and poppet (14). If the pressure in the main port 1 rises above the value set at the comparisson spring (16), poppet (14) opens and the pressure fluid flows in to the main port 2.

② Pressure connect function

When connecting the external port 3 with pilot pressure, piston (3) will be pressurised. The pretension of the spring and the maximum adjusted system pressure are increasing. A pressureinsation at the external port 3 affects the pressure at the main port 1. Ratio the following pages.

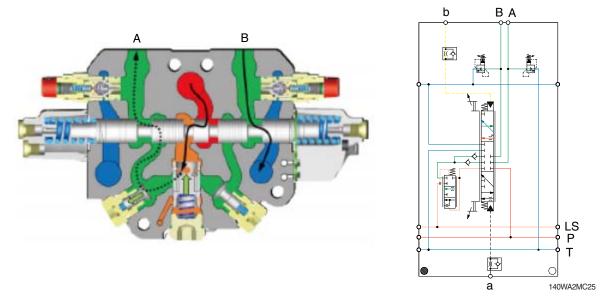
2) COMMON SECTION


(1) Neutral position

In neutral position, no connection between pump an consumer and also no connection between consumer an tank channel.

Pressure compensator is completely closed, no movements possible.

(2) Single mode/highest load

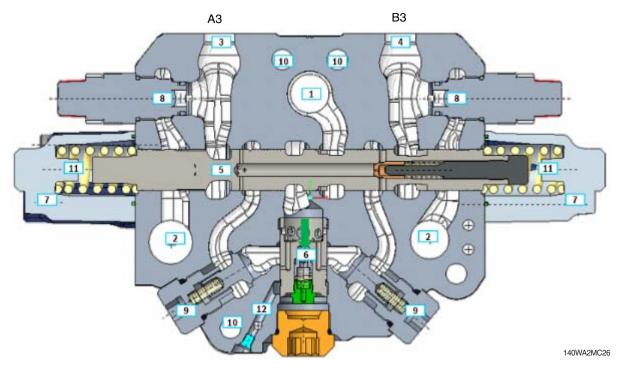


Pilot pressure on A-side opens the spool and connects pump to consumer A.

Compensator is completely open, because of single mode or highest system load of the section.

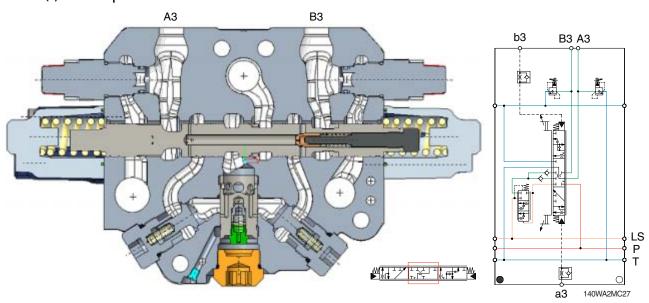
In parallel the spool opens consumer B to tank, based on defined opening area.

(3) Parallel mode/ lower load

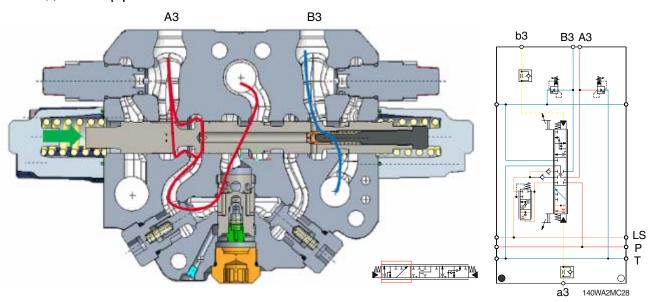


Pilot pressure on A-side opens the spool and connects pump to consumer A.

The compensator gets the signal of highest system load to the spring chamber and throttles automatically the difference between pump pressure and specific consumer load.


3) BOOM SECTION

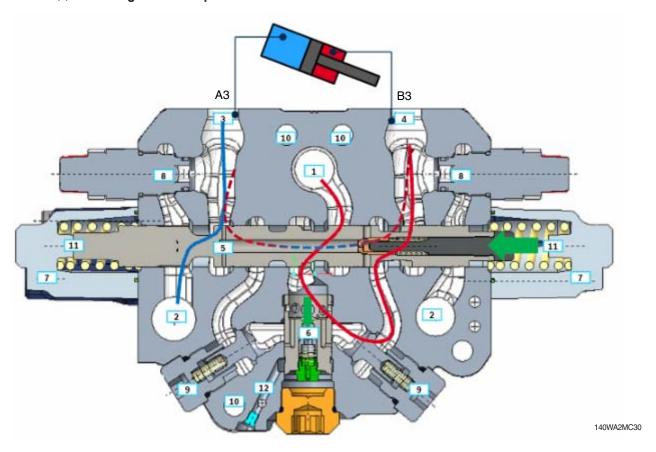
(1) Structure


- 1 Pump channel
- 2 Tank channel
- 3 Port A3
- 4 Port B3
- 5 Main spool with regeneration
- 6 Pressure compensator
- 7 Pilot cover
- 8 Secondary relief valves with make-up functionality
- 9 Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line

(2) Neutral position

Neutral position of boom spool, port A3 is connected to tank by a small notch. All other connections of the spool are closed.

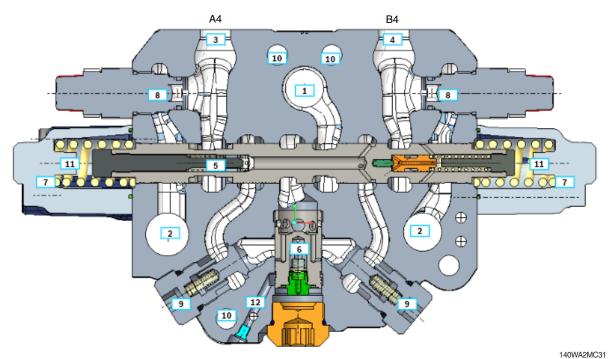
(3) Boom up position



When the pilot pressure is led to the port a3, the oil from the pump flows to the cylinder port A3 and oil from the cylinder flows into the tank through the cylinder port B3.

When the pilot pressure is led to the port b3, the oil from the pump flows to the cylinder port B3 and oil from the cylinder flows into the tank through the cylinder port A3.

(5) Boom regeneration spool

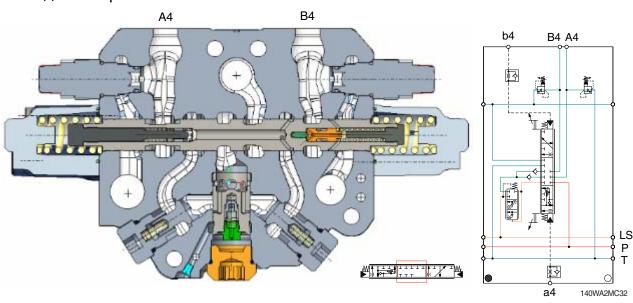


- 1 Pump channel
- 2 Tank channel
- 3 Port A3
- 4 Port B3
- 5 Main spool with regeneration
- 6 Pressure compensator
- 7 Pilot cover
- 8 Secondary relief valves with make-up functionality
 - 9 Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line

Pump is connected with B3 port. A3 port to tank. Internally connected to the poppet, as well as pump pressure. If pressure on A3 port is higher than on B3 port, the poppet opens and regeneration of flow starts. Flow depends on delta-p between A3 and B3.

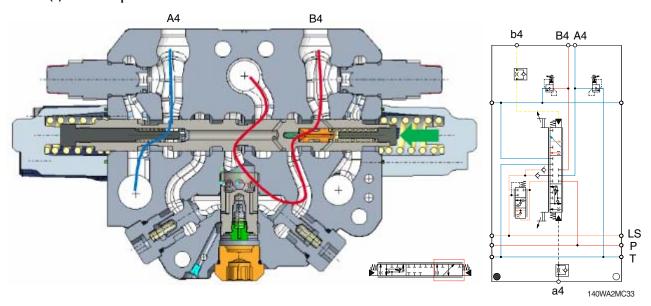
4) ARM SECTION

(1) Structure

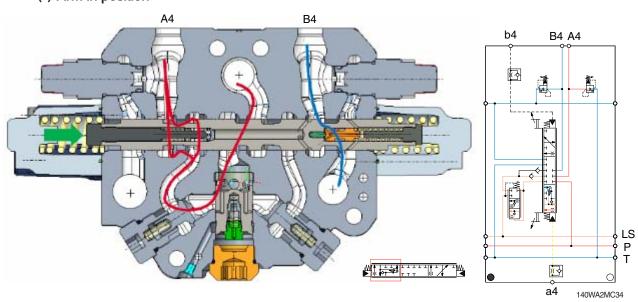


- 1 Pump channel
- 2 Tank channel
- 3 Port A4
- 4 Port B4
- 5 Main spool with Brake and regeneration functionality
- 6 Pressure compensator
- 7 Pilot cover
- 8 Secondary relief valves with make-up functionality
- 9 Load holding valves
- 10 Tie rod holes

- Stroke limiter
- 12 LS-line


11

(2) Neutral position


Neutral position of arm spool, all connections of the spool are closed and the A4 and B4 ports are not connected to the pump nor tank.

(3) Arm out position

When the pilot pressure is led to the port b4 the oil from the pump flows to the cylinder port B4 and oil from the cylinder flows into the tank through the cylinder port A4.

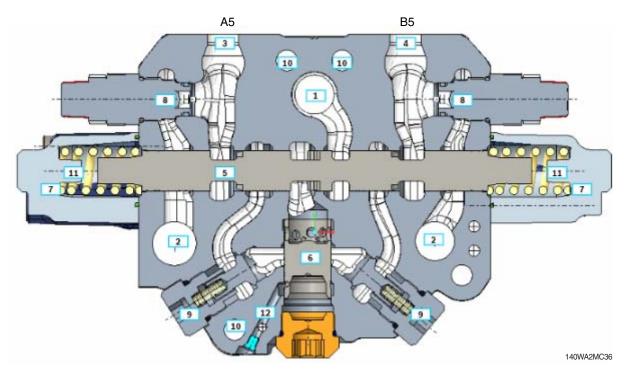
(4) Arm in position

When the pilot pressure is led to the port a4, the oil from the pump flows to the cylinder port A4 and oil from the cylinder flows into the tank through the cylinder port B4.

(5) Brake and regeneration spool

Pump flow is connected over compensator and load holding valve to the port A4.

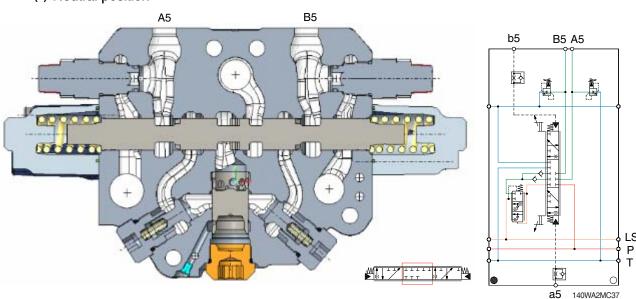
Regeneration valve is closed, because pressure on port A4 is bigger than on port B4.


Port A4 is also connected to pilot spool brake valve.

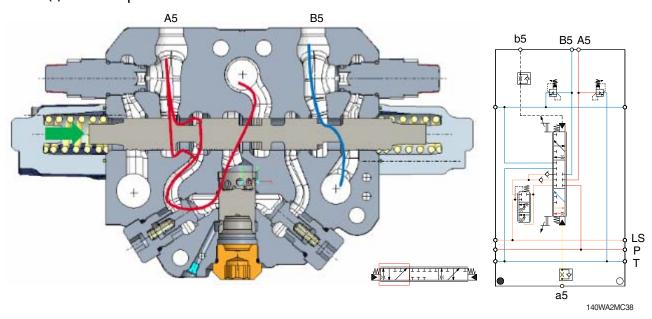
Spring chamber of logic valve is released to tank pressure. Based on area ratio of the pilot spool and the logic brake valve, the port A4 pressure has to reach a pressure level of 120 bar.

Regeneration function is not active/closed, because pressure on port A4 is bigger than on port B4.

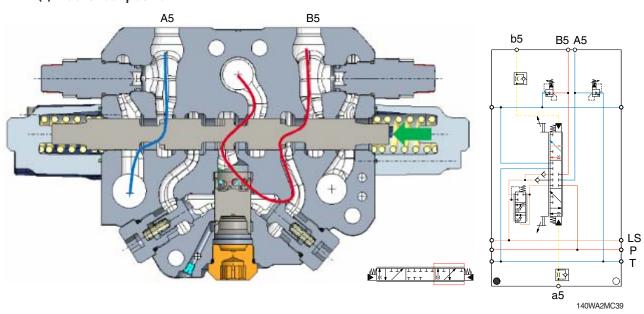
5) BUCKET SECTION


(1) Structure

- 1 Pump channel
- 2 Tank channel
- 3 Port A5
- 4 Port B5
- 5 Main spool


- 6 Pressure compensator
- 7 Pilot cover
- 8 Secondary relief valves with make-up functionality
- 9 Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line

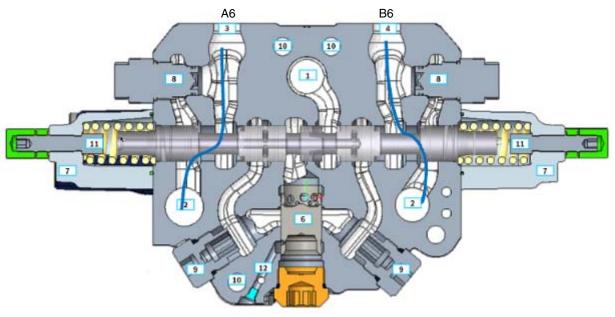
(2) Neutral position


Neutral position of bucket spool, all connections of the spool are closed and the A5 and B5 ports are not connected to the pump nor tank.

(3) Bucket in position

When the pilot pressure is led to the port a5, the oil from the pump flows to the cylinder port A5 and oil from the cylinder flows into the tank through the cylinder port B5.

(4) Bucket out position

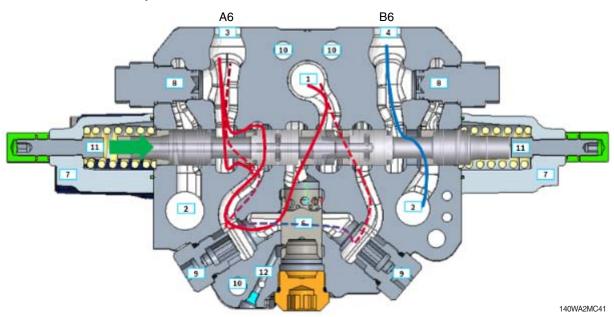


When the pilot pressure is led to the port b5, the oil from the pump flows to the cylinder port B5 and oil from the cylinder flows into the tank through the cylinder port A5.

6) TRAVEL SECTION

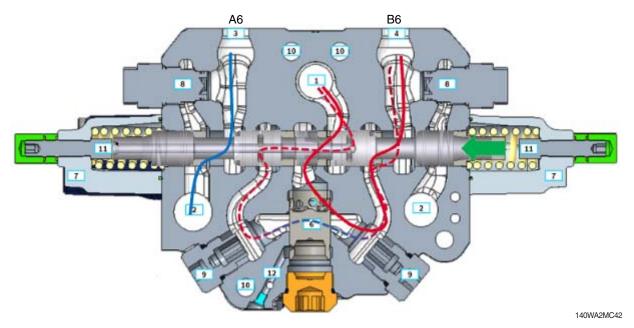
(1) Structure

Both sides of the Travel spool B6->T and also A6->T are connected in neutral to tank.


140WA2MC40

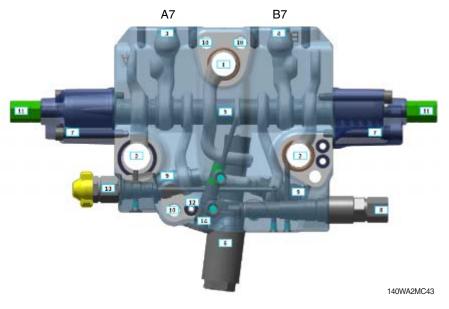
- 1 Pump channel
- 2 Tank channel
- 3 Port A6
- 4 Port B6

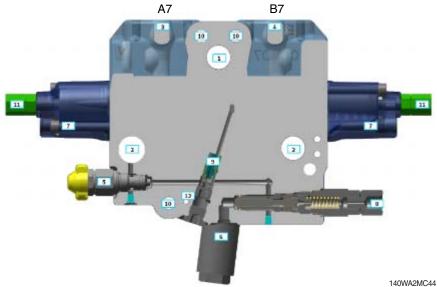
- 5 Main spool
- 6 Pressure compensator
- 7 Pilot cover
- 8 Secondary relief valves
- Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line

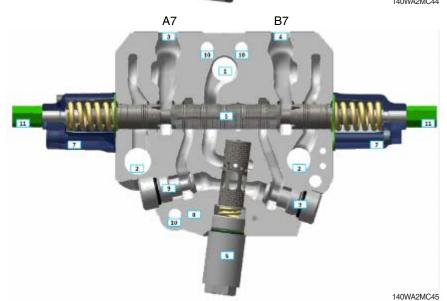

9

(2) Travel backward position

When the pilot pressure is led to the port a6, the oil from the pump flows to the port A6 and oil from the motor flows into the tank through the port B6.

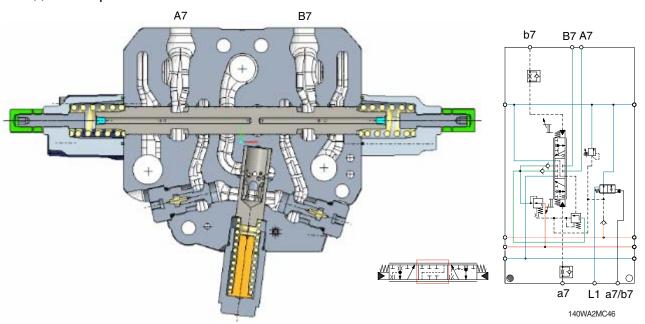

(3) Travel forward position

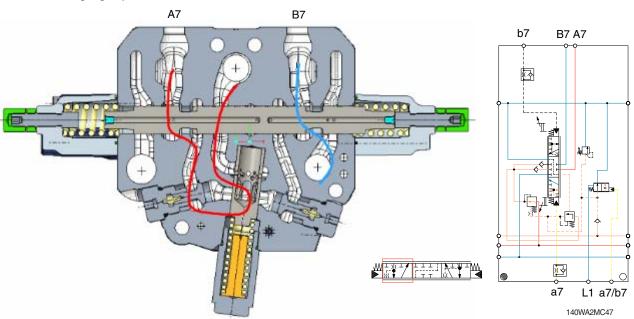



When the pilot pressure is led to the port b6, the oil from the pump flows to the port B6 and oil from the motor flows into the tank through the port A6.

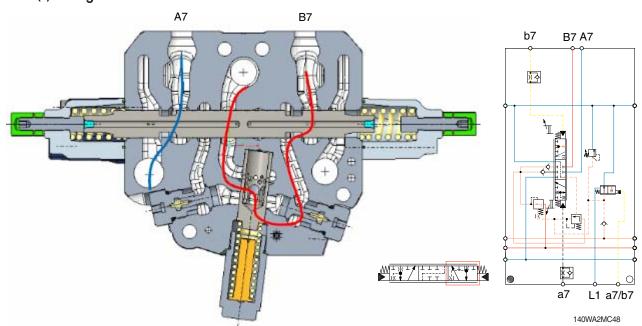
7) SWING SECTION

(1) Structure

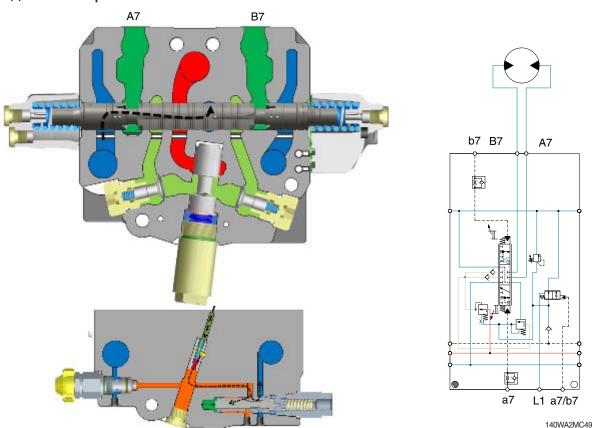



- 1 Pump channel
- 2 Tank channel
- 3 Port A7
- 4 Port B7
- 5 Main spool
- 6 Hollow Pressure compensator
- 7 Pilot cover
- 8 DTS cartridge
- 9 Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line
- 13 LS pressure reducing valve
- 14 LS copy valve
- 1 Pump channel
- 2 Tank channel
- 3 Port A7
- 4 Port B7
- 5 LS pressure reducing valve
- 6 Hollow pressure compensator
- 7 Pilot cover
- 8 DTS cartridge
- 9 LS copy valve
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line
- 1 Pump channel
- 2 Tank channel
- 3 Port A7
- 4 Port B7
- 5 Main spool
- 6 Hollow Pressure compensator
- 7 Pilot cover
- 8 LS-line
- 9 Load holding valves
- 10 Tie rod holes

(2) Neutral position


Neutral position of swing spool, all connections of the spool are closed and the A7 and B7 ports are not connected to the pump nor tank.

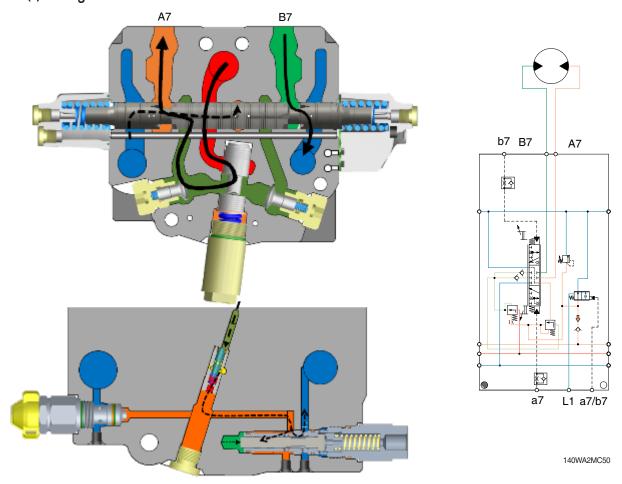
(3) Swing right position


When the pilot pressure is led to the port a7, the oil from the pump flows to the port A7 and oil from the motor flows into the tank through the port B7.

(4) Swing left

When the pilot pressure is led to the port b7, the oil from the pump flows to the port B7 and oil from the motor flows into the tank through the port A7.

(5) LS neutral position



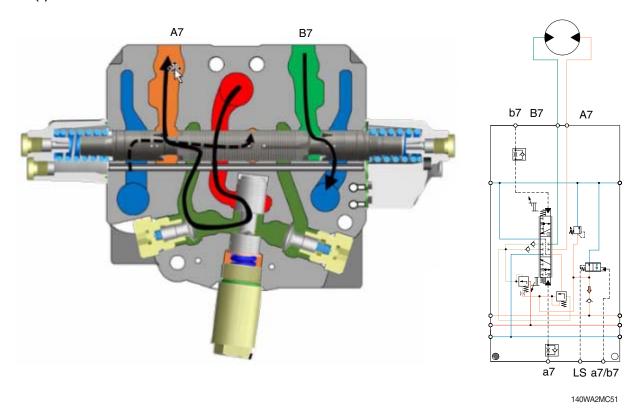
The pump channel is always connected to the compensator. If pump pressure is higher than LS + spring setting of the LS-compensator, the LS compensator will be closed.

The LS channel will be in parallel released to tank and also by the copy valve to the spring chamber of the compensator.

This secures no movement during neutral position of the spool.

(6) LS highest load

Pilot signal on port A7 opens pump -> port A7 and also port B7 -> tank channel.


LS signal is spool internally connected to spring chamber of the compensator.

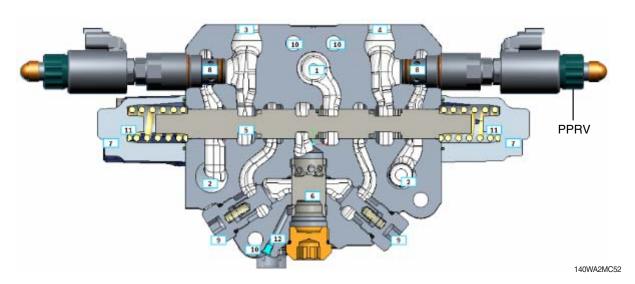
LS signal + spring force setting defines the delta p over main spool.

-> This combination leads to precise flow controllability.

The DTS drains the LS signal, in relation to the pilot signal, to the tank channel. The reduced LS pressure is connected to the compensator, which leads to "torque control" of the consumer.

(7) LS lowest consumer load

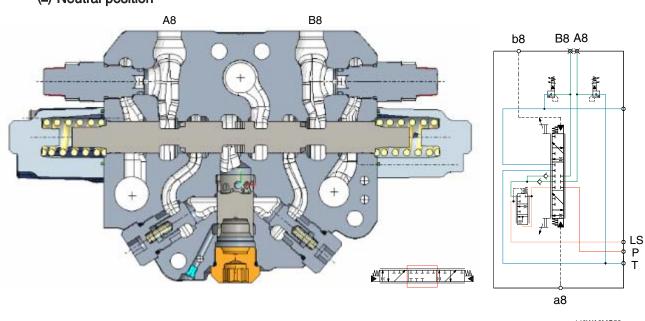
Against LUDV functionality, the LS section is not affected by parallel movements, as long as the system is able to build up the required pump pressure.


We call it "semi-priority" for LS consumers.

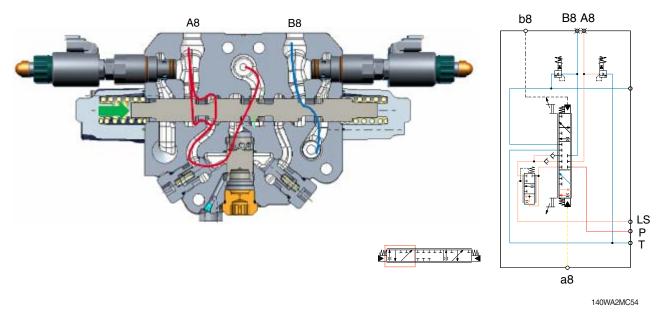
8) OPTION SECTION

(1) Structure

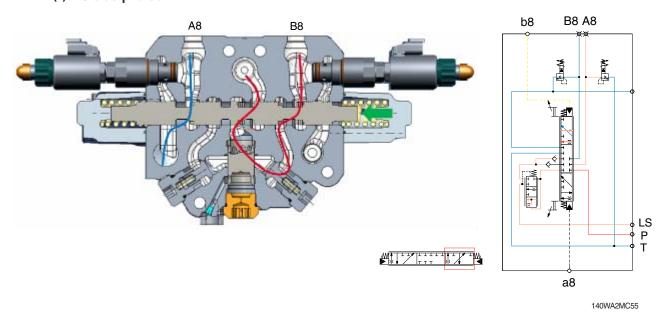
EPPR (position 8) should not be engaged with current, without connected hydraulic oil.


-> This avoids air injection into the PPRV.

- 1 Pump channel
- 2 Tank channel
- 3 Port A8
- 4 Port B8
- 5 Main spool


- 6 Pressure compensator
- 7 Pilot cover
- 8 Electro-proportional secondary relief valves with make-up functionality
- 9 Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line

(2) Neutral position


Neutral position of option spool, all connections of the spool are closed and the A8 and B8 ports are not connected to the pump nor tank.

(3) A8 side piloted

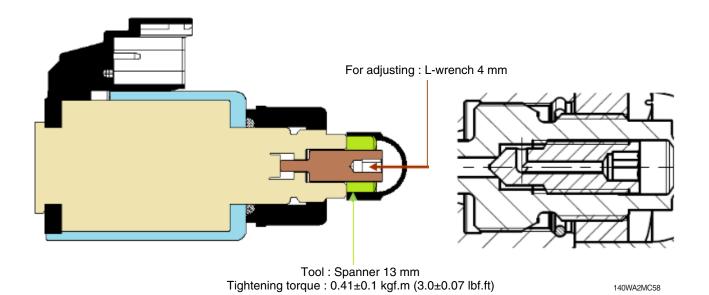
When the pilot pressure is led to the port a8, the oil from the pump flows to the port A8 and oil from the cylinder flows into the tank through the port B8.

(4) B8 side piloted

When the pilot pressure is led to the port b8, the oil from the pump flows to the port B8 and oil from the cylinder flows into the tank through the port A8.

(5) PPRV control information

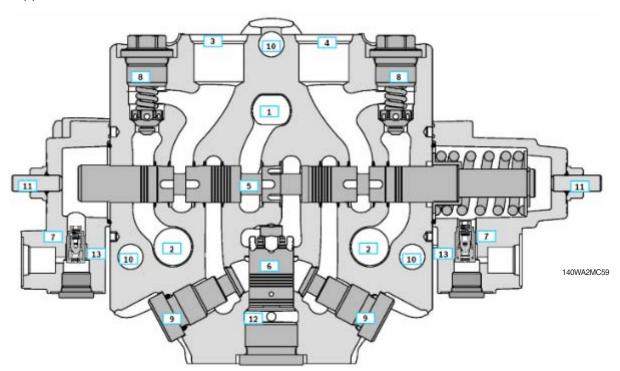
Tool : Spanner 30 Tightening torque : 10.2±1.0 kgf.m (73.8±7.4 lbf.ft)


140WA2MC56

Flow - pressure curve p=f

140WA2MC57

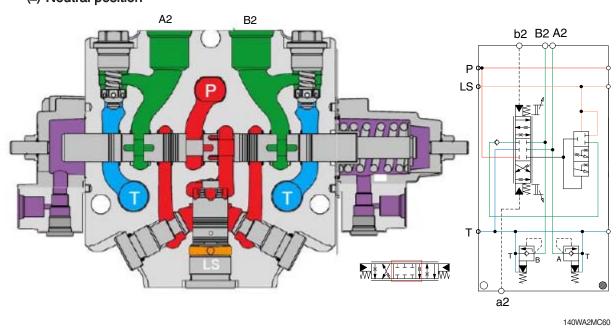
· Adjustment



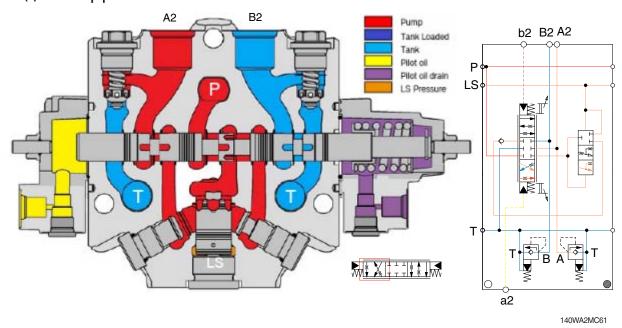
- Release the counter nut (green)
- Turn the positioning screw smoothly (brown)
- Fix the counter nut again (green)
- * In general the adjustment of the pressure settings will be done in our production line.

 Afterwards we will seal the adjustment with sealing wax to avoid re-adjustment in the field.

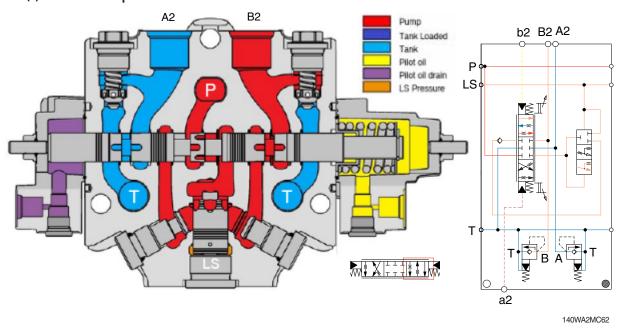
9) 2-PIECE BOOM


(1) Structure

- 1 Pump channel
- 2 Tank channel
- 3 Consumer port A
- 4 Consumer port B
- 5 Main spool

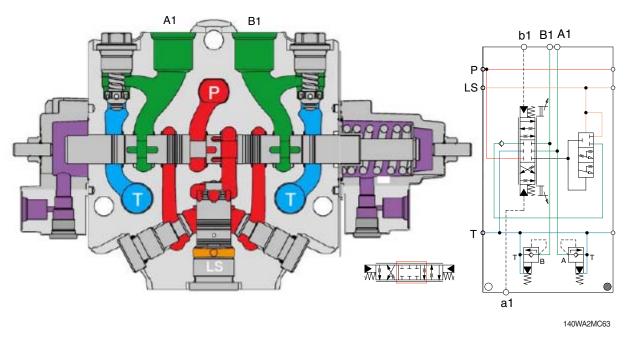

- 6 Pressure compensator
- 7 Pilot cover
- 8 Secondary relief valves with make-up functionality
- 9 Load holding valves
- 10 Tie rod holes
- 11 Stroke limiter
- 12 LS-line
- 13 Snubber

(2) Neutral position


The spool is in neutral position, pump is in low pressure stand-by. The A2 and B2 ports are not connected to the pumps nor the tank.

(3) Boom up position

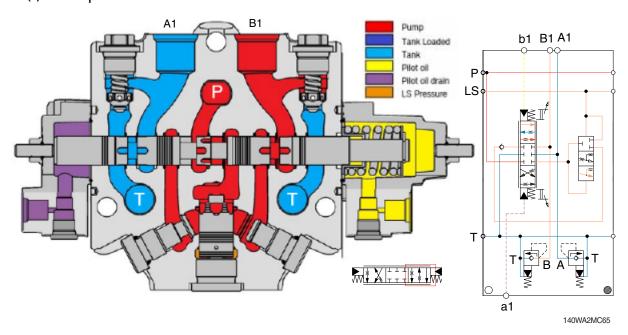
When the pilot pressure is led to the port a2, the oil from the pump flows to the cylinder port A2 and oil from the cylinder flows into the tank through cylinder port B2.


(4) Boom down position

When the pilot pressure is led to the port b2, the oil from the pump flows to the cylinder port B2 and oil from the cylinder flows into the tank through the cylinder port A2.

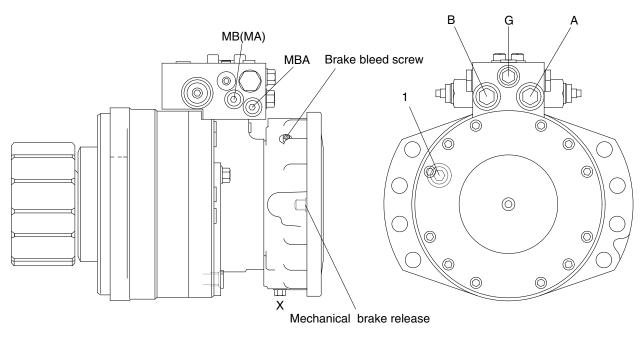

10) OUTRIGGER SECTION

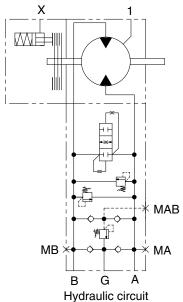
(1) Neutral psition


The spool is in neutral position, pump is in low pressure stand-by. The A1 and B1 ports are not connected to the pumps nor the tank.

(2) A1 side piloted

When the pilot pressure is led to the port a1, the oil from the pump flows to the cylinder port A1 and oil from the cylinder flows into the tank through cylinder port B1.

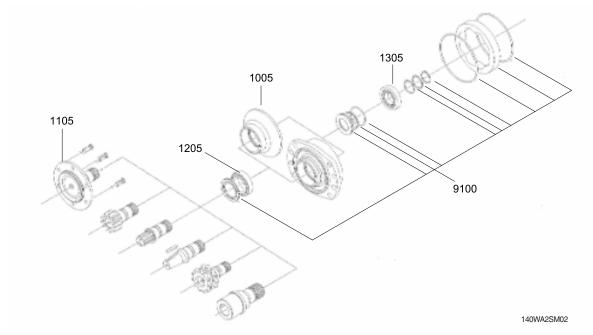

(3) B side piloted



When the pilot pressure is led to B1 side, the oil from the pump flows to the cylinder port B1 and oil from the cylinder flows into the tank through the cylinder port A1.

GROUP 3 SWING DEVICE

1. STRUCTURE

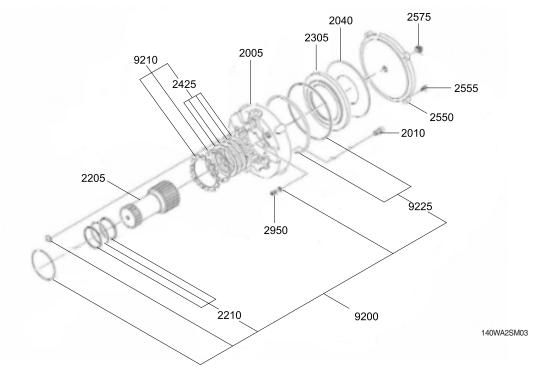


Port	Port name	Port size
А	Main port	1-1/16-12 UNF
В	Main port	1-1/16-12 UNF
G	Make up port	7/8-14 UNF
MA	Gauge port	3/4-16 UNF
MB	Gauge port	3/4-16 UNF
MBA	Gauge port	7/16-20 UNF
Х	Brake release port	9/16-18 UNF
1	Drain port	7/8-14 UNF

140WA2SM01

2. PART LIST

1) SUPPORT BEARING ASSY



1005 Bearing housing1105 Pinion shaft

1205 Taper bearing1305 Taper bearing

9100 Full motor seal kit

2) BRAKE ASSY

2005 Brake housing

2010 Screw

2040 Washer spring

2205 Brake shaft

2210 Brake shaft seal kit

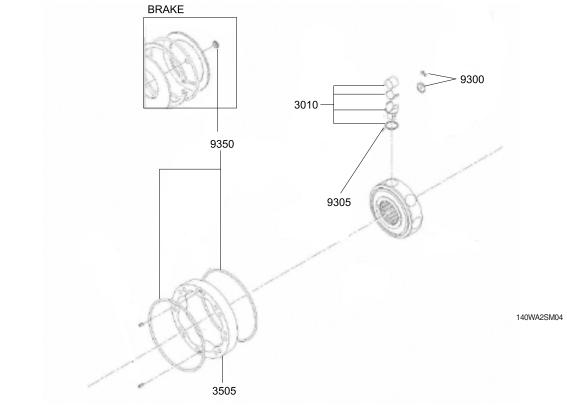
2305 Brake piston

2425 Brake disk seal kit

2550 Lock plate

2555 Screw

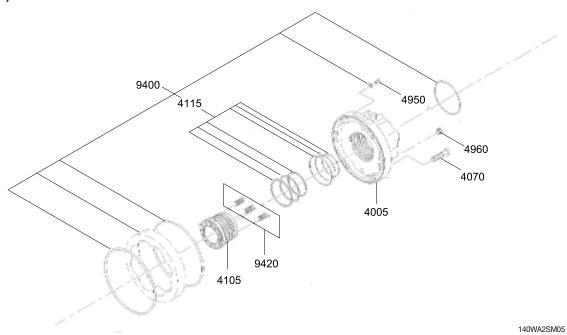
2575 Plug


2950 Screw

9200 Brake repair kit

9210 Brake disc repair kit

9225 Brake cover repair kit


3) CYLINDER BLOCK ASSY

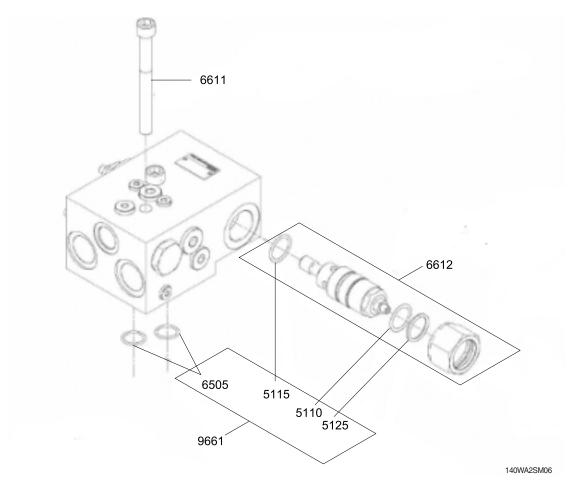
3010 Piston repair kit 3505 Cam 9300 Piston insite kit9305 Piston ring repair kit

9350 Open motor repair kit

4) VALVE COVER ASSY

4005 Valve housing4070 Screw

4105 Valve block


4115 Distribute seal kit4950 Screw

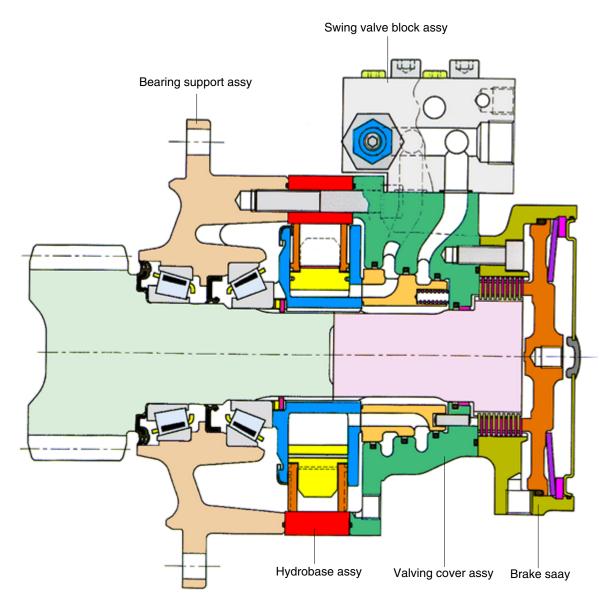
4950 Screv4960 Plug

9400 Valve repair kit

9420 Compression spring kit

5) VMR VALVE ASSY

5110 O-ring5115 O-ring5125 Conte joint

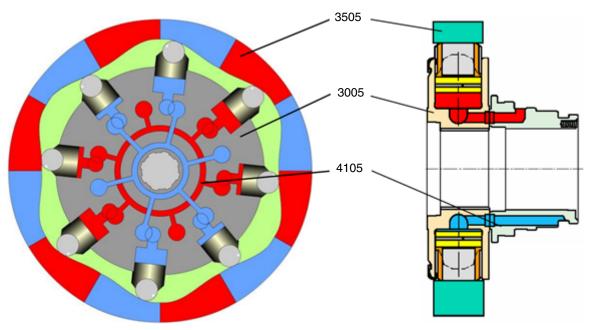

6505 O-ring6611 Screw6612 Relief valve

9661 Relief valve seal kit

3. GENERAL DESCRIPTION

This hydraulic motor is designed to swing the upper structure of the excavator and changes the hydraulic pressure oil supplied from the pump to the rotary motion.

This is the radial piston type for low speed-high torque and section is as blow.


140WA2SM10

This hydraulic motor consists of the five major subassembly such as bearing support assembly, hydrobase assembly, valving cover assembly, brake assembly and swing valve block assembly (VMR valve assembly).

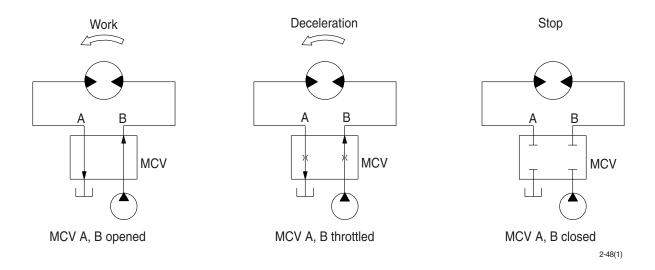
The hydraulic pressure oil flows into hydrobase through the valving cover assembly and the hydraulic energy changes to mechanical energy by the hydrobase. As a result, the upper structure is rotated through the pinion gear of the bearing support.

When the hydraulic oil is supplied to the A port (red) and this pressure oil flows through valving plate (fixed part, not rotating) and cylinder block (3005,rotating part, connect to the the pinion shaft by inside spline) and push red area of the cam (3505) through the piston and cylinder roller. Thus rotating torque is occurred.

(The upper structure starts rotating)

140WA2SM1

The other way, the blue port oil flows into the piston through the cylinder roller and flows into B port through the cylinder block and valving plate. Incase the upper structure stops from rotating, the resist rotating torque generates due to the throttle effect of the orifice by the slope of the blue area of the cam, then the upper structure stops. (hydrostatic brake function)

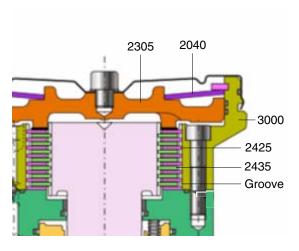

The green chamber is filled with oil during the operation, the internal leakage of the motor (leakage of the mechanical contact part of the 3005 and 4105) and leakage of between piston and cylinder block) flows in to green chamber and drains to hydraulic tank without resistance surely. The sealing status of the motor can be checked by measuring this drain oil.

The internal leakage of the motor does not exceed 0.14 lpm at the drain port when the supply oil quantity is 30 lpm.

4) BRAKE SYSTEM

(1) Control valve swing brake system

This is the brake system to stop the swing motion of the excavator during operation. In this system, the hydraulic circuit is throttled by the swing control valve, and the resistance created by this throttling works as a brake force to slow down the swing motion.



(2) Mechanical swing parking brake system

This is function as a parking brake only when the swing control lever and arm in control lever are not operated.

① Brake assembly

Circumferential rotation of separate plate (2435) is constrained by the groove located at brake housing (2005). When housing is pressed down by washer spring (2040) through friction plate (2425), separate plate (2435) and brake piston (2305), friction force occurs between friction plate and separate plate. Friction force constrains motion of cylinder block (3000). When hydraulic force exceeds spring force, brake is released.

140WA2SM12

2005	Brake housing	2425	Friction plate
2040	Washer spring	2435	Separate plate
2305	Brake piston	3000	Cylinder block

2 Operating principle

- a. When any of the swing or arm in function is operated, the swing brake solenoid valve (5) is shifted to the swing position, so brake pump charged oil goes to the chamber G through port X. This pressure is applied to move the parking piston (2305) to the upward against the force of the washer spring (2040). Thus, it releases the brake force.
- b. Stop operation and a few second has been elapsed, the swing brake solenoid valve (5) is shifted to the swing parking position and swing brake works.
- c. There is time delay for swing parking as below (single operation).
 - Swing: 5 sec, arm in: 1 sec, boom up: 2 sec, travel: 3 sec.

3 Manual override function

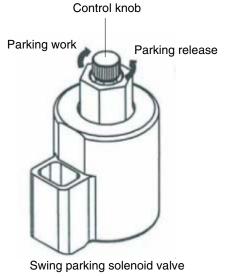
When the swing parking solenoid valve or related electric system is malfunction, the swing parking brake is not released even if the swing or arm in lever is operated.

To release the swing parking brake, the manual override function is needed.

Manual override solenoid valve

a. Use hand only to turn the control knob (do not use a tool).

b. Parking brake release

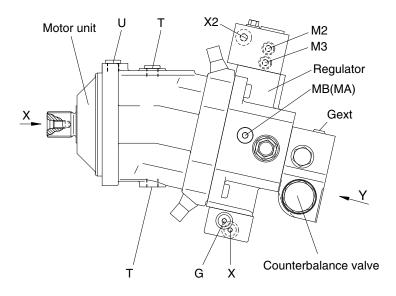

Turn the control knob to counterclockwise fully (about 2.5 mm)

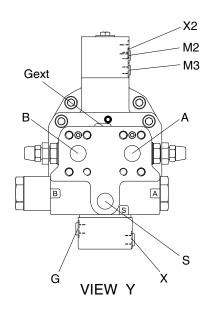
c. Parking brake work

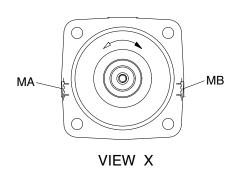
Turn the control knob to clockwise fully.

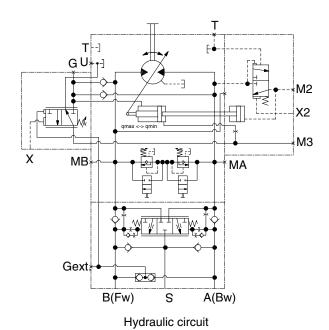
Be careful not damage the control knob by using a tool or tightening forcibly.

It can cause malfunction of the solenoid valve.


160A2SM11


GROUP 4 TRAVEL MOTOR

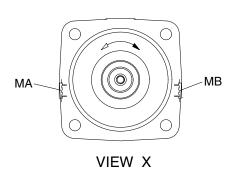

1. CONSTRUCTION

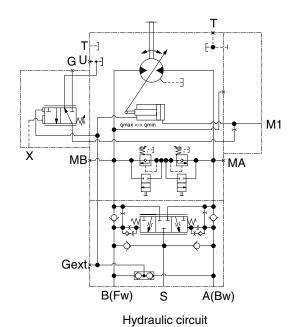

Travel motor consists motor unit and regulator and counterbalance valve.

· High speed (standard)





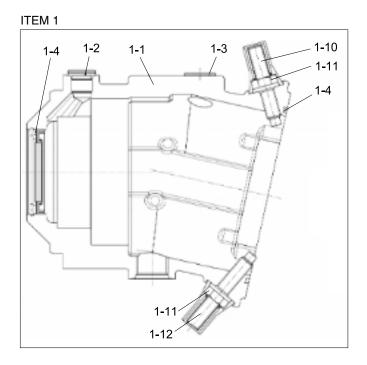

140WA2TR01


Port	Port name	Port size		
A, B	Main port	SAE 1"		
G	Plugged	M14×1.5-12		
M1	Gauge port	M14×1.5-12		
X	Pilot pressure port	M14×1.5-12		
X2	Pilot pressure port	M14×1.5-12		
Т	Drain port	PF 1/2-16		
U	Flushing port	PF 1/2-16		
S	Make up port	M27×2.0-14		
Ma, Mb	Gauge port	M18×1.5-12		
M2, M3	Gauge port	M10×1.0-8		
Gext	Brake release port	M12×1.5-12.5		

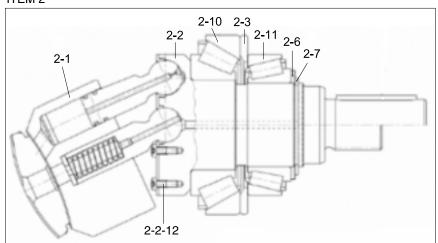
· Low speed (option)

140WA2TR02

Port	Port name	Port size
A, B	Main port	SAE 1"
G	Plugged	M14×1.5-12
M1	Gauge port	M14×1.5-12
X	Pilot pressure port	M14×1.5-12
Т	Drain port	PF 1/2-16
U	Flushing port	PF 1/2-16
S	Make up port	M27×2.0-14
Ma, Mb	Gauge port	M18×1.5-12
Gext	Brake release port	M12×1.5-12.5


1) PARTS LIST (1/3)

(1) High speed


MOTOR ASSY

- 1 Motor housing assy
- 2 Rotary kit

ITEM 2

140WA2TR10

4 4		
1-1	HΩ	usina

1-2 Lock screw

1-3 Lock screw

1-4 Motor seal kit

1-10 Threaded pin

1-11 Sealing nut

1-12 Threaded pin

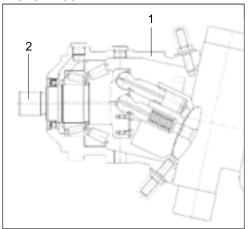
2-1 Hydraulic rotary section

2-2 Drive shaft

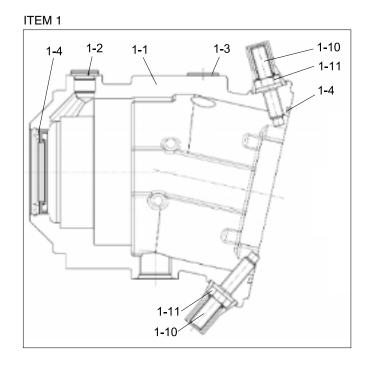
2-2-12 Screw

2-3 Shim

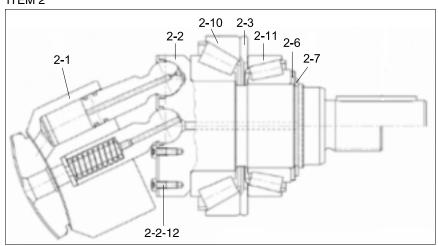
2-6 Backup plate


2-7 Retainer ring

2-10 Roller bearing


2-11 Roller bearing

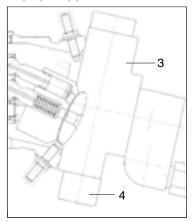
(2) Low speed


MOTOR ASSY

- 1 Motor housing assy
- 2 Rotary kit

ITEM 2

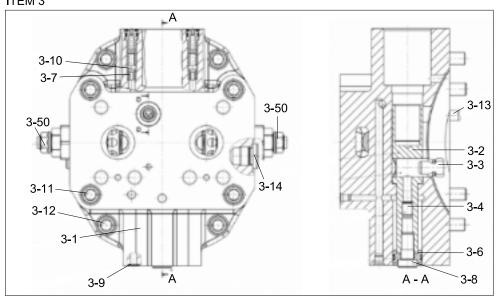
140WA2T11


- 1-1 Housing
- 1-2 Lock screw
- 1-3 Lock screw
- 1-4 Motor seal kit
- 1-10 Threaded pin
- 1-11 Sealing nut
- 2-1 Hydraulic rotary section
- 2-2 Drive shaft
- 2-2-12 Screw
 - 2-3 Shim

- 2-6 Backup plate
- 2-7 Retainer ring
- 2-10 Roller bearing
- 2-11 Roller bearing

PARTS LIST (2/3)

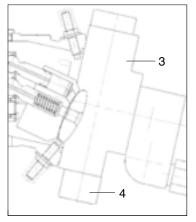
(1) High speed


MOTOR ASSY

4-20 4-19 4-21 4-29 4-9 4-7 4-17 4-4 4-5 4-14 4-3 4-2 4-1

- 3 Port plate assy
- 4 Control unit

ITEM 3



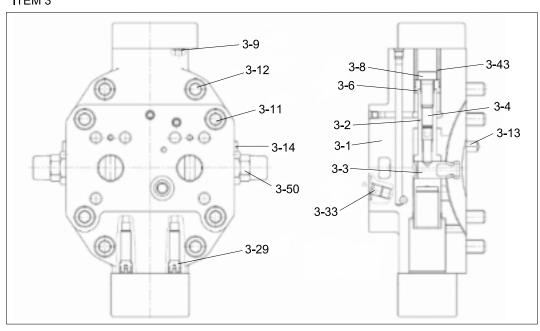
140WA2TR12

3-3 3-4 3-6 3-7 3-8 3-9 3-10	Port plate Positioning piston Positioning trunnion Threaded pin Piston ring Bushing Socket screw O-ring Check valve	3-13 3-14 3-50 4-1 4-2 4-3 4-4 4-5	Socket screw Cylinder pin Locking screw Relief valve Control housing Control bushing Control piston Adjust bushing Spring collar	4-14 4-15 4-16 4-17 4-19 4-20 4-21 4-22	Pressure spring O-ring Socket screw Locking screw Retainer ring Thread pin Cylinder pin Seal lock nut Break pin
	Socket screw		Pressure spring		Retainer disc

(2) Low speed

MOTOR ASSY

ITEM 4


4-20 4-19 4-21 4-29
4-9 4-7 4-17

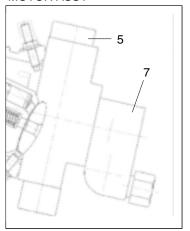
4-15

4-22

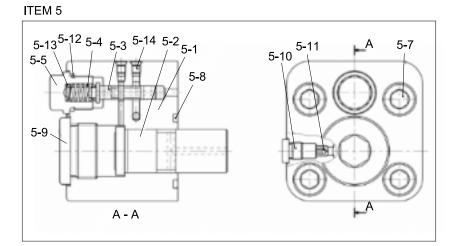
- 3 Port plate assy
- 4 Control unit

ITEM 3

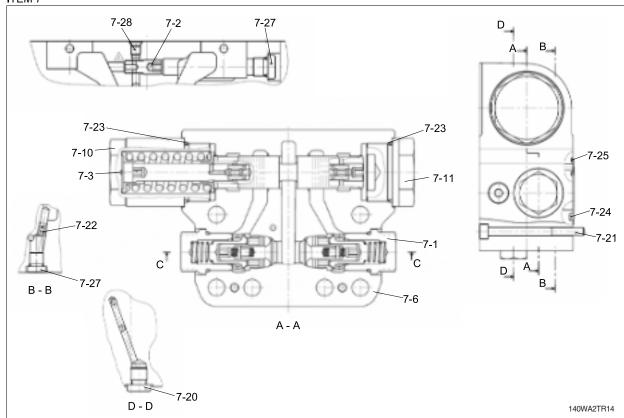
4-14 4-3 4-2 4-1


140WA2TR13

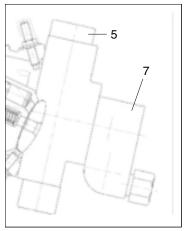
3-1	Port plate	3-14	Locking screw	4-9	Pressure spring
3-2	Positioning piston	3-29	Plug	4-14	O-ring
3-3	Positioning trunnion	3-33	Lock screw	4-15	Socket screw
3-4	Threaded pin	3-43	Stop bushing	4-16	Locking screw
3-6	Piston ring	3-50	Relief valve	4-17	Retainer ring
3-8	Socket screw	4-1	Control housing	4-19	Thread pin
3-9	O-ring	4-2	Control bushing	4-20	Cylinder pin
3-10	Check valve	4-3	Control piston	4-21	Seal lock nut
3-11	Socket screw	4-4	Adjust bushing	4-22	Break pin
3-12	Socket screw	4-5	Spring collar	4-29	Retainer disc
3-13	Cylinder pin	4-7	Pressure spring		


PARTS LIST (3/3)

(1) High speed


MOTOR ASSY

5 Hydraulic stroke limiter7 Motion control valve assy


ITEM 7

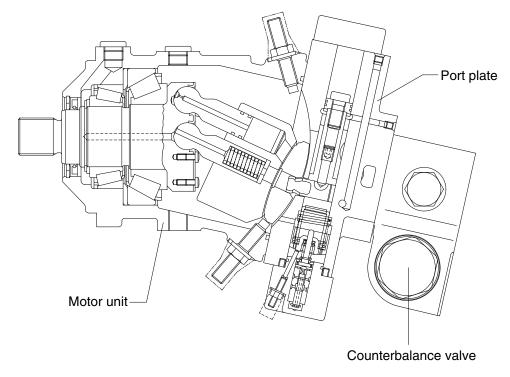
5-1	Limiter housing	5-11	Orifice	7-11	Locking screw
5-2	Piston	5-12	O-ring	7-20	Locking screw
5-3	Control piston	5-13	Shim	7-21	Socket screw
5-4	Pressure spring	5-14	Break pin	7-22	Plug
5-5	Lock screw	7-1	Valve	7-23	O-ring
5-7	Socket screw	7-2	Shuttle valve	7-24	O-ring
5-8	O-ring	7-3	Brake piston assy	7-25	O-ring
5-9	Lock screw	7-6	Housing	7-27	Locking screw
5-10	Lock screw	7-10	Locking screw	7-28	Break pin

(2) Low speed

MOTOR ASSY

5 Hydraulic stroke limiter

7-6 Housing


7 Motion control valve assy

5-1	Cover	7-10	Locking screw	7-24	O-ring
5-3	Throttle screw	7-11	Locking screw	7-25	O-ring
7-1	Valve	7-20	Locking screw	7-27	Locking screw
7-2	Shuttle valve	7-21	Socket screw	7-28	Break pin
7-3	Brake piston assy	7-22	Plug		

7-23 O-ring

2. FUNCTION

140WA2TR05

1) VARIABLE DISPLACEMENT MOTOR (with integrated counterbalance valve)

The variable displacement motor has a rotary group in bent axis design.

The torque is generated directly at the drive shaft.

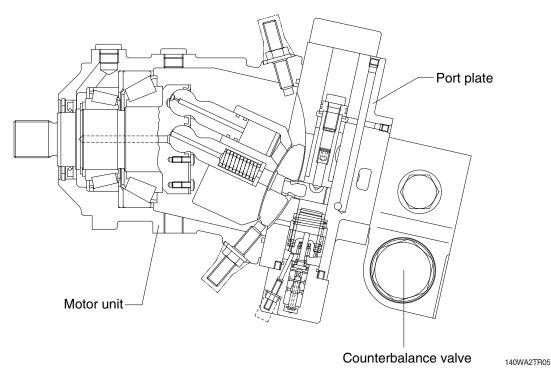
The cylinder barrel is driven by a tapered piston arrangement.

The change of displacement is generated by the control lens via positioning piston. The control lens slides on a circular shaped surface.

In case of constant pump flow volume and high pressure

- The output speed is increased at smaller swivel angle, the torque is reduced
- The torque rises at swivel angle increase, the output speed is decreased

The max swivel angle is 25°, the min swivel angle is 0°.


The variable displacement motor with integrated counterbalance valve is designed to be operated in open loop.

Min and max displacement are limited by a stop screw. Stepless adjustment to various higher values is possible.

Reduction to smaller displacement may result in overspeeding the motor.

2) PORT PLATE

With high pressure dependent control HA1, mounted counterbalance valve, integrated secondary pressure relief valves, plugged gauge and boosting ports, service ports to the rear.

3) HIGH PRESSURE DEPENDENT CONTROL

The displacement is-dependent on operating pressure - automatically adjusted. Upon reaching the operating pressure set at the control valve - internally measured at A or B - the motor swivels from V_{gmin} to V_{gmax} until output torque = load torque. For values lower than the adjusted one the motor keeps min swivel angle. The necessary positioning energy is taken from the respective high pressure side via shuttle valve.

Swivelling results in a change of the displacement.

Swivel time is controlled by an orifice installed in the cover of the large positioning piston side.

4) COUNTERBALANCE VALVE

Mounted at the rear of the port plate.

Incase of downhill traveling or deceleration of the machine a counterbalance valve avoids overspeeding and cavitation of hydraulic motor.

5) FUNCTION AS TO CIRCUIT DIAGRAM

Check valves in the inlet line A and B for by passing of the counterbalance valve.

At traveling forward the return oil flow is controlled by a counterbalance spool. At drop in inlet pressure the counterbalance spool throttles the return oil flow. The motor is locked. The oil behind the spool is led to the low pressure side via an additional check valve. Same function for traveling forward and backward.

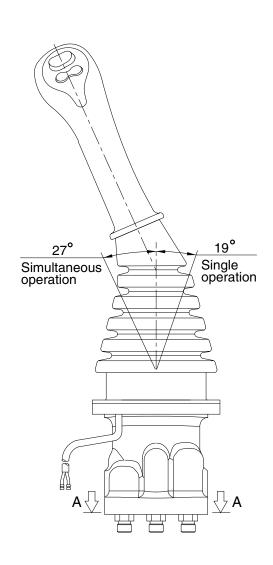
Braking means for the motor that

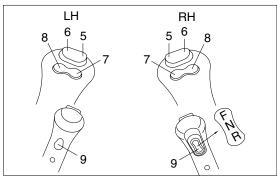
- At reduced or zero inlet flow the counterbalance spool reaches a modulating position or a neutral position caused by spring force
- The high pressure oil (at outlet side of the motor) is returned to the low pressure side (at inlet side) of the motor via crossover relief valves.

As the control pressure for regulation of the HA control via the integrated shuttle valve is no longer available, the motor with HA control and counterbalance valve will swivel to its minimum displacement during deceleration.

In addition, an external boost flow/pressure can be applied at port S for preventing cavitation.

* counterbalance valves do not replace the service and parking brake.

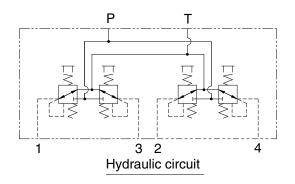

GROUP 5 RCV LEVER

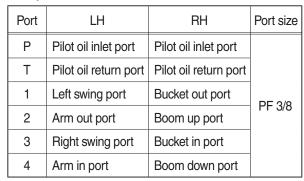

1. STRUCTURE

The casing has the oil inlet port P (primary pressure) and the oil outlet port T (tank). In addition the secondary pressure is taken out through ports 1, 2, 3 and 4 provided at the bottom face.

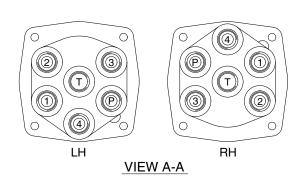
* Refer to the parts manual for the types of the RCV lever.

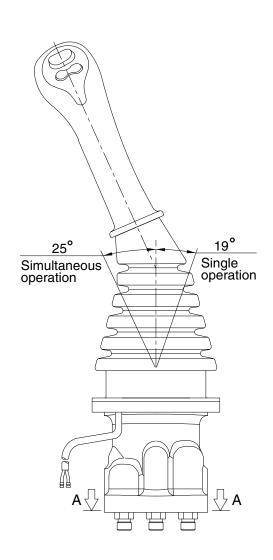
1) TYPE M25

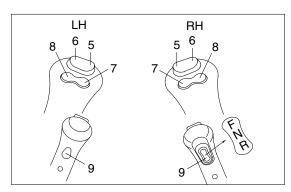



TYPE M26

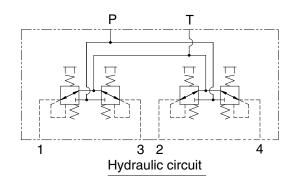
Switches

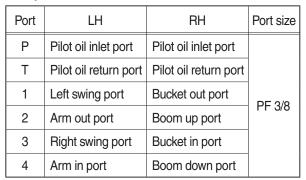

Туре	No.	LH	RH		
	5	Rotating-CW	2-way clamp		
M25	6	Rotating-CCW	2-way release		
	7	One touch decel	Quick coupler		
	8	Ram lock	Horn		
	9	Power max	FNR switch		


Pilot ports

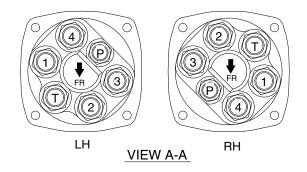


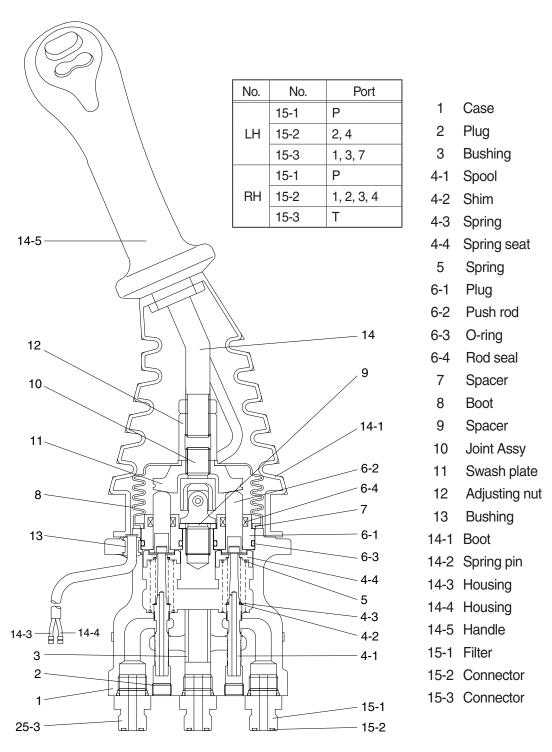
2) TYPE M26




TYPE M26

Switches


	Туре	No.	LH	RH		
ľ	M26 7 8		Rotating-CW	2-way clamp		
			Rotating-CCW	2-way release		
			One touch decel	Quick coupler		
			Ram lock	Horn		
		9 Power m		FNR switch		



3) CROSS SECTION

Item numbers are based on the type M25.

The construction of the pilot valve is shown in the attached cross section drawing. The casing has vertical holes in which reducing valves are assembled.

140WA2RL06

The pressure reducing section is composed of the spool (4-1), spring (4-3) for setting secondary pressure, return spring (5), spring seat (4-4) and shim (4-2). The spring for setting the secondary pressure has been generally so preset that the secondary pressure is 5 to 20.5 kgf/cm² (depending on the type). The spool is pushed against the push rod (6-2) by the return spring.

When the push rod is pushed down by tilting the handle, the spring seat comes down simultaneously and changes setting of the secondary pressure spring.

2. FUNCTIONS

1) FUNDAMENTAL FUNCTIONS

The pilot valve is a valve that controls the spool stroke, direction, etc of a main control valve. This function is carried out by providing the spring at one end of the main control valve spool and applying the output pressure (secondary pressure) of the pilot valve to the other end.

For this function to be carried out satisfactorily, the pilot valve is composed of the following elements.

- (1) Inlet port (P) where oil is supplied from hydraulic pump.
- (2) Output ports (1, 2, 3 & 4) to apply pressure supplied from inlet port to ends of control valve spools.
- (3) Tank port (T) necessary to control the above output pressure.
- (4) Spool to connect output port to inlet port or tank port.
- (5) Mechanical means to control output pressure, including springs that work on the above spools.

2) FUNCTIONS OF MAJOR SECTIONS

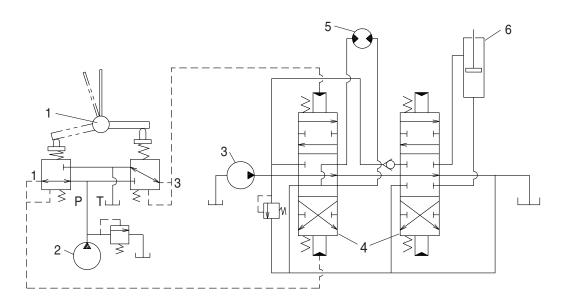
Item numbers are based on the type M25.

The functions of the spool (4-1) are to receive the supply oil pressure from the hydraulic pump at its port P, and to change over oil paths to determine whether the pressure oil of port P is led to output ports 1, 2, 3 & 4 or the output port pressure oil to tank port T.

The spring (4-3) works on this spool to determine the output pressure.

The change the deflection of this spring, the push rod (6-2) is inserted and can slide in the plug (6-1).

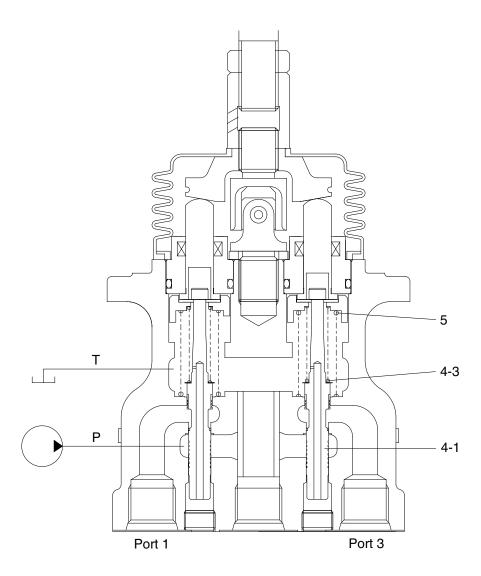
For the purpose of changing the displacement of the push rod through the swash plate (11) and adjusting nut (12) are provided the handle (14-5) that can be tilted in any direction around the fulcrum of the universal joint (10) center.


The spring (5) works on the case (1) and spring seat (4-4) and tries to return the push rod (6-2) to the zero-displacement position irrespective of the output pressure, securing its resetting to the center position.

This also has the effect of a reaction spring to give appropriate control feeling to the operator.

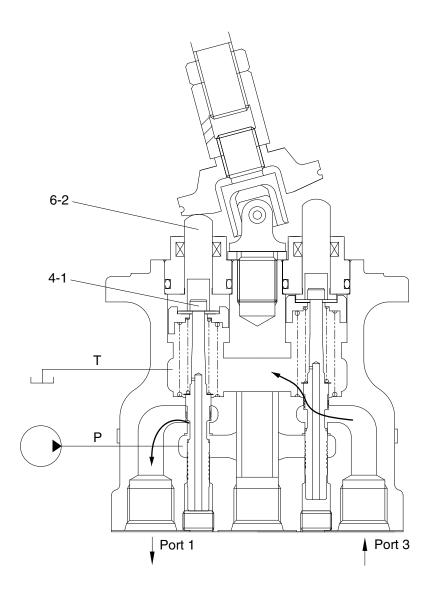
3) OPERATION

The operation of the pilot valve will be described on the basis of the hydraulic circuit diagram shown below and the attached operation explanation drawing.


The diagram shown below is the typical application example of the pilot valve.

2-70

- 1 Pilot valve
- 2 Brake pump
- 3 Main pump
- 4 Main control valve
- 5 Hydraulic motor
- 6 Hydraulic cylinder


(1) Case where handle is in neutral position

140WAL2RL06

The force of the spring (4-3) that determines the output pressure of the pilot valve is not applied to the spool (4-1). Therefore, the spool is pushed up by the spring (5) to the position of port (1, 3) in the operation explanation drawing. Then, since the output port is connected to tank port T only, the output port pressure becomes equal to tank pressure.

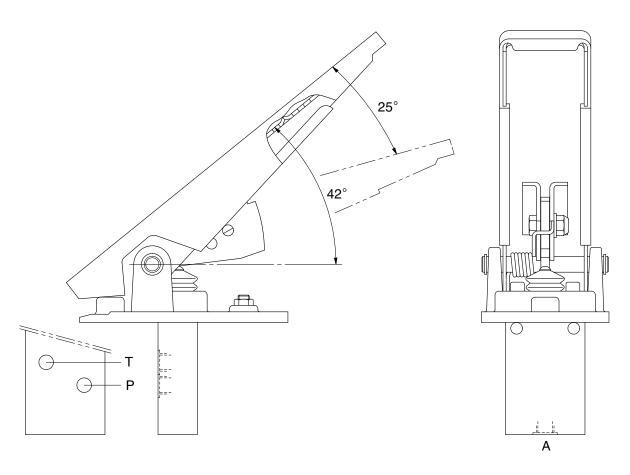
(2) Case where handle is tilted

140WAL2RL07

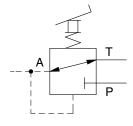
When the push rod (6-2) is stroked, the spool (4-1) moves downwards.

Then port P is connected with port (1) and the oil supplied from the brake pump flows through port (1) to generate the pressure.

When the pressure at port (1) increases to the value corresponding to the spring force set by tilting the handle, the hydraulic pressure force balances with the spring force. If the pressure at port (1) increases higher than the set pressure, port P is disconnected from port (1) and port T is connected with port (1). If it decreases lower than the set pressure, port P is connected with port (1) and port T is disconnected from port 1.


In this manner the secondary pressure is kept at the constant value.

Besides, in some type, when the handle is tilted more than a certain angle, the upper end of the spool contacts with the inside bottom of the push rod and the output pressure is left to be connected with port P.


GROUP 6 ACCELERATOR PEDAL

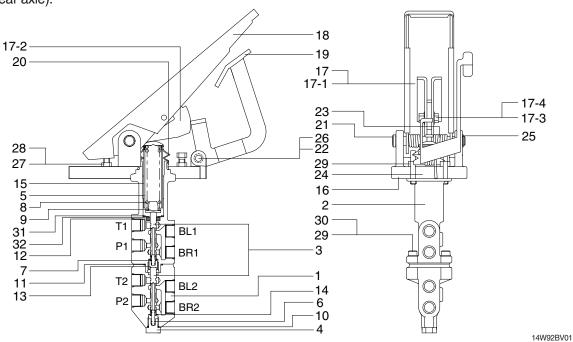
1. STRUCTURE

The casing has the oil inlet port P (primary pressure), and the oil return port T (tank). In addition the secondary pressure is taken out through port A.

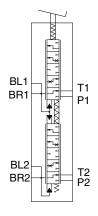
17032RP01

Hydraulic circuit

Port	Port name	Port size
Р	Pilot oil inlet port	
Т	Pilot oil return port	PF 1/4
Α	Pilot oil output port	


17032RP01(2)

GROUP 7 BRAKE DEVICE


■ BRAKE VALVE

1. STRUCTURE

The body has the oil inlet port P1, P2 (primary pressure), and the oil outlet port T1, T2 (tank). In addition the secondary pressure is taken out through brake cylinder port BR1 (front axle) and BR2 (rear axle).

1 2 3 4 5 6 7 8 9	Lower body Upper body Spool Plug Holder Lower spring Upper spring Main spring Spring retainer O-ring	17-3 17-4 18	Lock plate Hex bolt Plain washer Pedal cover	21 22 23 24 25 26 27 28 29 30	Lock pin 1 Lock pin 2 Torsion spring 1 Torsion spring 2 Retainer ring E-ring Hex bolt Hex nut Socket head bolt Spring washer
10	O-ring	18	Pedal cover	30	Spring washer
11	O-ring	19	Latch	31	Plate washer
12	Oil seal	20	Rubber cover	32	Retainer ring

Port	Port name	Port size	
P1	Port		
P2	Port		
BR1	Brake cylinder port		
BR2	Brake cylinder port	PF 3/8	
BL1	Pluging	PF 3/0	
BL2	Pluging		
T1	Drain port		
T2	Drain port		

14W72BV02

2. FUNCTION

1) PURPOSE

The purpose of the brake valve is to sensitively increase and decrease the braking pressure when the brake pedal is actuated.

2) READY POSITION

When the braking system is ready for operation, its accumulator pressure acts directly on port P1/P2 of the brake valve. A connection is established between ports BR1/BR2 and port T1/T2 so that the wheel brakes ports BR1/BR2 are pressureless via the returns ports T1/T2.

3) PARTIAL BRAKING

When the brake valve is actuated, an amount of hydraulic pressure is output as a ratio of the foot force applied.

The main spring (8) beneath pedal plate (16) is designed in such a way that the braking pressure changes depending on the angle. In the lower braking pressure range, the machine can be slowed sensitively.

When the braking process is commenced, the upper spool (3) is mechanically actuated via main spring (8), and the lower spool (3) is actuated hydraulically by spool (3). As spools (3) move downward, they will first close returns T1/T2 via the control edges, thus establishing a connection between accumulator port P1/P2 and ports BR1/BR2 for the wheel brake cylinders. The foot force applied now determines the output braking pressure. The control spools (3) are held in the control position by the force applied (spring assembly) above the spools and the hydraulic pressure below the spool (balance of forces).

After output of the braking pressure, spools (3) are in a partial braking position, causing ports P1/P2 and T1/T2 to close and holding the pressure in ports BR1/BR2.

4) FULL BRAKING POSITION

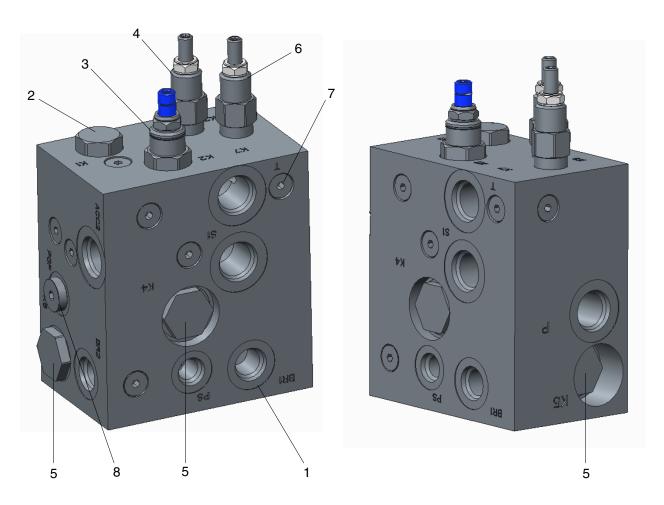
When pedal (17-1) is fully actuated, an end position of the brakes is reached and a connection established between accumulator ports P1/P2 and brake cylinder ports BR1/BR2. Returns T1/T2 are closed at this point.

When the braking process ended, a connection is once again established between brake cylinder ports BR1/BR2 and return ports T1/T2, closing accumulator ports P1/P2.

The arrangement of spools in the valve ensures that even if one braking circuit fails the other remains fully operational. This is achieved by means of the mechanical actuation of both spools and requires slightly more pedal travel.

5) LIMITING THE BRAKING PRESSURE

Pedal restriction socket bolt (29) on pedal plate (16) below pedal assy (17) is used to limit the braking pressure.


6) FAILURE OF A CIRCUIT

In the event of the lower circuit failing, the upper circuit will remain operational. Main spring (8) will mechanically actuate spool (3). In the event of the upper circuit failing, the lower circuit will remain operational since the lower spool (3) is mechanically actuated by main spring (8) and spool (3).

■ BRAKE SUPPLY VALVE

1. STRUCTURE

The brake supply valve consists of the following parts.

140WA2BSV01

Item	Part name	Size	Qty	Remark
1	Manifold block	-	1	-
2	Logic valve	-	1	K1 port
3	Unloading valve	-	1	K2 port
4	Relief valve	-	1	K3 port
5	Check valve	-	3	K4, 5, 6 ports
6	Relief valve	-	1	K7 port
7	Plug	PF 1/8"	9	-
8	Plug	PF 1/4"	1	PGP port

2. FUNCTION

1) ASSEMBLY

This brake supply valve has the following functions.

- (1) Brake pump overload prevention function energy saving function
- (2) Safety device function of brake braking system
- (3) Brake braking pressure supply function

2) FUNCTION FOR EACH VALVE

Symbol	Valve name	Description	Remark
K1	Logic valve	This valve is operated by remote control according to the set pressure value of the unloading valve (K2).	
K2	Unloading valve	This valve switches the operation of the pump to a no-load state by bypassing the pressure and flow rate discharged from the pump to the tank when a load occurs in the braking system.	Set pressure - Cut-in set value 112±5 kgf/cm² - Cut-out set value 142±5 kgf/cm²
K3	Relief valve	This valve functions to maintain the pressure of the flow flowing into the "S1" port at the set pressure.	Set pressure 8 l/min @ 32+2 kgf/cm²
K4	Check valve	This valve prevents reverse flow against the pressure and flow rate formed in the braking system of the brake.	
K5, K6	Check valve	This valve prevents the loss of pressure and flow accumulated in the accumulators installed in the ACC1 and ACC2 ports. In other words, it prevents the back flow of pressure and flow accumulated in the accumulator.	
K7	Relief valve	This valve functions as a safety device to prevent breakage or damage to the system when overload or abnormal pressure occurs within the brake system.	Set pressure 30 l/min @ 173+2 kgf/cm²

3) DETAIL FUNCTION AND USAGEE

(1) Brake pump overload prevention function - energy saving

- ① The pressure and flow discharged from the brake pump are supplied to the brake device through the brake supply valve.
- ② When the engine rotation (rpm) of the machine increases, the rotation of the brake pump increases, increasing the discharge pressure and flow rate.
- ③ This increased pressure and flow rate causes loss of pump power source and fluid energy. This valve prevents energy loss by reducing power source and fluid energy loss.
- When the braking system pressure of the brake exceeds the set pressure value of the unloading valve (K2), the pilot spool of the unloading valve is activated and the flow formed in the drain line of the logic valve (K1) is bypassed to the "T" line.
- ⑤ Therefore, when the flow rate of the drain line of the logic valve is bypassed, the spool of the logic valve is pushed and the pressure and flow rate discharged from the brake pump are bypassed to the tank, thereby converting the pump's operating state to a no-load state.
- ⑥ Also, when the brake system pressure falls below the set pressure value of the unloading valve, the pilot spool of the unloading valve is closed.
- As the pilot spool of the unloading valve closes, a flow rate is formed in the drain line of the logic valve, and the spool of the logic valve also closes. When the spool of this logic valve is closed, the pressure and flow discharged from the pump are supplied to the brake braking device.
- The discharge pressure and flow rate of the pump are called cut-out when bypassed to the tank, and cut-in when supplied to the brake device.
- When this valve is shipped, the unloading valve setting value is as follows.

Unit: kgf/cm2

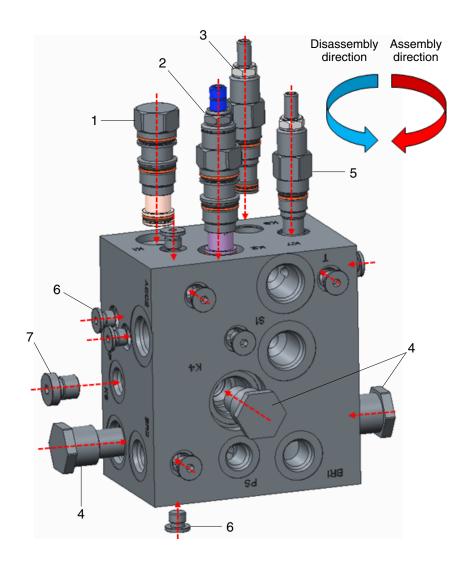
Flow rate	Reference value		Set value	
	Cut-in	Cut-off	Cut-in	Cut-off
30 l/min	112±5	142±5	112±5	142±5

(2) Safety device function of brake braking device

- ① If an overload occurs within the brake system due to an external force, an abnormal pressure rise may occur, which may cause damage or breakage to various brake systems.
- ② To prevent such machine problems, a relief valve (K7) is installed.
- ③ If the system pressure within the brake system exceeds the set pressure value of the relief valve, the relief valve operates to maintain the set pressure value of the relief valve.
- ④ In other words, the pressure above the set pressure value of the relief valve is returned to the tank to relieve the abnormal rise in pressure caused by overload within the system, thereby preventing damage and breakage of various devices within the system.
- (5) When this valve is shipped, the relief valve setting value is as follows.

Flow rate	Reference value	Set value	Remark
30 l/min	173±2 kgf/cm ²	173±2 kgf/cm²	-

(3) Brake braking pressure supply function


- ① When the brake pedal is pressed, the pressure accumulated in the accumulator falls below the cut-in set pressure value of the unloading valve.

 At this time, the pilot spool of the unloading valve is closed.
- ② As the pilot spool of the unloading valve closes, flow is formed in the drain line of the logic valve and the spool of the logic valve also closes.
- ③ When the spool of this logic valve is closed, the pressure and flow discharged from the pump are supplied to the accumulator and brake device.
- ④ Also, when the brake pressure is formed and exceeds the cut-out pressure value of the unloading valve, the logic valve and unloading valve operate to bypass the pressure and flow rate discharged from the pump to the tank, thereby maintaining the no-load start of the pump and prevents rise the pressure within the brake system.
- ⑤ Check valves (K5, K6) separate each brake circuit (front, rear) so that they do not affect the opposite brake and maintain each brake function.

3. ASSEMBLY DRAWING AND WORK TOOLS

See below for assembly, disassembly, and work tools for the brake supply valve.

 $\ensuremath{\,\%\,}$ The designated tools and tightening torque must be observed.

140WA2BSV02

No.	Part name	Screw spec	Torque (kg · cm)	Assembly tool
1	Logic valve	M20×1.5	480	Torque wrench/7/8" hex socket
2	Unloading valve	M20×1.5	480	Torque wrench/7/8" hex socket
3	Relief valve	M16×1.5	350	Torque wrench/3/4" hex socket
4 (3ea)	Check valve	UNF7/8-14"	400	Torque wrench/1" hex socket
5	Relief valve	M16×1.5	350	Torque wrench/3/4" hex socket
6 (9ea)	Plug	PF 1/8	100	Torque wrench/4 mm wrench socket
7	Plug	PF 1/4	300	Torque wrench/6 mm wrench socket

4. PRECAUTION WHEN DISASSEMBLING AND ASSEMBLING

- 1) Before assembling and disassembling, clean the surrounding area thoroughly to ensure there are no contaminants.
- 2) When disassembling and assembling parts, be sure to use the assembly torque and tools specified on the previous page.
- 3) Refer to the picture on the previous page for assembly and disassembly directions.
- 4) When reassembling after disassembly and inspection, be careful to prevent contaminants from entering the valve.
- 5) When disassembling and assembling all parts, be sure to wash them and then reassemble them.

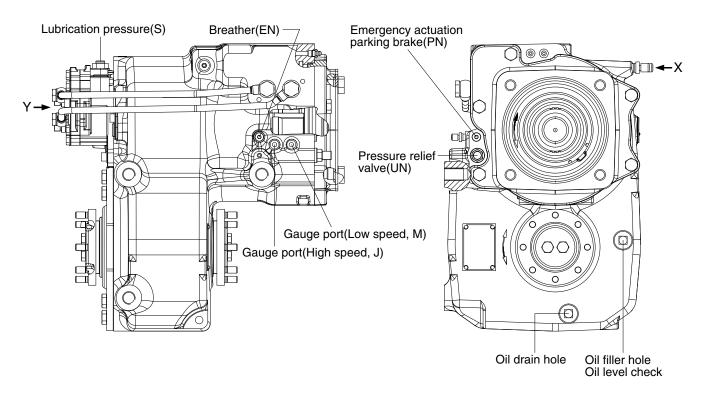
5. INSPECTION ITEMS AND DETAILS FOR EACH PART WHEN AN ERROR OCCURS

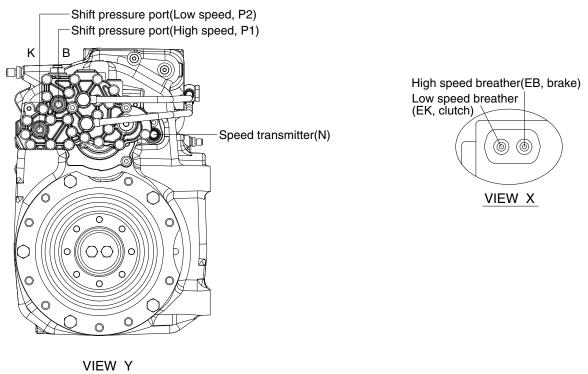
Problem	Inspection item	Inspection detail and method	Repair
Brake pressure is not supplied	Check whether foreign substances and contaminants have entered the logic valve.	Disassemble the logic valve and check whether contaminants such as foreign matter or sludge have entered between the spool and body.	Removing foreign substances, cleaning, and assembling
	Check whether foreign substances and contaminants enter the relief valve.	2. Disassemble the relief valve and check whether contaminants such as foreign matter or sludge have entered between the poppet and body.	Removing foreign substances, cleaning, and assembling
	Check the discharge amount and discharge pressure of the brake pump	 3. Install a pressure gauge on the "PGP" port to check the pressure value discharged from the brake pump. Check at engine low speed Check with the unloading valve fully closed. Reference set value; 173±2 kgf/cm² 	Repair or replacement
Brake warning lamp comes ON	Check the unloading valve cut-in pressure value	1. Check the cut-in pressure value of the unloading valve (K2) - Install a pressure gauge on the "PGP" port to measure the pressure value at cut-in. - Reference set value; 112±5 kgf/cm²	Readjust pressure value
	Check pressure switch operation	2. If the pressure measurement value in item 1 above is normal but the brake warning lamp continues to come on, check the contact status of the pressure switch.	Repair or replacement
	Check the degree of contamination of the brake filter element.	Check the element screen in the brake filter for contamination by foreign substances.	Cleaning or replacement
	Check whether foreign substances and contaminants are entering the logic valve and relief valve.	4. Refer to paragraphs 1 and 2 of "Brake pressure is not supplied" above.	Removing foreign substances, cleaning, and assembling

Problem	Inspection item	Inspection detail and method	Repair
t-out is fast	Check whether the O-ring and back-up ring installed on each check valve are damaged.	After disassembling each check valve (K4, K5, K6), check whether the O-ring and back-up ring are damaged.	Replace check valve
The cycle of cut-in and cut-out is fast	2. Check foot brake valve leakage	Remove the hydraulic hose installed at the outlet port (BR1, BR2) of the foot brake valve and check the amount of oil leakage. Check without pressing the brake pedal-Neutral state Reference set value; Refer to foot brake valve leakage management standards	Replace foot brake valve

6. CHECK BRAKE PRESSURE IN CASE OF ABNORMALITY

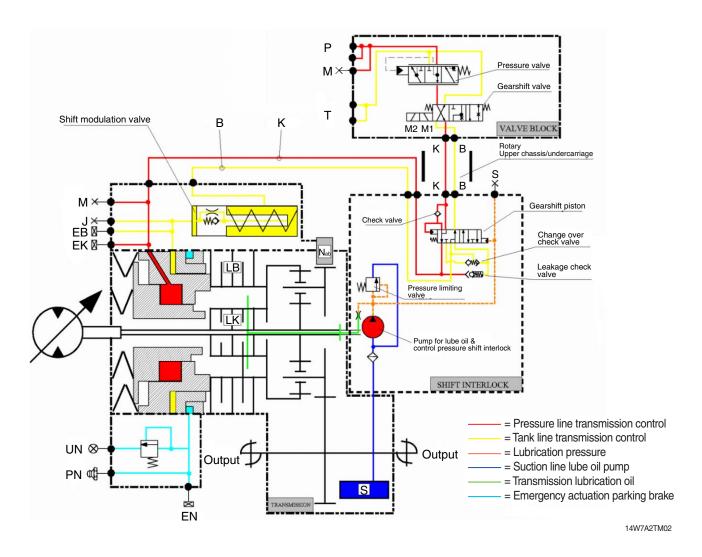
1) INSTALLATION OF PRESSURE GAUAGE


Pressure gauge installation port	Screw	Remark
PGP	PF1/4" O-ring boss	-


2) CHECK PRESSURE VALUE DURING INSPECTION

Drocoure value confirmation part	Unloading valve operating status		
Pressure value confirmation port	Cut-in	Cut-off	
PGP	112±5 kgf/cm²	142±5 kgf/cm²	

GROUP 8 TRANSMISSION


1. STRUCTURE

180W9A2TM01

2. TRANSMISSION DIAGRAM

Measuring points-Transmission/Shift interlock :

J: High speed (brake)
M: Low speed (clutch)

S: Lubrication pressure

Connections-Transmission/Shift interlock:

B: Brake K: Clutch

PN: Emergency actuation parking brake

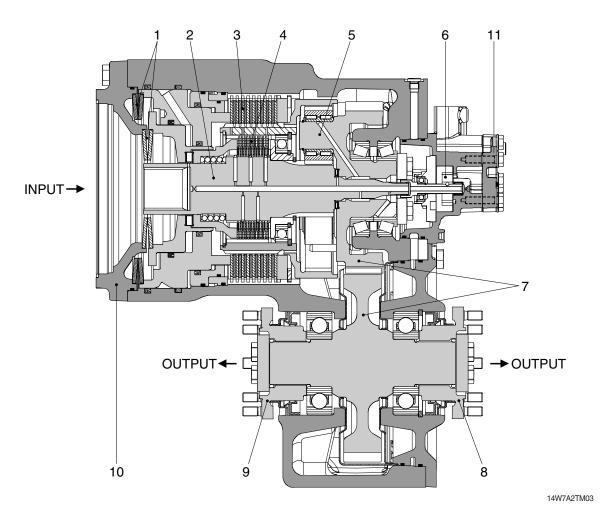
Measuring points-Valve block :

M: System pressure transmission control

Connections-Valve block:

P: System pressure transmission control

T: Tank
B: Brake
K: Clutch


Solenoid valves-valve block :

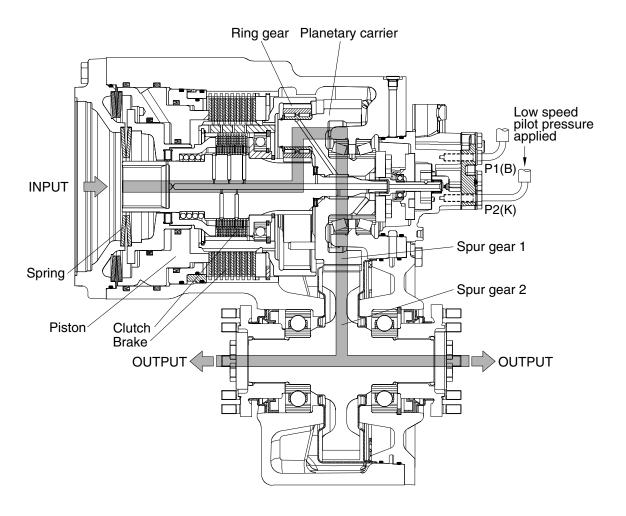
M1 : Solenoid valve (low speed)M2 : Solenoid valve (high speed)

Port	Name	Size	Port	Name	Size
P1 (B)	Shift pressure, High speed	M16×1.5	М	Gauge port, Low speed	M10×1.0
P2 (K)	Shift pressure, Low speed	M16×1.5	S	Lubrication pressure port	M10×1.0
J	Gauge port, High speed	M10×1.0	PN	Parking brake lubricant	Grease nipple

3. OPERATION OF TRANSMISSION

1) DESCRIPTION

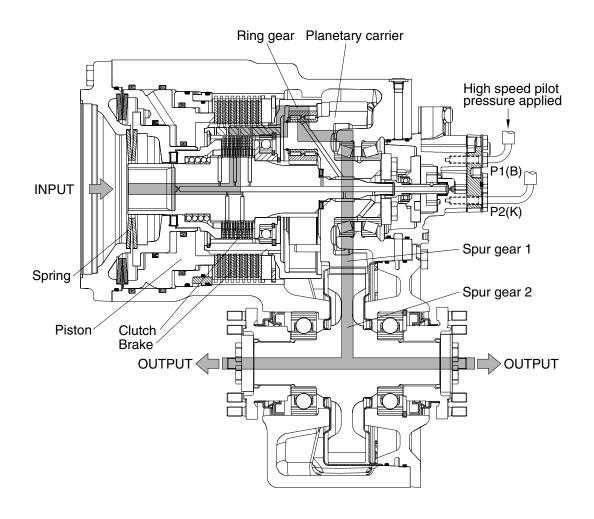
Cup spring Planetary drive 9 Output flange-front axle 1 5 2 Input shaft 6 Lub oil pump Travel motor attachment 10 3 Disk brake 7 Spur gear drive 11 Shift interlock Disk clutch 8 Output flange-rear axle


Coaxially-mounted variable displacement travel motor (10) with specific displacement 107 cm³/rev.

The 2-speed powershift transmission comprises a planetary drive (5), a 2 shaft spur gear drive (7) with output flanges to front and rear axle.

The powershift mechanism for the planet drive comprises a rotating multi-disk clutch (4) underneath a multi-disk brake (3) rigidly connected to the housing. Both are closed by spring pressure (2) and released hydraulically.

The shift interlock (11) prevents downshifts at high machine speeds and thus prevents over-rotation of the travel motor. If the low speed gear is selected while the high speed gear is engaged and input speed is above approx. 1000 rpm, the low speed gear shift is inhibited and only performed if input speed is below this limit. With higher viscosity oil (cold starting), the downshift is performed at a lower input speed. Upshifts are always possible. The speed-dependent interlock is effective in both directions. It does not prevent the possibility of over-rotation when the machine is coasting. For this, a drive brake valve should be fitted to the travel motor.

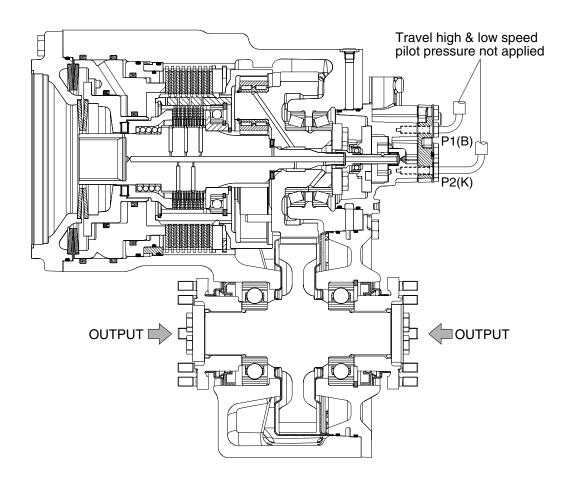

2) LOW SPEED (forward & reverse)

14W7A2TM04

In low speed operation, the internal gear of the planetary drive is backing upon the closed, case-rigid brake. In this speed the piston chamber of the brake is unpressurized, so that the elastic force and additionally the hydraulic pressure of the clutch piston is acting upon the disk pack. At this time the clutch is open, i.e. the hydraulic released.

3) HIGH SPEED (forward & reverse)

14W7A2TM05


In high speed operation, the clutch is held closed under spring pressure and the brake is hydraulically opened.

When a gear shift occurs-for example from high speed to low speed gear- the oil from the brake piston space is fed back to the tank through a restrictor (change over check valve) due to the spring pressure acting on the brake piston. At the same time the clutch is filled with oil and opened. Required oil flow is necessary for the transmission control to ensure the clutch is open before the brake begins to transmit torque.

A shift modulation valve is also integrated in the transmission. This modulates the pressure sequence at the brake during a upshift in order to achieve good shift quality.

The gear shift equipment also has the function of a parking brake. When the brake is operated-for example with high speed gear engaged-the clutch is closed and is statically loaded.

4) BRAKES

14W7A2TM06

When the travel high/low speed pilot pressure is not applied in the piston space, the piston compress against the multi disk pack due to the spring force. Thus the parking brake is engaged.

4. TECHNICAL DATA

1) GENERAL DATA

(1) Max input power: 110 kW

(2) Max input torque: 78.5 kgf · m

(3) Max output speed: 3500 rpm

(4) Hydraulic motor: 140 cm³/rev

(5) Transmission ratio

Gear step: 4.06

Low speed gear : 4.87High speed gear : 1.20

(6) Shift interlock

Downshift possible at operating temperature with input speed 1000 rpm (downshift point lower when oil temperature cold).

(7) Disconnection device

For towing away machine auxiliary release device for parking brake.

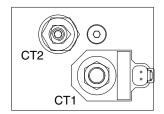
(8) Brake

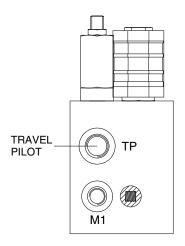
Parking brake. Necessary brake deceleration by controlled locking of planetary drive. Braking torque depends on opening pressure set at brake valve (13 bar).

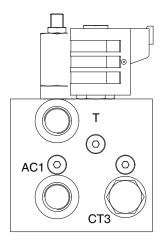
(9) Output flange

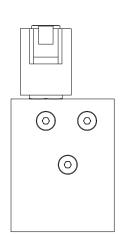
Bolts for propshaft connection : M10 × 1.0 (class 10.9)

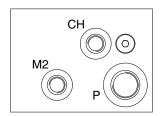
(10) Transmission weight: 135 kg (300 lb)

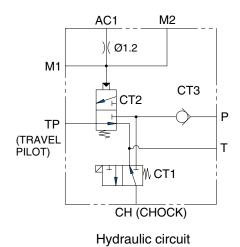

2) TRANSMISSION CONTROL

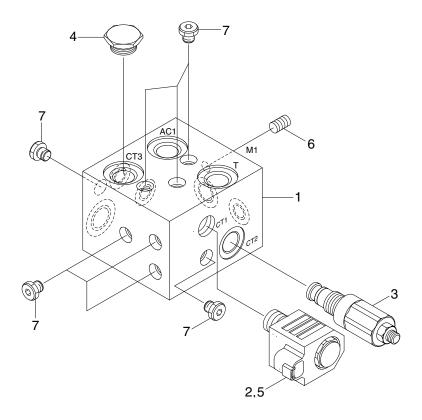

Following data are valid for oil temperature 30°C to 40°C in hydraulic tank, measured at connections at powershift transmission (see structure and diagram).


- (1) Control pressure
 - ① At connection P1 and P2 at Low/High engine speed: 33+2 kgf/cm2
 - 2 Definition of lubricants : API CF-4, SAE 10W-30
- (2) Oil flow
- ① Min oil flow at 24+1 kgf/cm² counter pressure (low engine speed): 5.5 \(\ell \) /min
- ② Max oil flow: 25 ℓ /min
- (3) Residual pressure
 - ① Max residual pressure in control line to tank connection P1 and P2: 1.0 kgf/cm²
- (4) Leakage oil transmission control
 - ① Pressure in input housing connection (E) max: 1.0 kgf/cm²
 - ② Max oil flow (low speed actuated) : 1 ℓ /min


GROUP 9 TRAVEL CONTROL VALVE


1. STRUCTURE



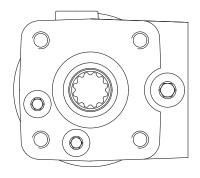


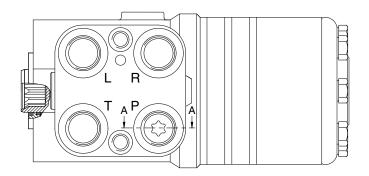
14W7A2TCV02

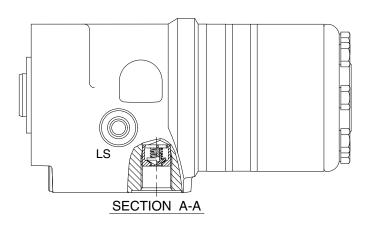
Port name	Port size
P, T, AC1	PF 1/2
TP	PF 3/8
M1, M2, CH	PF 1/4

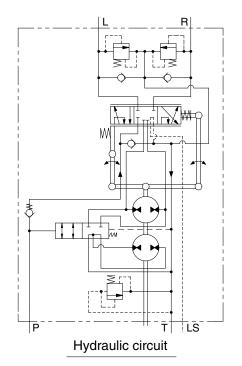
2. COMPONENT

14W7A2TCV01

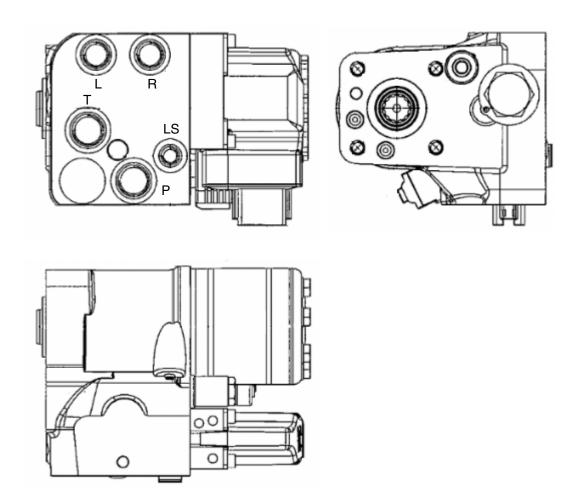

- 1 Body2 Solenoid valve
- 3 POD valve
- 4 Check valve

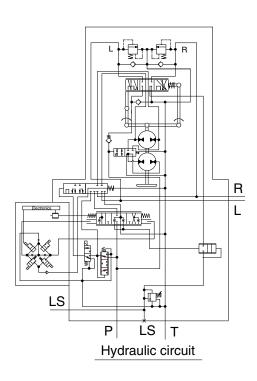

- 5 Coil
- 6 Orifice
- 7 Plug


GROUP 10 STEERING VALVE


1. STRUCTURE

1) TYPE 1 (without joystick)

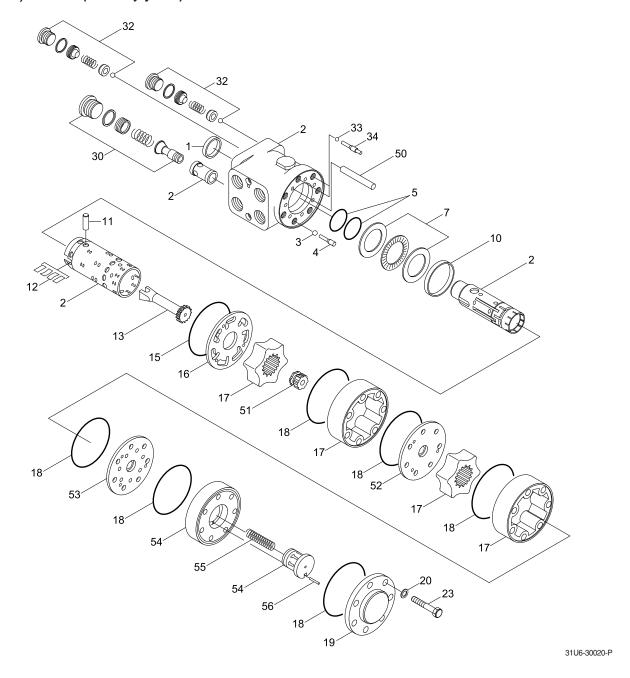




Port	Port name	Port size
L	Left port	
R	Right port	
Т	Tank port	3/4-16UNF
Р	Pump port	
LS	Load sensing port	7/16-20UNF

31U6-30020-E

2) TYPE 2 (joystick steering)



Port	Port name	Port size
L	Left port	M18x1.5
R	Right port	M18x1.5
Т	Tank port	M22x1.5
Р	Pump port	M22x1.5
LS	Load sensing port	M12x1.5

81K5-00030-E

2. COMPONENTS

1) TYPE 1 (without joystick)

1 Dust sea	al
------------	----

2 Housing, spool, sleeve

3 Ball

4 Ball

5 O-ring

7 Bearing assy

10 Ring

11 Cross pin

12 Spring set

13 Shaft

16 Distributor plate

17 Gear wheel set

18 O-ring

19 End cover

20 Washer

23 Screw

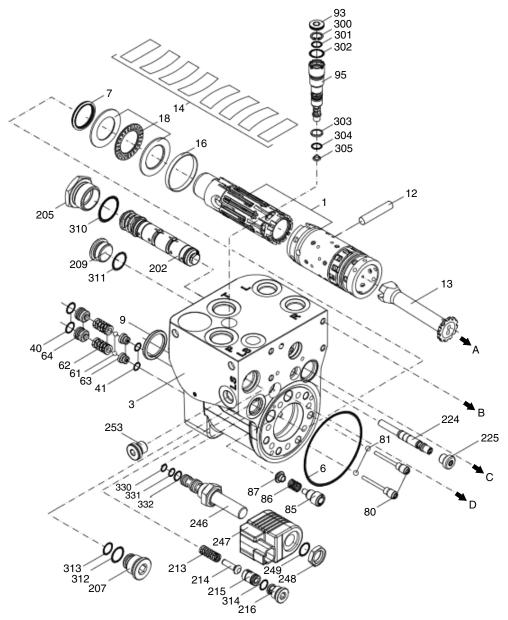
24 name plate

30 Relief valve assy

31 Relief valve assy

32 Shock valve

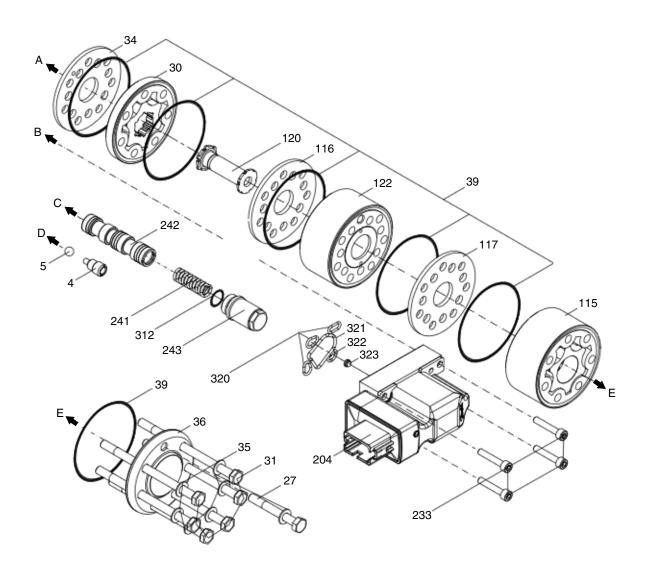
33 Ball


34 Bushing

50 Mounting pin

51 Cardan shaft

54 Valve and housing

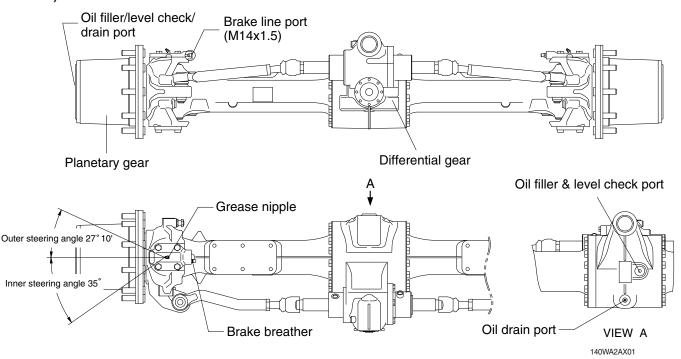

2) TYPE 2 (joystick steering, 1/2)

1 Spool/sleeve set Ball 247 Coil 3 Housing 85 Screw 248 Nut 6 O-ring 86 Spring 249 O-ring Valve cone 7 Shaft seal 87 253 Plug 9 Dust seal ring 93 Plug 300 Lock ring 12 Cross pin 95 Port relief valve cartridge 301 O-ring 13 Shaft 202 Spool 302 O-ring 14 Spring set 205 Plug 303 Backup ring 207 Plug 16 Ring 305 Filter 310 O-ring 18 Bearing 209 Plug 40 O-ring 213 Spring 311 O-ring Cone pilot supply 41 O-ring 214 312 O-ring 61 Ball 215 Spool pilot supply 313 O-ring 62 Spring 216 Plug 314 O-ring 330 O-ring 63 Valve seat 224 Spool 64 Adjust screw 225 Plug 331 O-ring Pin 80 246 Spool 332 O-ring

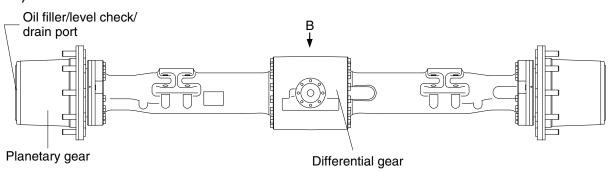
81K5-00030-P1

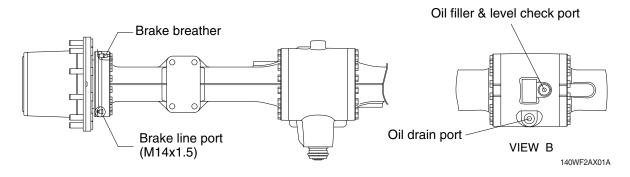
TYPE 2 (joystick steering, 2/2)

81K5-00030-P2

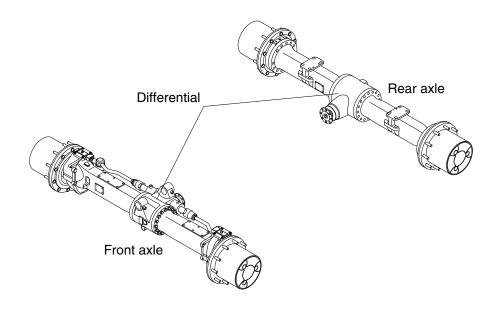

4	Screw	39	O-ring	241	Spring
5	Ball	115	Gear set	242	Spool
27	Short screw	116	Valve plate	243	Plug
30	Gear set	117	Valve plate	320	O-ring
31	Screw	120	Shaft	321	O-ring
34	Valve plate	122	Valve housing	322	O-ring
35	Washer	204	PVE	323	O-ring
36	End cover	233	Plug		

GROUP 11 FRONT AXLE AND REAR AXLE


1. OPERATION


- The power from the engine passes through main pump, travel motor and transmission and drive shafts, and is then sent to the front and rear axles.
 - Inside the axles, the power passes from the bevel pinion to the bevel gear and is sent at right angles.
- At the same time, the speed is reduced and passes through the both differentials to the axle shafts. The power of the axle shafts is further reduced by planetary-gear-type final drives and is sent to the wheels.

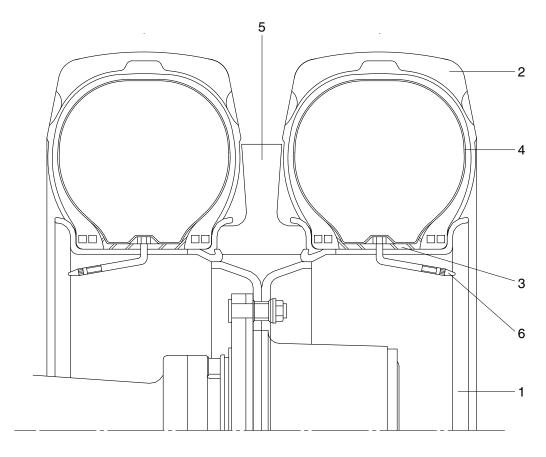
1) FRONT AXLE



2) REAR AXLE

2. DIFFERENTIAL

140WF2AX03


The differential is installed on the front and rear axle to transfer the driving torque from the axle to the wheels. The differential transfers half of the output torque of the transmission via the universal drive shaft to the planetary gear of the wheel hubs and transfers the rpm and torque from the gear via the pinion and the ring.

In addition, the differential also servers as an equalizer when going around curves. If the mechanical connection from the transmission to the universal drive shaft, differential, shaft, and planetary gears to the wheels would be rigid, every steering movement would strain the axle construction and would result in increased tire wear.

The equalizing function comes from the special construction of the differential. The power input from the input flange to the pinion shaft, ring and differential housing to the equalizing axle in the differential housing meshes the four equalizing tapered gears with the axle gears, which are located in the equalizing axles. This changes the relative direction of rotation between the shafts meshed with the side gears. This means that one shaft turns clockwise and the other counterclockwise, and one shaft turns faster than the other.

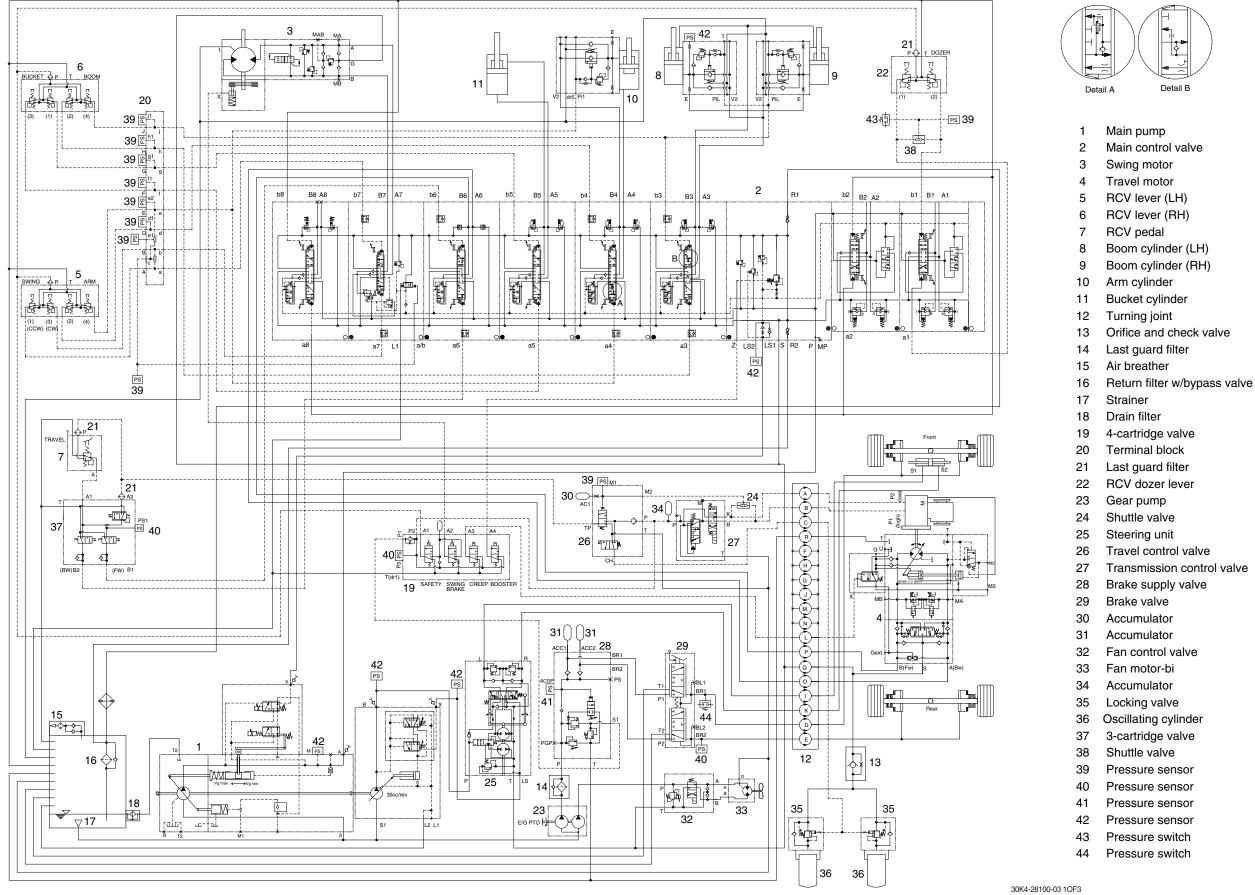
This balancing movement has the disadvantage that when traveling off road, traction is reduced on uneven ground, on loose ground or on snow or ice only wheel per axle is engaged. This disadvantage can be corrected in part by installing a self locking differential.

3. TIRE AND WHEEL

17032TI01

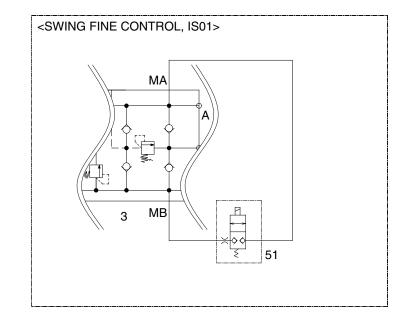
- 1 Wheel rim
- 2 Tire

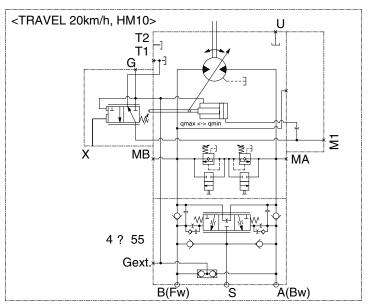
- 3 Flap
- 4 Tube

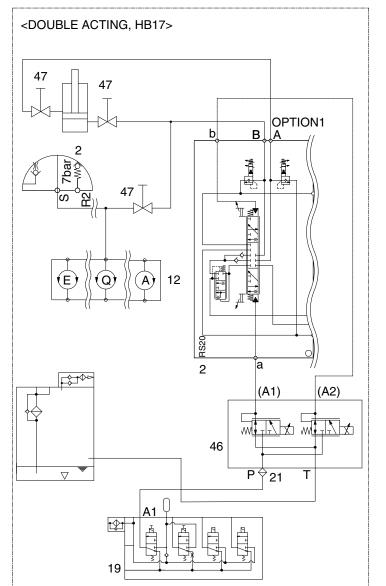

- 5 Stone resister ring
- 6 Valve assembly
- 1) The tire acts to absorb the shock from the ground surface to the machine, and at the same time they must rotate in contact with the ground to gain the power which drives the machine.
- 2) Various types of tires are available to suit the purpose. Therefore it is very important to select the correct tires for the type of work and bucket capacity.

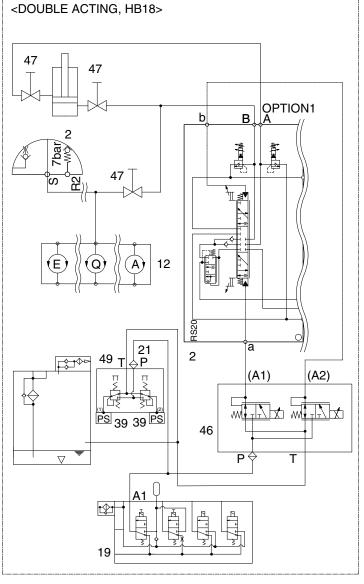
SECTION 3 HYDRAULIC SYSTEM

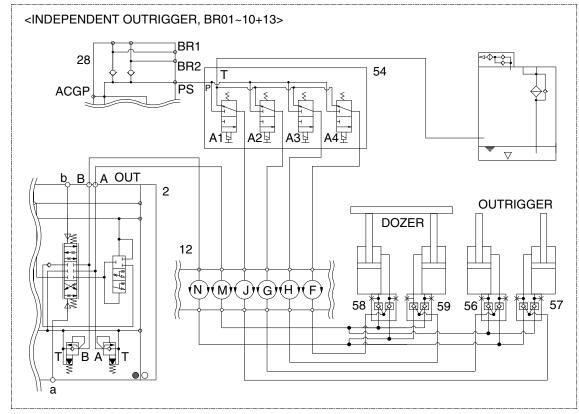
Group	1	Hydraulic Circuit ·····	3-1
Group	2	Main Circuit	3-4
Group	3	Pilot Circuit	3-7
Group	4	Single Operation	3-15
Group	5	Combined Operation	3-30

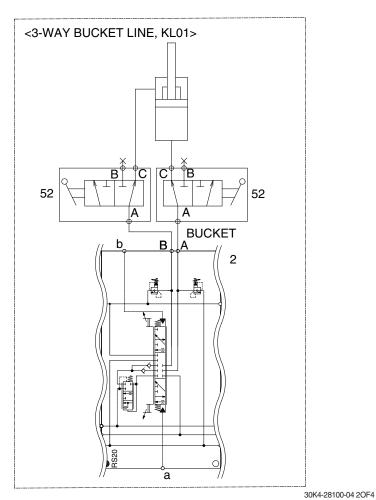

GROUP 1 HYDRAULIC CIRCUIT

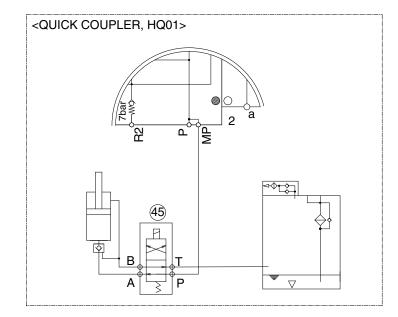

1. HYDRAULIC CIRCUIT (1/4)

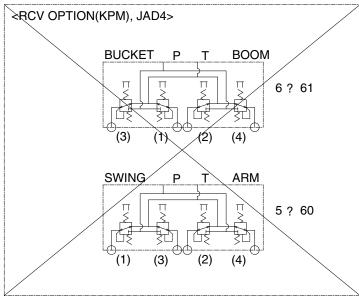


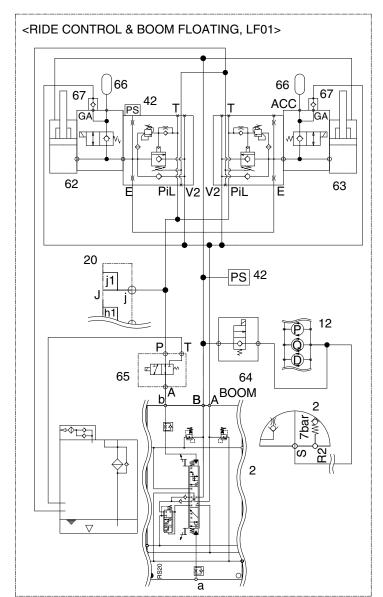

Detail B

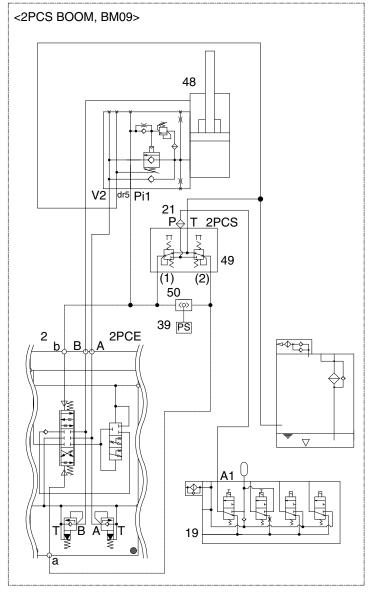

2. HYDRAULIC CIRCUIT (2/4)

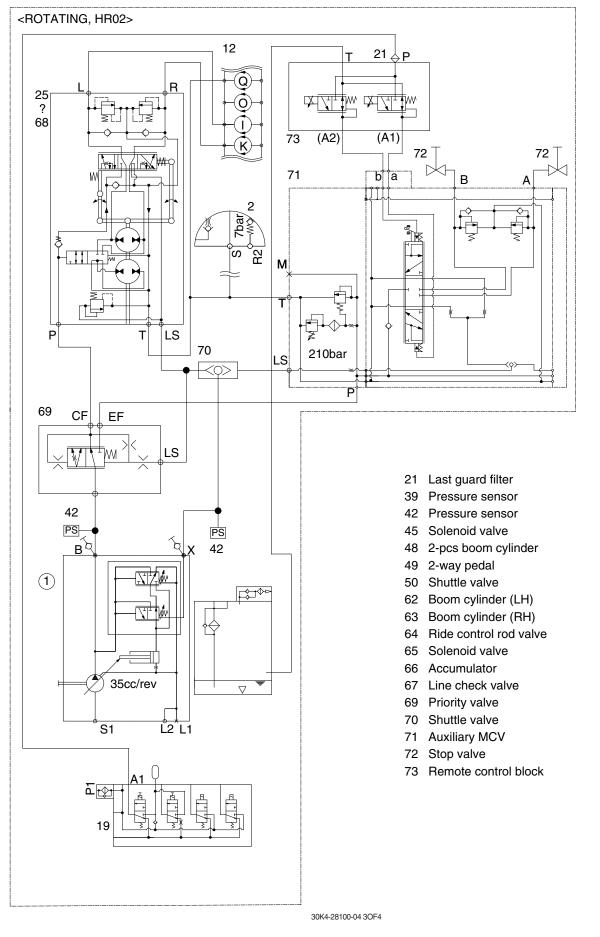


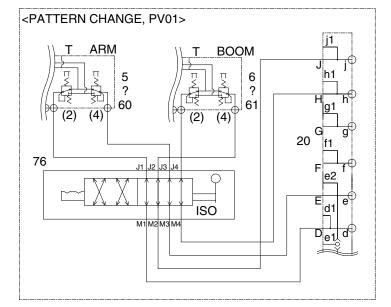


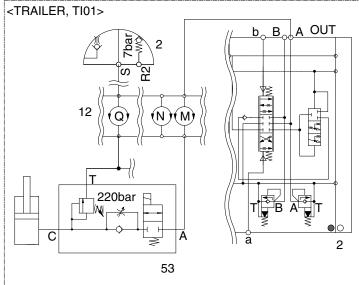


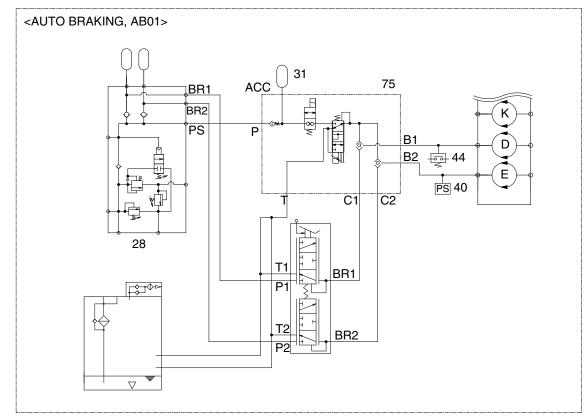


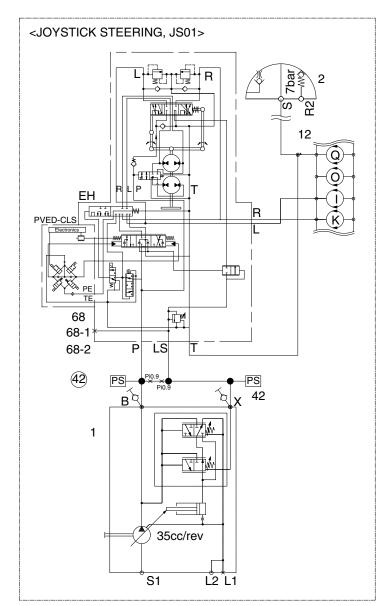

- 21 Last guard filter
- 39 Pressure sensor
- 46 Remote control block
- 47 Stop valve
- 49 2-way pedal
- 51 Solenoid valve
- 52 3-way valve
- 54 4-cartridge valve
- 55 Travel motor
- 56 D.P check valve (LH)
- 57 D.P check valve (RH)
- 58 D.P check valve (LH)
- 59 D.P check valve (RH)

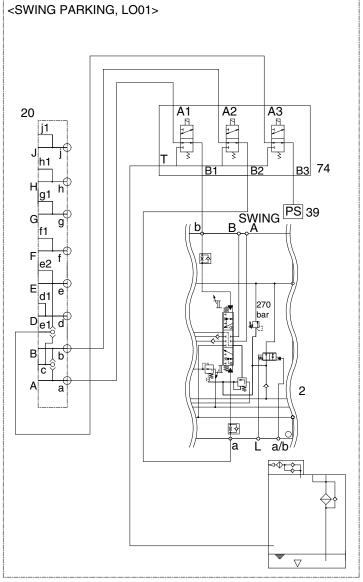

3. HYDRAULIC CIRCUIT (3/4)

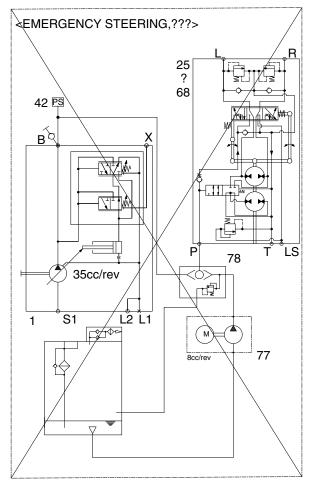






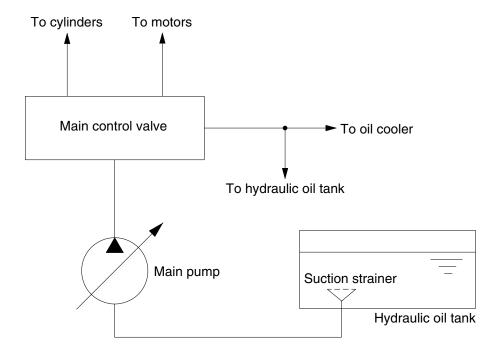



4. HYDRAULIC CIRCUIT (4/4)



- 31 Accumulator
- 53 Trailer valve
- 68 Steering unit
- 68-1 Adapter
- 68-2 Steering sensor
- 74 Solenoid valve
- 75 Auto brake valve
- 76 Pattern change valve

30K4-28100-04 4OF4


GROUP 2 MAIN CIRCUIT

The main hydraulic circuit consists of suction circuit, delivery circuit, return circuit and drain circuit.

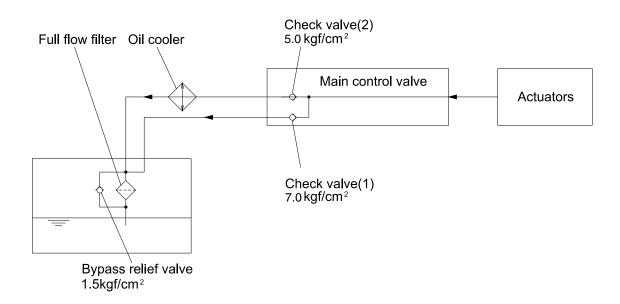
The hydraulic system consists of one main pump, one control valve, one swing motor, four cylinders and two travel motors.

The swash plate type variable displacement axial piston pump is used as the main pump and it is driven by the engine at ratio 1.0 of engine speed.

1. SUCTION AND DELIVERY CIRCUIT

140L3CI01

The pumps receive oil from the hydraulic tank through a suction strainer. The discharged oil from the pump flows into the control valve and goes out the tank ports.


The oil discharged from the main pump flows to the actuators through the control valve.

The control valve controls the hydraulic functions.

The return oil from the actuators flows to the hydraulic tank through the control valve and the oil cooler.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. RETURN CIRCUIT

140WA3CI01

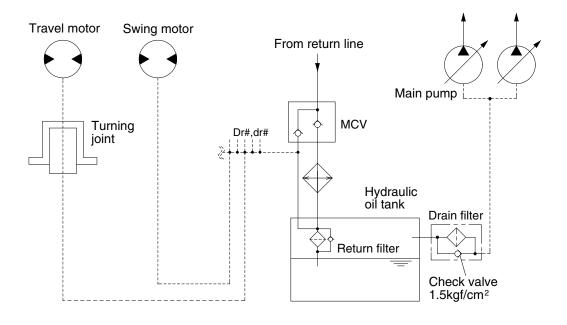
All oil from each actuator returns to the hydraulic tank through the control valve.

The bypass check valves are provided in the return circuit.

The setting pressure of bypass check valves are 5.1 kgf/cm² (71 psi) and 7.1 kgf/cm² (100 psi). Usually, oil returns to the hydraulic tank from the left side of control valve through oil cooler.

When oil temperature is low, viscosity becomes higher and flow resistance increases when passing through the oil cooler. When the oil pressure exceeds 7.1 kgf/cm² (100 psi), the oil returns directly to the hydraulic tank, resulting in the oil temperature being raised quickly at an appropriate level.

When the oil cooler is clogged, the oil returns directly to the hydraulic tank through bypass check valve (1).


The return filter and bypass relief valve are provided in the hydraulic tank.

The oil returned from right and left side of control valve is combined and filtered by the return filter. A bypass relief valve is provided in the full-flow filter.

When the filter element is clogged, the bypass relief valve opens at 1.5 kgf/cm² (21 psi) differential pressure.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. DRAIN CIRCUIT

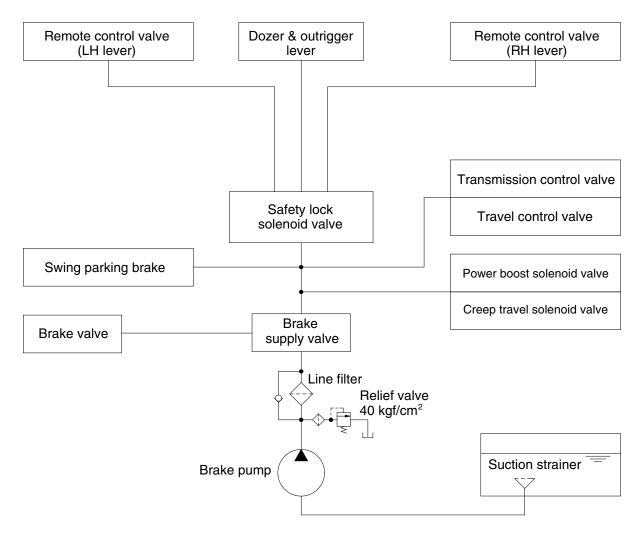
140WA3CI02

Besides internal leaks from the motor, transmission, front and rear axle the oil for lubrication circulates. The main pump drain oil have to be fed to the hydraulic tank passing through drain filter. When the drain oil pressure exceed 1.5 kgf/cm² (21 psi), the oil returns to the hydraulic tank directly.

1) TRAVEL MOTOR DRAIN CIRCUIT

Oil leaking from the travel motor comes out of the drain ports provided in the motor casing. This oil passes through turning joint and returns to the hydraulic tank after being filtered by return filter.

2) SWING MOTOR DRAIN CIRCUIT


Oil leaking from the swing motor comes out and return to the hydraulic tank.

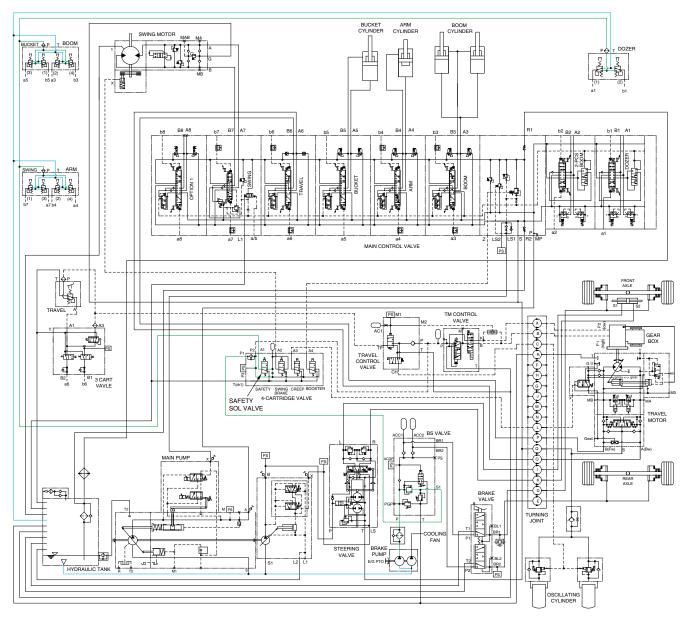
3) MAIN PUMP DRAIN CIRCUIT

Oil leaking from main pump come out and return to the hydraulic tank passing through drain filter.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 3 PILOT CIRCUIT

140WA3CI03

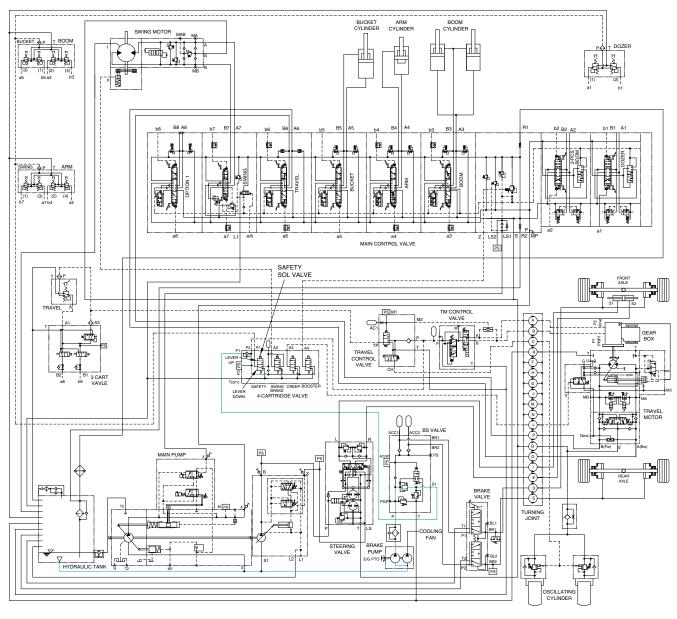

The pilot circuit consists of suction circuit, delivery circuit and return circuit.

The brake pump receives the oil from the hydraulic tank through the suction strainer.

The discharged oil from the brake pump flows to the remote control valve via safety lock solenoid valve and the swing brake solenoid valve, creep travel solenoid valve, power boost solenoid valve, transmission control valve and travel control valve through the line filter and brake supply valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

1. SUCTION, DELIVERY AND RETURN CIRCUIT

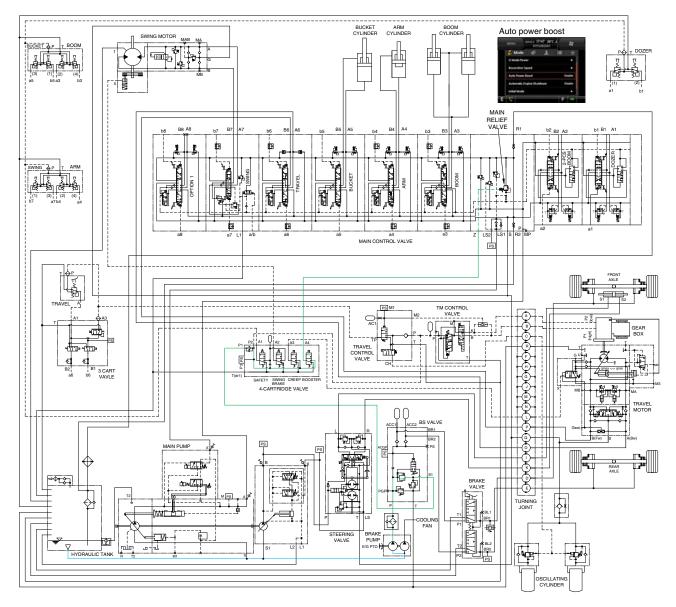

140WA3HC02

The brake pump receives oil from the hydraulic tank. The discharged oil from the brake pump flows to the safety solenoid valve through the line filter and brake supply valve. The oil is filtered by the line filter. The pilot relief valve is provided in the brake supply valve for limiting the pilot circuit pressure. The oil filtered by line filter flows remote control valve through safety solenoid valve.

The return oil from remote control valve is returned to the hydraulic tank.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. SAFETY SOLENOID VALVE (SAFETY LEVER)

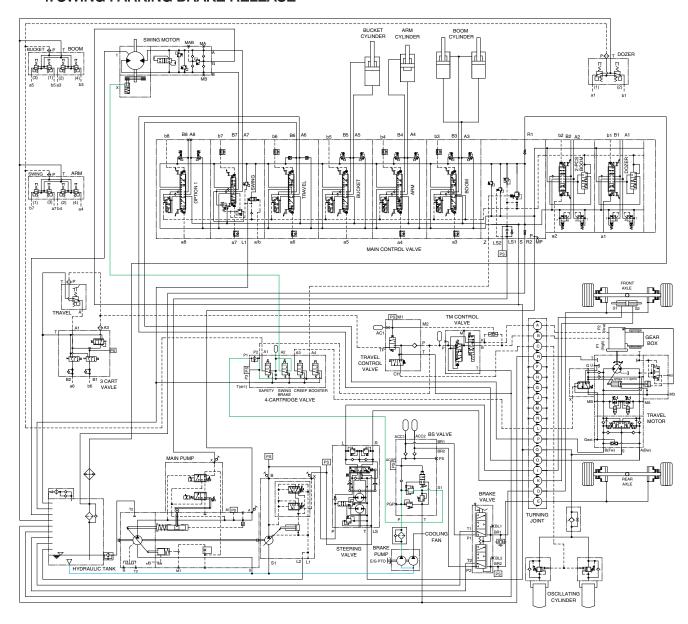

140WA3HC03

When the lever of the safety solenoid valve is moved upward, oil flows into the remote control valve through solenoid valve and line filter.

When the lever of the safety solenoid valve moved downward, oil does not flows into the remote control valve, because of blocked port.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. MAIN RELIEF PRESSURE CHANGE SYSTEM


140WA3HC04

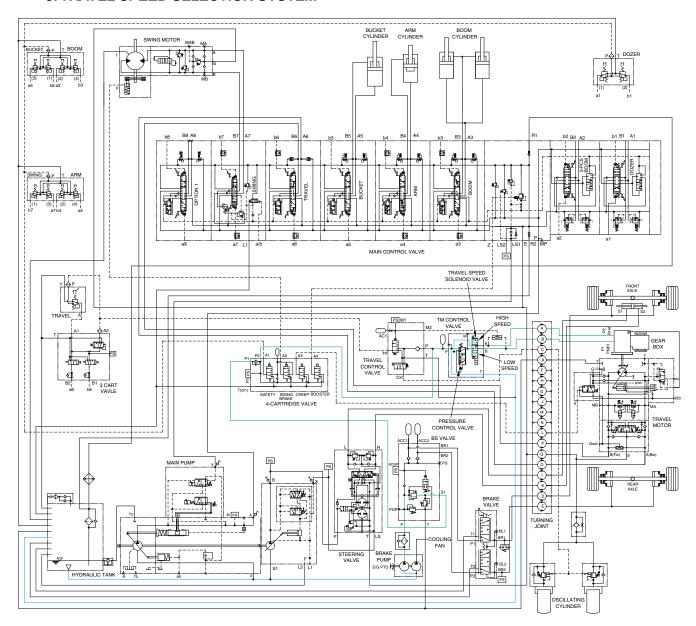
When the power boost switch on the left control lever is pushed ON, the power boost solenoid valve is actuated, the discharged oil from the brake pump flows into \mathbf{Z} port of the main relief valve in main control valve; then the setting pressure of the main relief valve is raises from 350 kgf/cm² to 380 kgf/cm² for increasing the digging power. And even when press continuously, it is canceled after 8 seconds.

When the auto power boost function is selected to **Enable** on the cluster, the pressure of the main relief pressure is automatically increased to 380 kgf/cm² as working condition by the MCU. It is also operated max 8 seconds. Refer to page 5-83.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. SWING PARKING BRAKE RELEASE

140WA3HC0

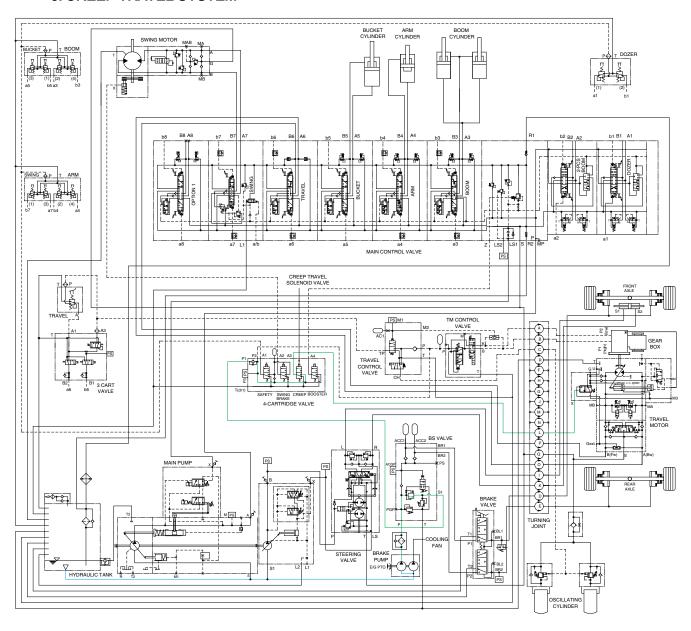

When the swing or arm in control lever is tilted, the swing brake solenoid valve is shifted to the downward by the MCU that senses the pilot pressure of the RCV control lever.

The discharged oil from brake pump flows to swing motor X port through the swing brake solenoid valve. This pressure is applied to swing motor disc, thus the brake is released.

When the swing and arm in control lever are set in the neutral position, the swing brake solenoid valve is shifted to the upward, oil in the swing motor disc cylinder is drained through the the swing brake solenoid valve, thus the brake is applied. For details, refer to page 2-60.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

5. TRAVEL SPEED SELECTION SYSTEM



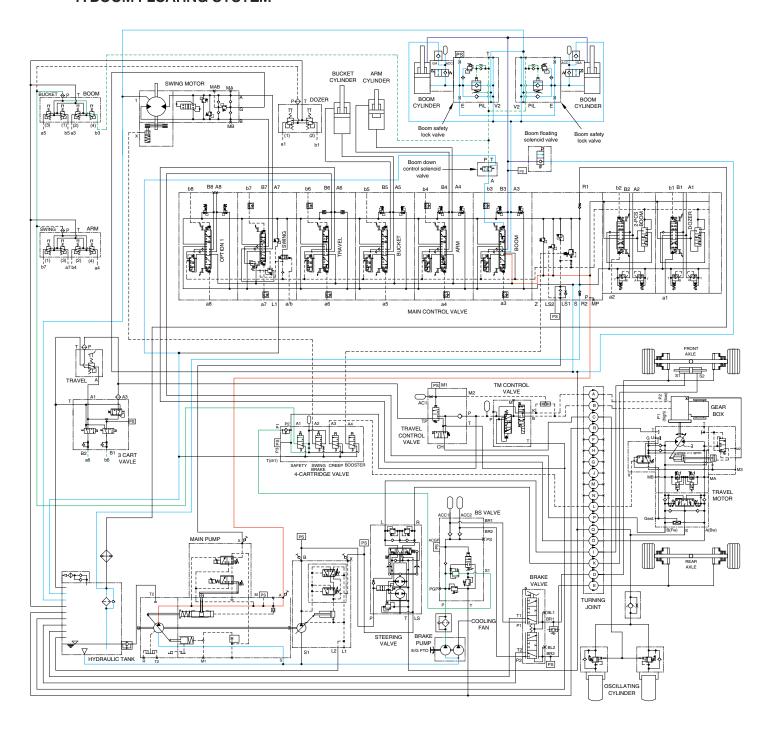
140WA3HC06

When LH multifunction switch was placed in high or low speed position, the pressure oil from brake pump flows to travel speed solenoid valve through pressure control valve, thus the transmission is changed into high (P1) or low (P2) speed condition.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

6. CREEP TRAVEL SYSTEM

140WA3HC07


When the creep switch on the dashboard of the steering column is pushed ON, the creep travel solenoid valve is actuated.

The discharged oil from the brake pump flows into X port of travel motor through solenoid valve.

Then, the machine speed is very low travelling more than 1st speed.

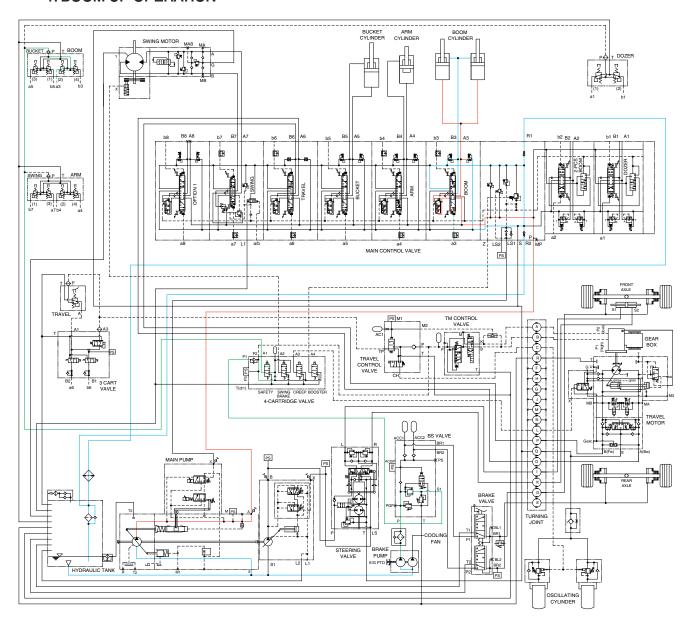
^{*} The circuit diagram may differ from the equipment, so please check before a repair.

7. BOOM FLOATING SYSTEM

140WA3HC08

Smooth and convenient boom movement is accomplished by only arm control lever operation.

The boom floating solenoid valve are equipped in the rod of boom cylinder that is controlled to act as floating mode.

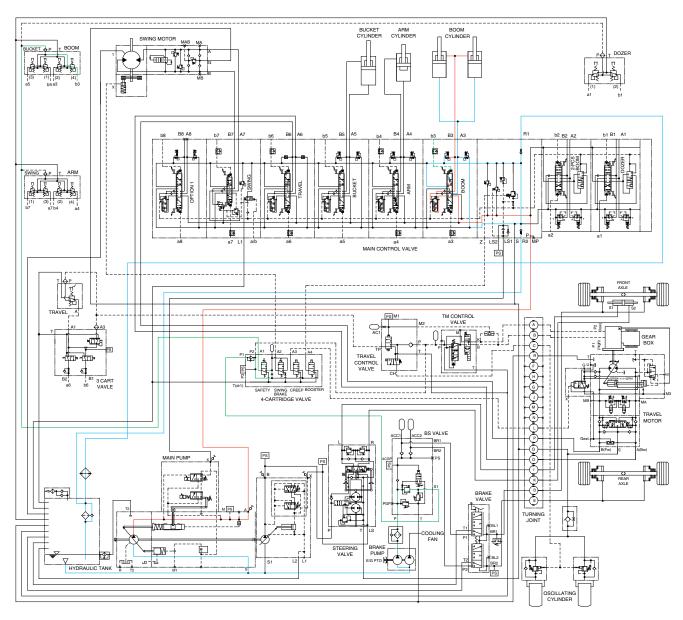

So the hydraulic oil of rod and head goes to tank, and floating is accomplished. In the mode, boom down control solenoid is active so that boom down pilot pressure is cut.

For more details, refer to page 5-13.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 4 SINGLE OPERATION

1. BOOM UP OPERATION


140WA3HC10

When the right control lever is pulled back, the boom spool in the main control valve is moved to the up position by the pilot oil pressure (a3) from the remote control valve.

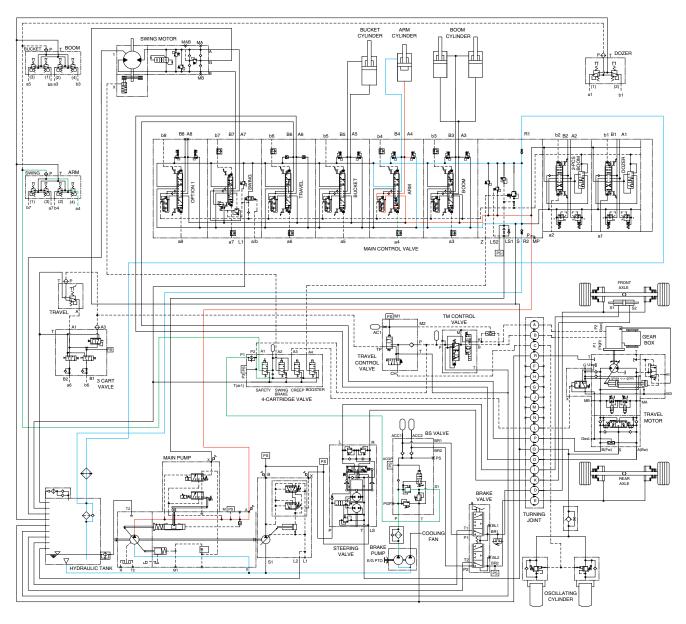
The oil from the main pump flows into the main control valve and then goes to the large chamber of boom cylinders. At the same time, the oil from the small chamber of boom cylinders returns to the hydraulic oil tank through the boom spool in the main control valve. When this happens, the boom goes up. The excessive pressure in the boom cylinder head side is prevented by relief valve. When the boom is up and the control lever is returned to neutral position, the circuit for the holding pressure at the head side of the boom cylinder is closed by the boom holding valve. This prevents the hydraulic drift of boom cylinders.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. BOOM DOWN OPERATION

140WA3HC11

When the right control lever is pushed forward, the boom spool in the main control valve is moved to the down position by the pilot oil pressure (b3) from the remote control valve.


The oil from the main pump flows into the main control valve and then goes to the small chamber of boom cylinders. At the same time, the oil from the large chamber of boom cylinders returns to the hydraulic tank through the boom spool in the main control valve.

When the down speed of boom is faster, the oil returned from the large chamber of boom cylinder combines with the oil from the main pump, and flows into the small chamber of the cylinder.

This prevents cylinder cavitation by the negative pressure when the main pump flow can not match the boom down speed. And the excessive pressure in the boom cylinder rod side is prevented by the relief valve.

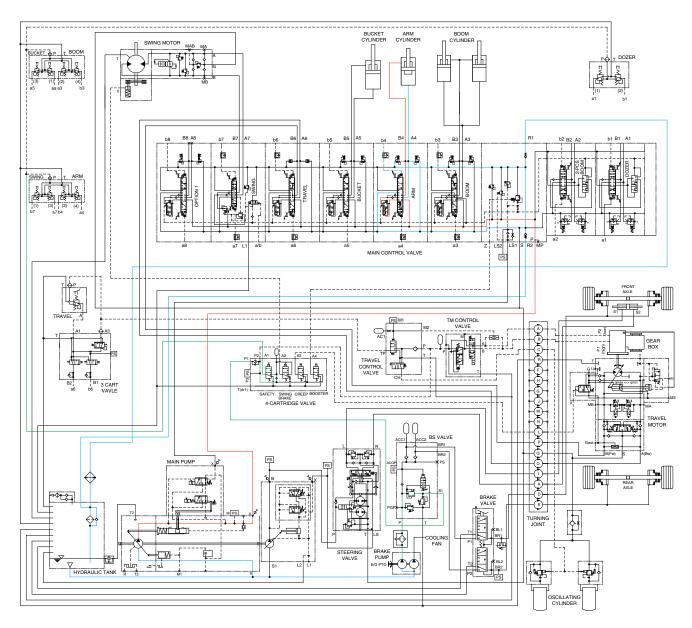
^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. ARM IN OPERATION

140WA3HC12

When the left control lever is pulled back, the arm spool in the main control valve are moved to the arm in position by the pilot oil pressure (a4) from the remote control valve.

The oil from the main pump flows into the main control valve and then goes to the large chamber of arm cylinder.

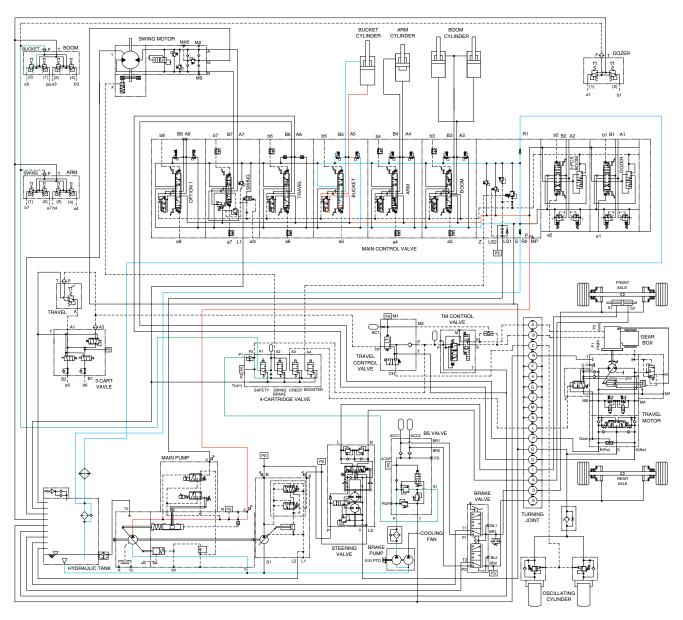

At the same time, the oil from small chamber of arm cylinder returns to the hydraulic oil tank through the arm spool in the main control valve. When this happens, the arm rolls in.

The excessive pressure in the arm cylinder head side is prevented by relief valve.

The cavitation which will happen to the head side of the arm cylinder is also prevented by the makeup valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. ARM OUT OPERATION


140WA3HC13

When the left control lever is pushed forward, the arm spools in the main control valve are moved to the arm out position by the pilot oil pressure (b4) from the remote control valve.

The oil from the main pump flows into the main control valve and then goes to the small chamber of arm cylinder. At the same time, the oil from the large chamber of arm cylinder returns to the hydraulic oil tank through the arm spool in the main control valve. When this happens, the arm rolls out. The cavitation which will happen to the rod side of the arm cylinder is also prevented by the make-up valve in the main control valve. When the arm is roll out and the control lever is returned to neutral position, the circuit for the holding pressure at the rod side of the arm cylinder is closed by the arm holding valve. This prevent the hydraulic drift of arm cylinder.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

5. BUCKET IN OPERATION

140WA3HC14

When the right control lever is pulled left, the bucket spool in the main control valve is moved to the roll in position by the pilot oil pressure (a5) from the remote control valve.

The oil from the main pump flows into the main control valve and then goes to the large chamber of bucket cylinder.

At the same time, the oil from the small chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls in.

The excessive pressure in the bucket cylinder head side is prevented by relief valve.

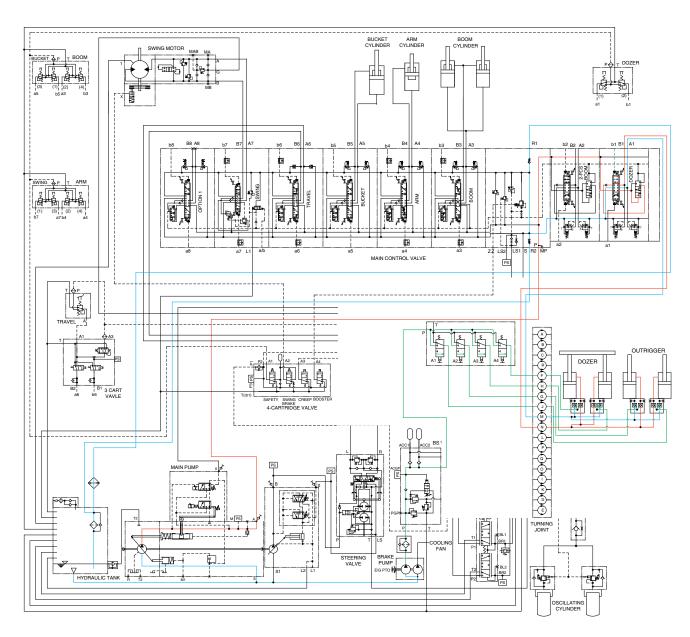
The cavitation which will happen to the head side of the bucket cylinder is also prevented by the make-up valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

6. BUCKET OUT OPERATION

140WA3HC15

When the right control lever is pushed right, the bucket spool in the main control valve is moved to the bucket out position by the pilot oil pressure (b5) from the remote control valve.


The oil from the main pump flows into the main control valve and then goes to the small chamber of bucket cylinder.

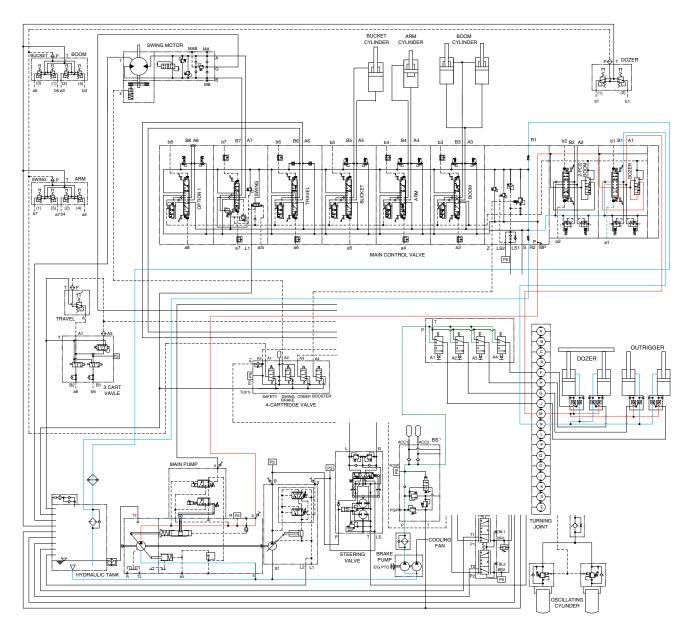
At the same time, the oil from the large chamber of bucket cylinder returns to the hydraulic oil tank through the bucket spool in the main control valve. When this happens, the bucket rolls out.

The cavitation which will happen to the rod side of the bucket cylinder is also prevented by the make-up valve in the main control valve.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

7. DOZER/OUTRIGGER UP OPERATION

140WA3HC16


When the dozer control lever is pulled back, the dozer spool in the main control valve is moved to the dozer up position by the pilot oil pressure (b1) from the remote control valve.

The oil from the main pump flows into the main control valve and then goes to the small chamber of rear actuator cylinders (dozer or outrigger).

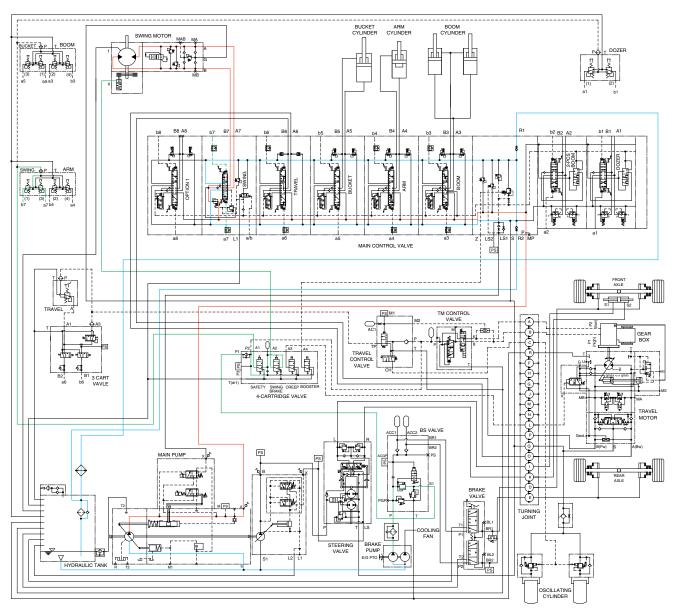
The other case, the oil flows into the small chamber of front actuator cylinders (dozer or outrigger). At the same time, the oil from the large chamber of dozer (outrigger) cylinders returns to the hydraulic oil tank through the dozer spool in the main control valve. When this happens, the dozer (outrigger) goes up.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

8. DOZER/OUTRIGGER DOWN OPERATION

140WA3HC17

When the dozer control lever is pushed forward, the dozer spool in the main control valve is moved to the dozer down position by the pilot oil pressure (a1) from the remote control valve.


The oil from the main pump flows into the main control valve and then goes to the large chamber of rear actuator cylinders (dozer or outrigger).

The other case, the oil flows into the large chamber of front actuator cylinders (dozer or outrigger).

At the same time, the oil from the small chamber of dozer (outrigger) cylinders returns to the hydraulic oil tank through the dozer spool in the main control valve. When this happens, the dozer (outrigger) goes down.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

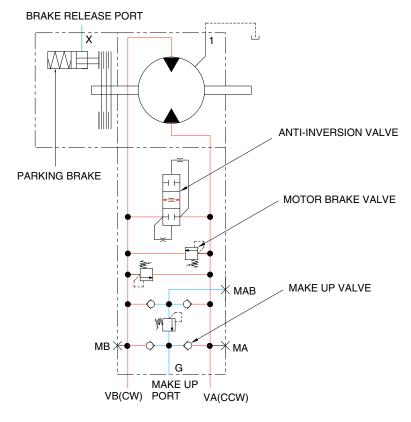
9. SWING OPERATION

140WA3HC18

When the left control lever is pushed left or right, the swing spool in the main control valve is moved to the left or right swing position by the pilot oil pressure (a7 or b7) from the remote control valve.

The oil from the main pump flows into the main control valve and then goes to the swing motor.

At the same time, the return oil from the swing motor returns to the hydraulic oil tank through the swing spool in the main control valve.


When this happens, the upper structure swings to the left or right.

The swing parking brake, make up valve and the motor brake valve are provided in the swing motor. The cavitation which will happen to the swing motor is also prevented by the make up valve in the swing motor itself.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

SWING CIRCUIT OPERATION

SWING MOTOR

TO / FROM MAIN CONTROL VALVE

140WA3HC19

1) MOTOR BRAKE VALVE

Motor brake valve for the swing motor limits to cushion the starting and stopping pressure of swing operation and controls the swing motor operating pressure to 270 kgf/cm² (3840 psi).

2) MAKE UP VALVE

The make up valves prevent cavitation by supplying return oil to the vacuum side of the motor.

3) PARKING BRAKE

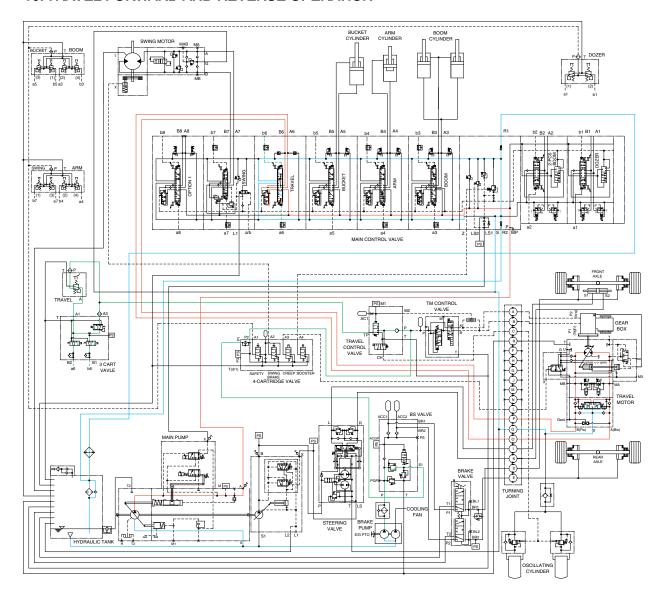
This is function as a parking brake only when the swing control lever and arm in control lever are not operated.

PARKING BRAKE "OFF" OPERATION

When any of the swing or arm in control lever is tilted, the swing brake solenoid valve is energized by the MCU that senses the swing pilot oil pressure.

The discharged oil from brake pump flows to swing motor X port through the swing brake solenoid valve. This pressure is applied to swing parking brake piston, thus the brake is released.

PARKING BRAKE "ON" OPERATION


When the swing and arm in control levers are set in the neutral position, the swing brake solenoid valve is de-energized, oil in the swing parking brake chamber is drained through the the swing brake solenoid valve, thus the brake is applied by spring force.

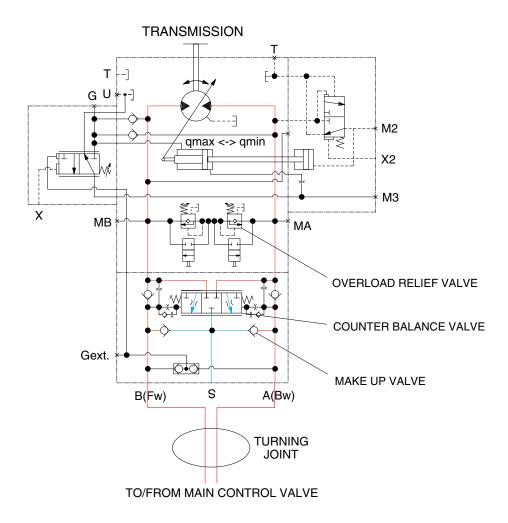
4) ANTI-INVERSION VALVE

This anti-inversion valve absorbs shocks produced as swing motion stops and reduced oscillation cause by swing motion.

* The circuit diagram may differ from the equipment, so please check before a repair.

10. TRAVEL FORWARD AND REVERSE OPERATION

140WA3HC20


When the FNR switch of the RH RCV lever is placed in forward or reverse position, the travel spool in the main control valve is moved to the forward or reverse position by the pilot oil pressure (a6 or b6) from brake pump through the travel pilot solenoid valve of travel control valve. The oil from the main pump flows into the main control valve and then goes to the travel motor. At the same time, the oil returned from the travel motor returns to the hydraulic oil tank through the turning joint and travel spool in the main control valve.

When this happens, the machine moves forward or reverse.

The cavitation which will happen to the travel motor is prevented by the make-up valves in the main control valve and make up valves in the travel motor itself.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

TRAVEL CIRCUIT OPERATION

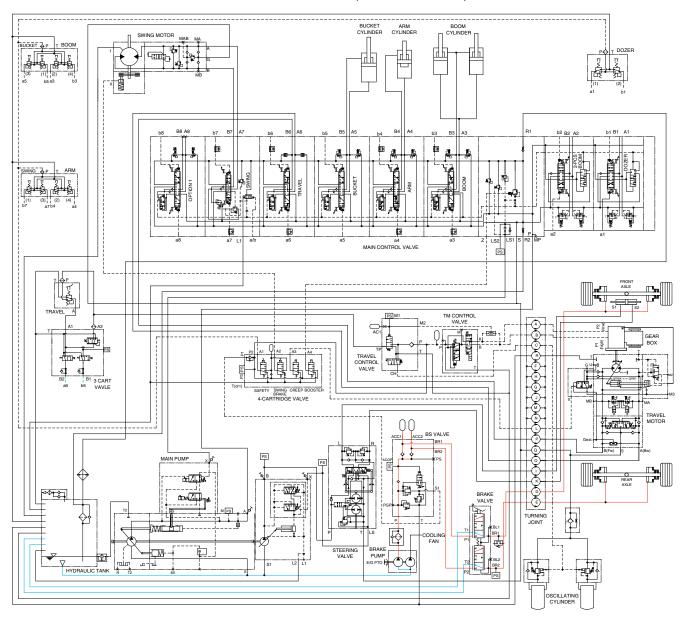
140WA3HC21

Valves are provided on travel motor to offer the following functions.

1) COUNTER BALANCE VALVE

When stopping the motor on a slope descending, this valve prevents the motor from over running.

2) OVERLOAD RELIEF VALVE

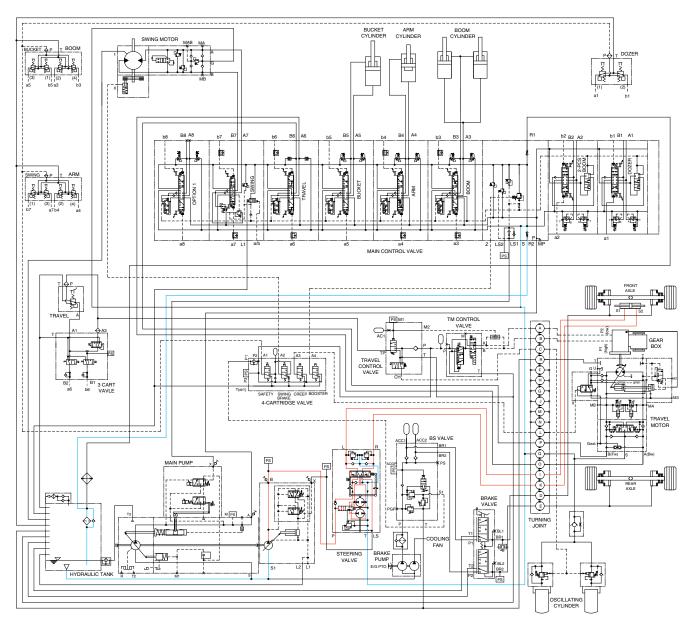

Relief valve limits the circuit pressure below 380 kgf/cm² to prevent high pressure from being generated at the time of stopping the machine. When stopping the motor, this valve sucks the oil from lower pressure passage for preventing the negative pressure and the cavitation of the motor.

3) MAKE UP VALVE

The make up valves prevent cavitation by supplying return oil to the vacuum side of the motor.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

11. FRONT AND REAR AXLE BRAKE SYSTEM (SERVICE BRAKE)


140WA3HC22

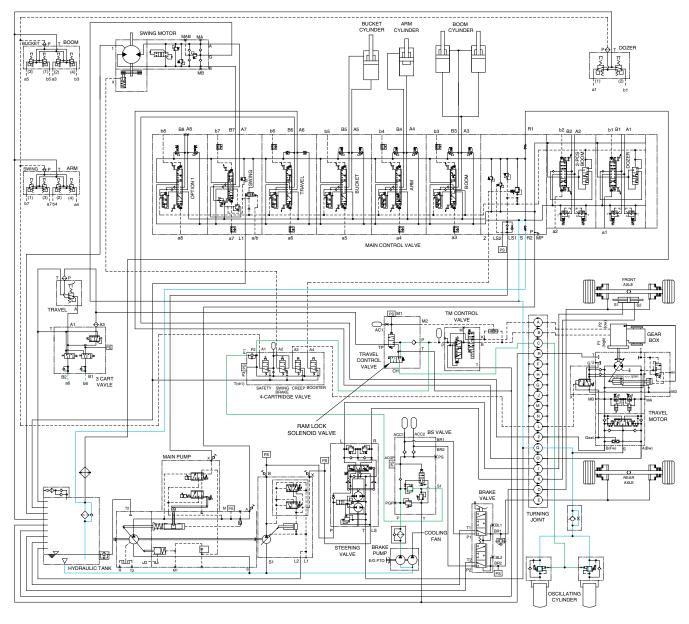
When the brake pedal (valve) is pushed, the discharged oil from the brake pump (P2) flows into the front and rear axle brake disc through the brake supply valve.

This pressure is applied to axle brake disc, thus the brake is applied.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

12. STEERING CIRCUIT OPERATION

140WA3HC23


When the steering wheel is turned to the left or right, the spool within the steering valve turns left or right hand direction: Because the spool is connected with steering column.

At this time, the oil discharged from the steering pump flows into steering cylinder through spool and gerotor within the steering valve.

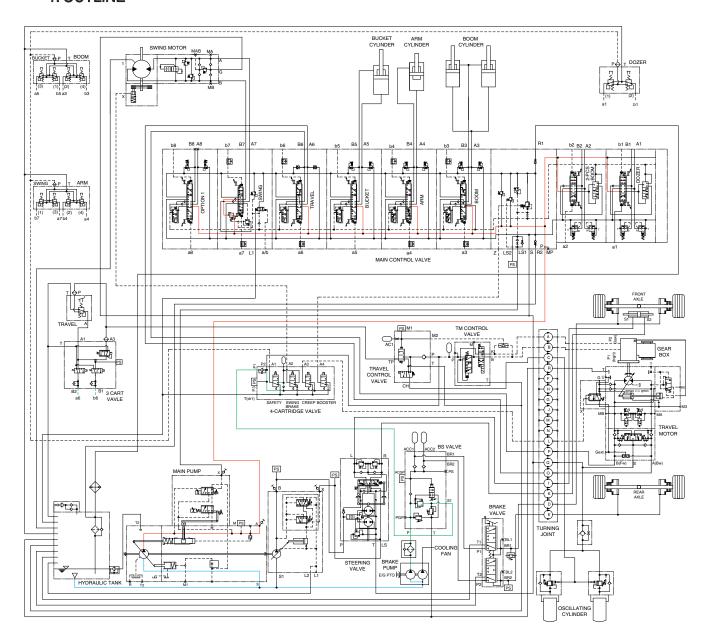
Then the steering direction is applied.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

13. RAM LOCK CIRCUIT OPERATION

140WA3HC24

When the ram lock rotary switch on the dashboard of the steering column is selected OFF position, the ram lock solenoid valve is changed over.

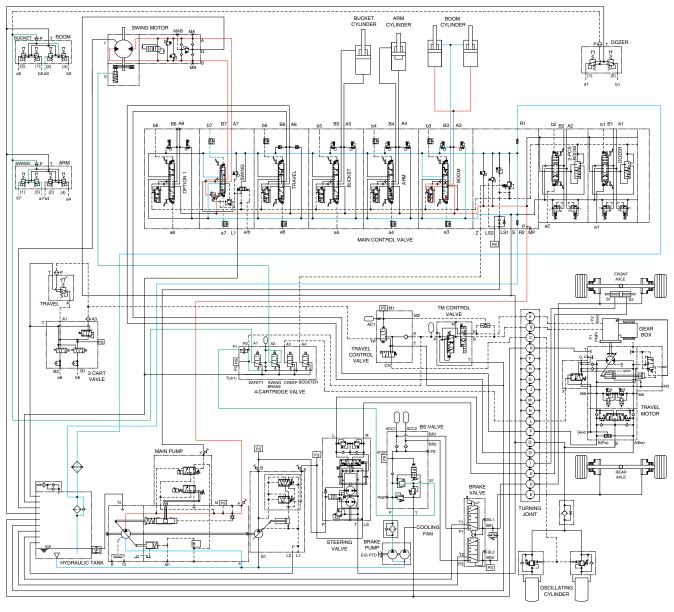

Thus, the oil discharged from the brake pump flows into oscillating cylinder through ram lock solenoid and locking valve.

This pressure is applied to check valve and oscillating cylinder, thus the oscillating function is operated (Ram lock released).

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

GROUP 5 COMBINED OPERATION

1. OUTLINE



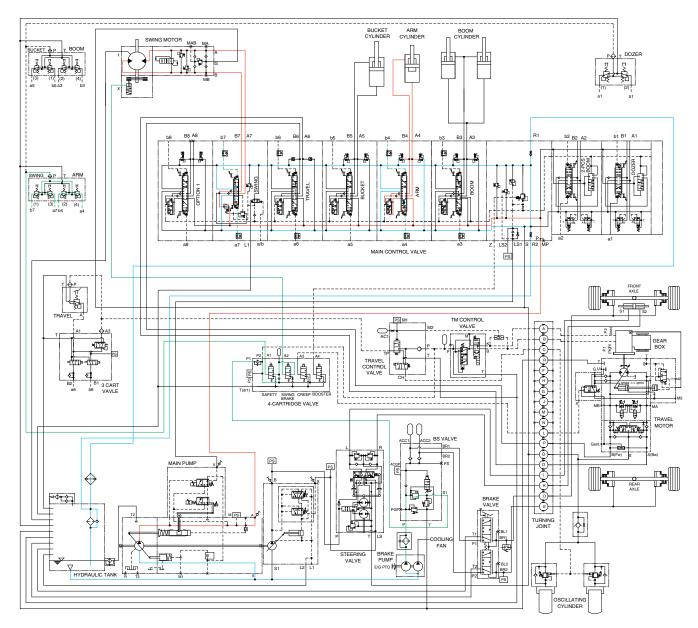
140WA3HC30

The oil from the main pump flows through the parallel oil passage in the main control valve. Then the oil goes to each actuator and operates them. Check valves and orifices are located on these oil passage in the main control valve. These control the oil from the main pumps so as to correspond to the operation of each actuator and smooth the combined operation.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

2. COMBINED SWING AND BOOM UP OPERATION

140WA3HC31


When the swing and boom up functions are operated, simultaneously the swing spool and boom spool in the main control valve are moved to the functional position by the pilot oil pressure (a7, b7, a3) from the remote control valve.

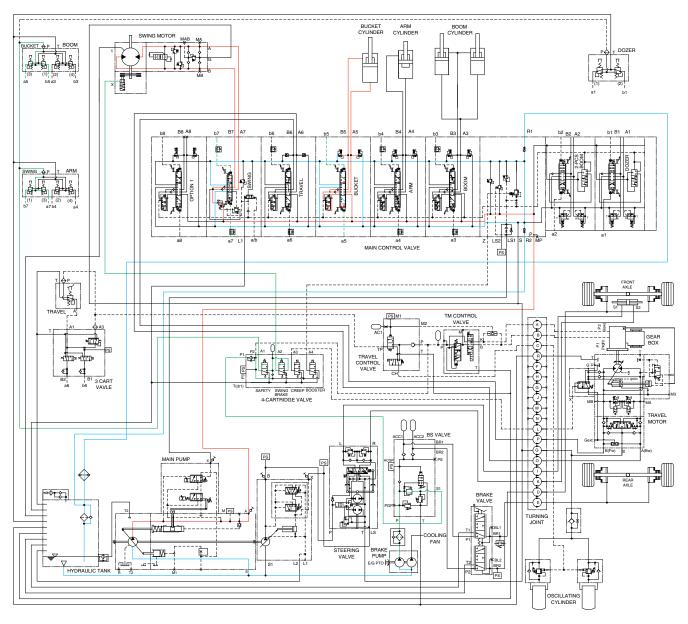
The oil from the main pump flows into the swing motor through swing spool and flows into the boom cylinders through the boom spool via the parallel passage.

The upper structure swings and the boom goes up.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. COMBINED SWING AND ARM OPERATION

140WA3HC32


When the swing and arm functions are operated, simultaneously the swing spool and arm spool in the main control valve are moved to the functional position by the pilot oil pressure (a7, b7, a4, b4) from the remote control valve.

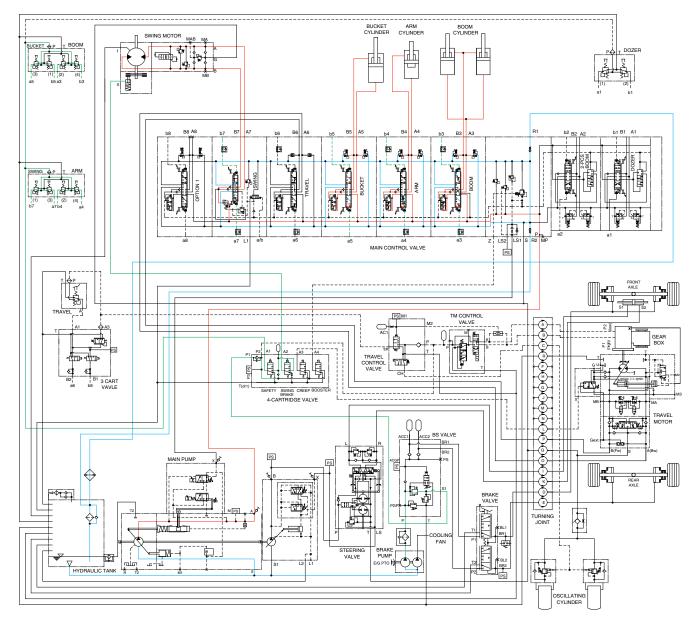
The oil from the main pump flows into the swing motor through swing spool and flows into the arm cylinder through the arm spool via the parallel passage.

The upper structure swings and the arm is operated.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

4. COMBINED SWING AND BUCKET OPERATION

140WA3HC33


When the swing and bucket functions are operated, simultaneously the swing spool and bucket spool in the main control valve are moved to the functional position by the pilot oil pressure (a7, b7, a5, b5) from the remote control valve.

The oil from the main pump flows into the swing motor through the swing spool and flows into the bucket cylinder through the bucket spool via the parallel passage.

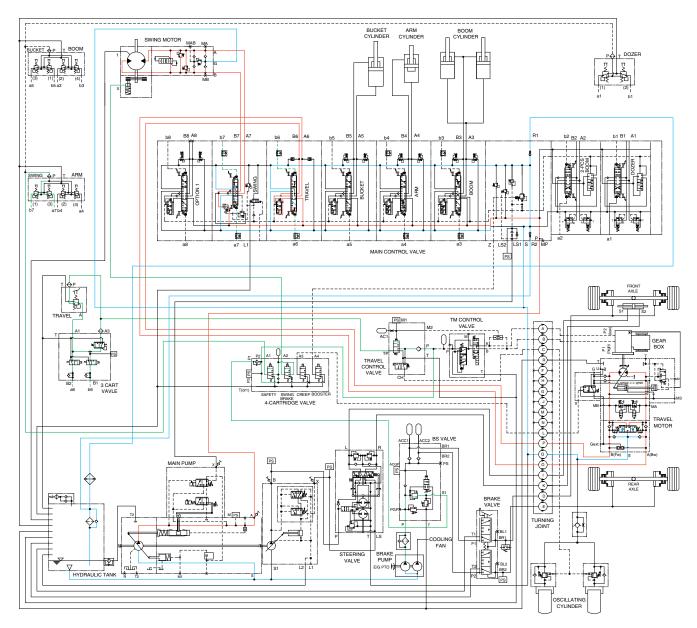
The upper structure swings and the bucket is operated.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

5. COMBINED SWING, BOOM, ARM AND BUCKET OPERATION

140WA3HC34

When the swing, boom, arm and bucket functions are operated, simultaneously each spool in the main control valve is moved to the functional position by the pilot oil pressure (a7, b7, a3, b3, a4, b4, a5, b5) from the remote control valve.


The oil from the main pump flows into the boom cylinder, arm cylinder and bucket cylinder through the boom spool, arm spool, bucket spool via the parallel passage.

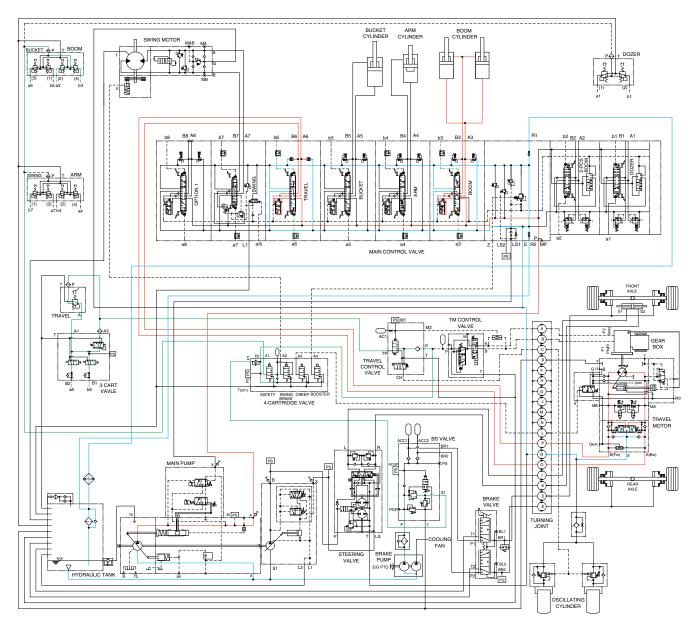
Also, the oil flows into the swing motor through the swing spool via the parallel passage.

The superstructure swings and the boom, arm and bucket are operated.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

6. COMBINED SWING AND TRAVEL OPERATION

140WA3HC35


When the swing and travel functions are operated, simultaneously the swing spool and travel spool in the main control valve are moved to the functional position by the pilot oil pressure (a7, b7, a6, b6) from the remote control valve.

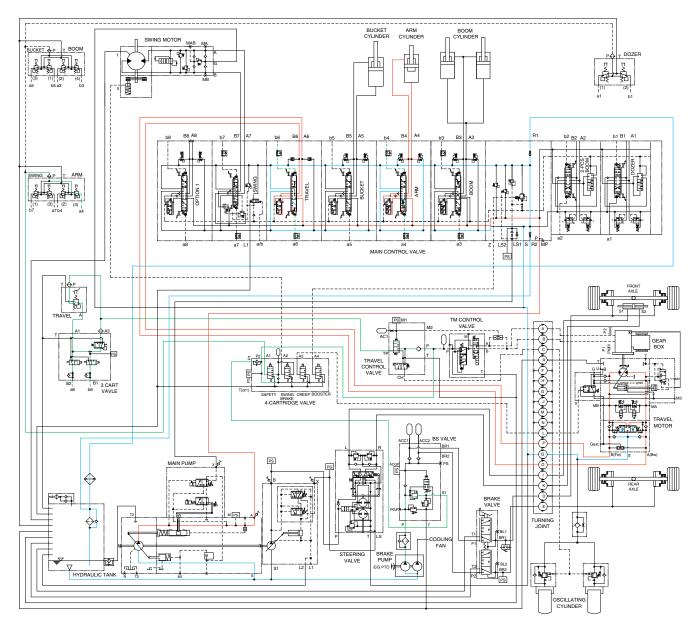
The oil from the main pump flows into the swing motor and travel motor through the swing spool and travel spool via the parallel passage.

The superstructure swings and the machine travels straight.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

7. COMBINED BOOM AND TRAVEL OPERATION

140WA3HC36


When the boom and travel functions are operated, simultaneously the boom spool and travel spool in the main control valve are moved to the functional position by the pilot oil pressure (a3, b3, a6, b6) from the remote control valve.

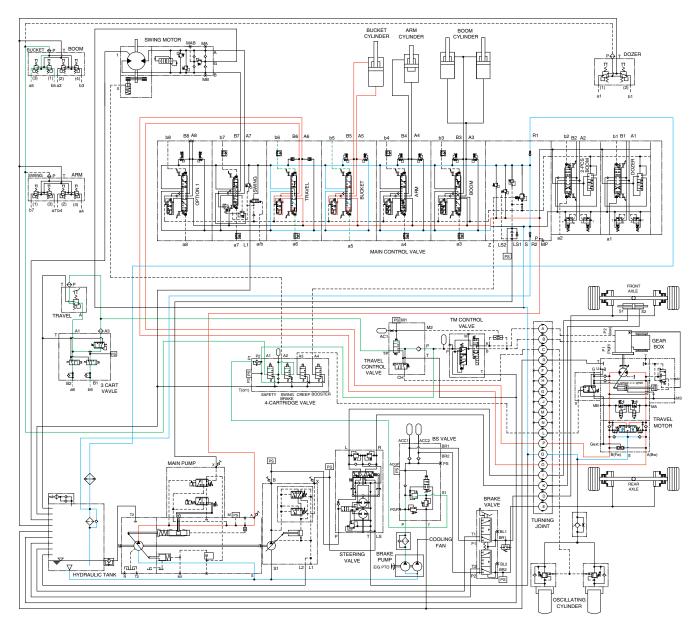
The oil from the main pump flows into the boom cylinder and the travel motor through, boom and travel spool via the parallel passage.

The boom is operated and the machine travels straight.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

8. COMBINED ARM AND TRAVEL OPERATION

140WA3HC37


When the arm and travel functions are operated, simultaneously the arm spool and travel spool in the main control valve are moved to the functional position by the pilot oil pressure (a4, b4, a6, b6) from the remote control valve.

The oil from the main pump flows into the travel motor and the arm cylinder through travel spool and arm spool via the parallel passage.

The arm is operated and the machine travels straight.

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

9. COMBINED BUCKET AND TRAVEL OPERATION

140WA3HC38

When the bucket and travel functions are operated, simultaneously the bucket spool and travel spool in the main control valve are moved to the functional position by the pilot oil pressure (a5, b5, a6, b6) from the remote control valve.

The oil from the main pump flows into the travel motor and the bucket cylinder through the travel spool and the bucket spool via the parallel passage.

The bucket is operated and the machine travels straight.

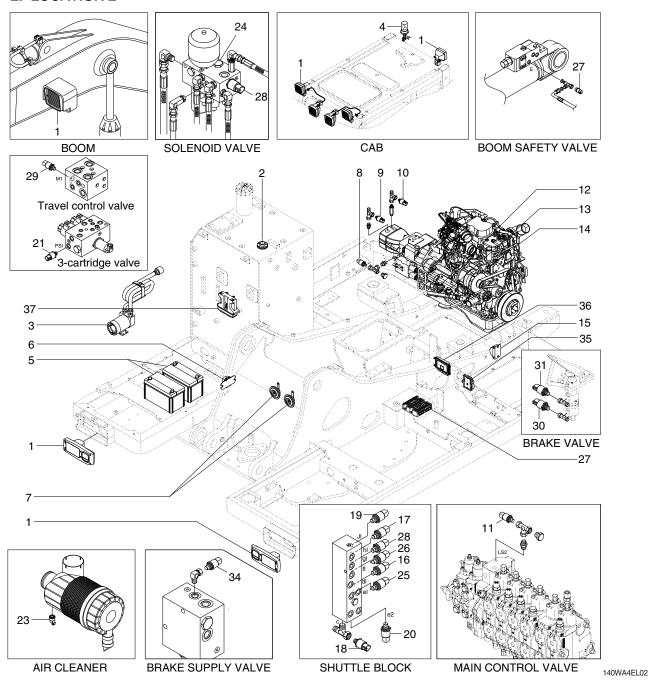

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

SECTION 4 ELECTRICAL SYSTEM

Group	1 Component Location	4-1
Group	2 Electrical Circuit	4-3
Group	3 Electrical Component Specification	4-25
Group	4 Connectors ·····	4-37

GROUP 1 COMPONENT LOCATION

1. LOCATION 1

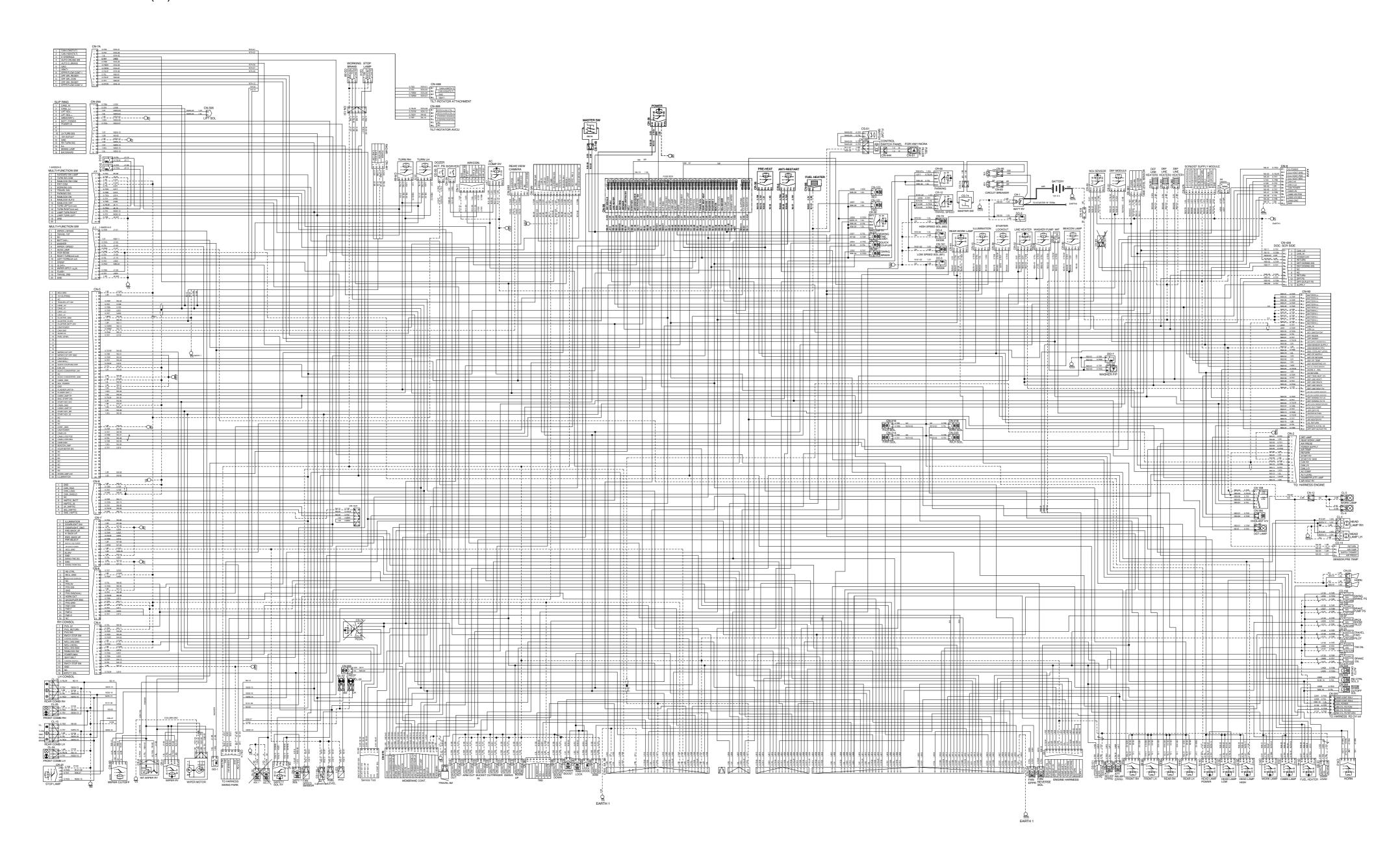


- 1 Service meter
- 2 Start switch
- 3 Cluster
- 4 FNR switch
- 5 Horn switch
- 5 Quick clamp switch
- 5 Breaker operation switch
- 7 Jog dial module
- 8 Radio & USB player
- 9 Cigar lighter
- 10 Socket assy
- 11 Ram lock rotary switch
- 12 Hazard switch
- 13 Select rotary switch
- 14 Left turn pilot lamp

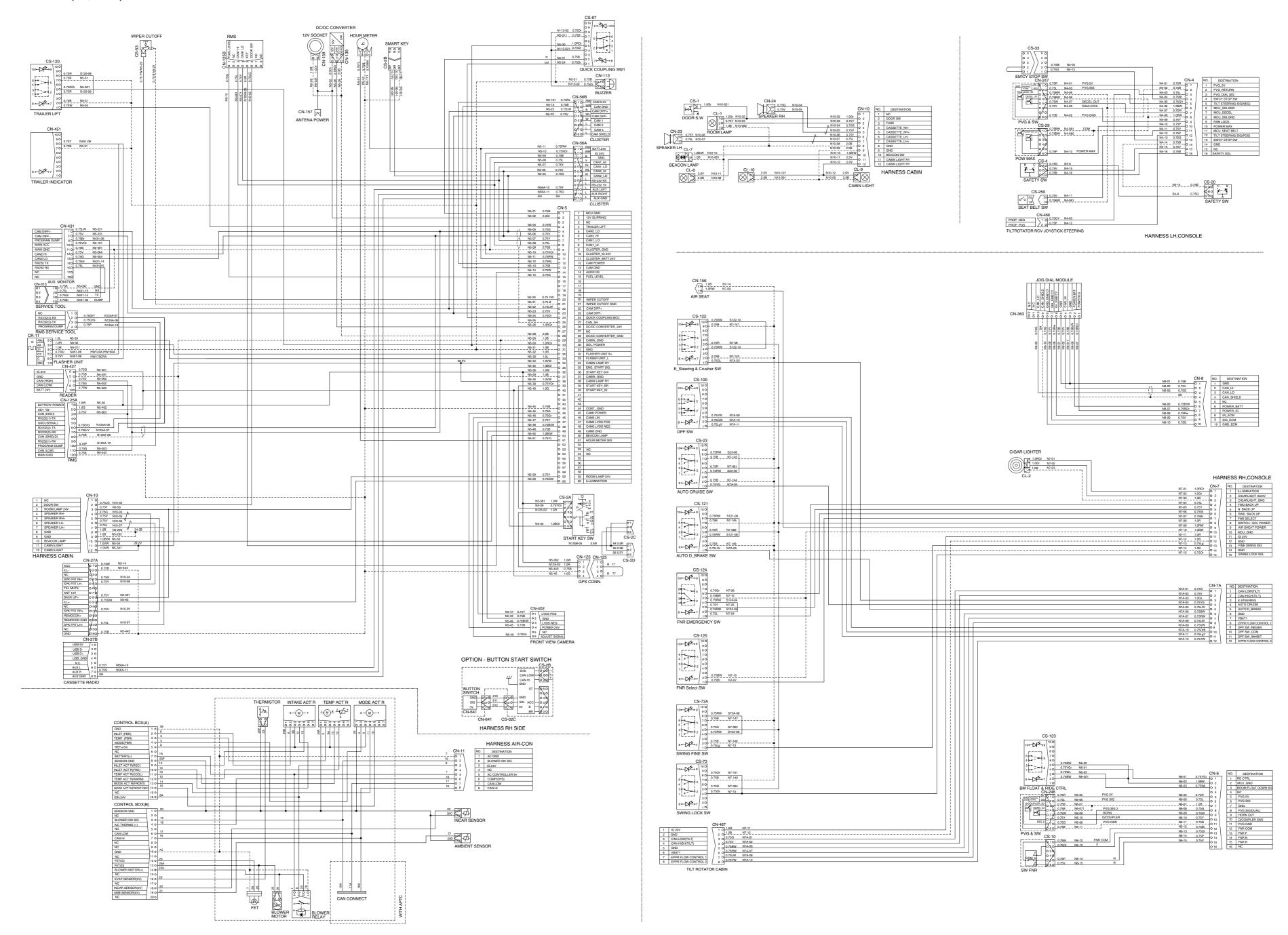
- 15 Right turn pilot lamp
- 16 Fine swing switch
- 17 Swing lock switch
- 18 Auto cruise switch
- 19 Boom floating & ride control switch
- 20 Auto brake switch
- 21 E/steering & crusher switch
- 22 Exhaust system cleaning switch
- 23 FNR switch (emergency)
- 24 FNR select switch (emergency)
- 25 Quick clamp switch
- 26 Lift trailer Quick clamp switch
- 27 Trailer pilot lamp
- 28 Speaker

- 29 Seat heater switch
- 30 Master switch
- 31 Fuse & relay box
- 32 RS232 & J1939 service socket
- 33 One touch decel switch
- 33 Ram lock switch
- 35 Emergency engine stop switch
- 36 Power max switch
- 37 Safety knob
- 38 Multi function switch (LH)
- 39 Emergency engine speed control connector
- 40 Beacon lamp
- 41 Rear view camera
- 42 Socket assy

2. LOCATION 2

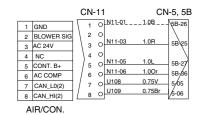

- 1 Lamp
- 2 Fuel sender
- 3 Fuel filler pump
- 4 Beacon lamp
- 5 Battery
- 6 Battery relay
- 7 Horn
- 8 Main pump pressure sensor
- 9 Steering pump pressure sensor
- 10 Steering load sensing pressure sensor
- 11 Main pump load sensing pressure sensor

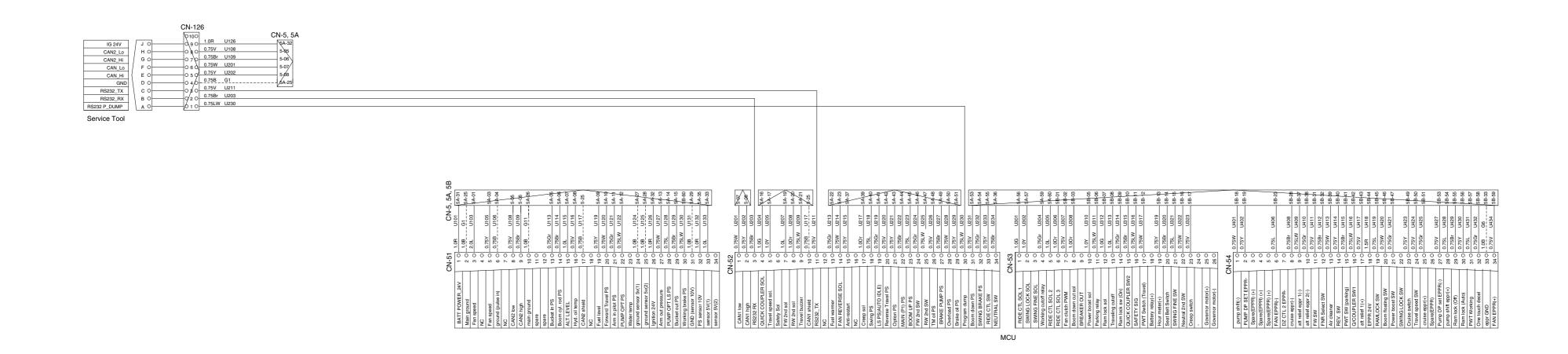
- 12 Start relay
- 13 Heater relay
- 14 Alternator
- 15 Travel alarm buzzer
- 16 Arm out pressure sensor
- 17 Boom up pressure sensor
- 18 Swing pressure sensor
- 19 Boom down pressure sensor
- 20 Arm in pressure sensor
- 21 Travel pressure sensor
- 22 Bucket out pressure sensor
- 23 Air cleaner sensor
- 24 4 cartridge valve
- 25 Swing & arm in pressure sensor


- 26 Bucket in pressure sensor
- 27 Overload pressure sensor
- 28 Pilot oil pressure sensor
- 29 Travel control valve pressure sensor
- 30 Brake pressure sensor
- 31 Brake pilot lamp pressure switch
- 32 MCU
- 34 Brake supply valve pressure sensor
- 35 RDU assy
- 36 View controller
- 37 HCU assy

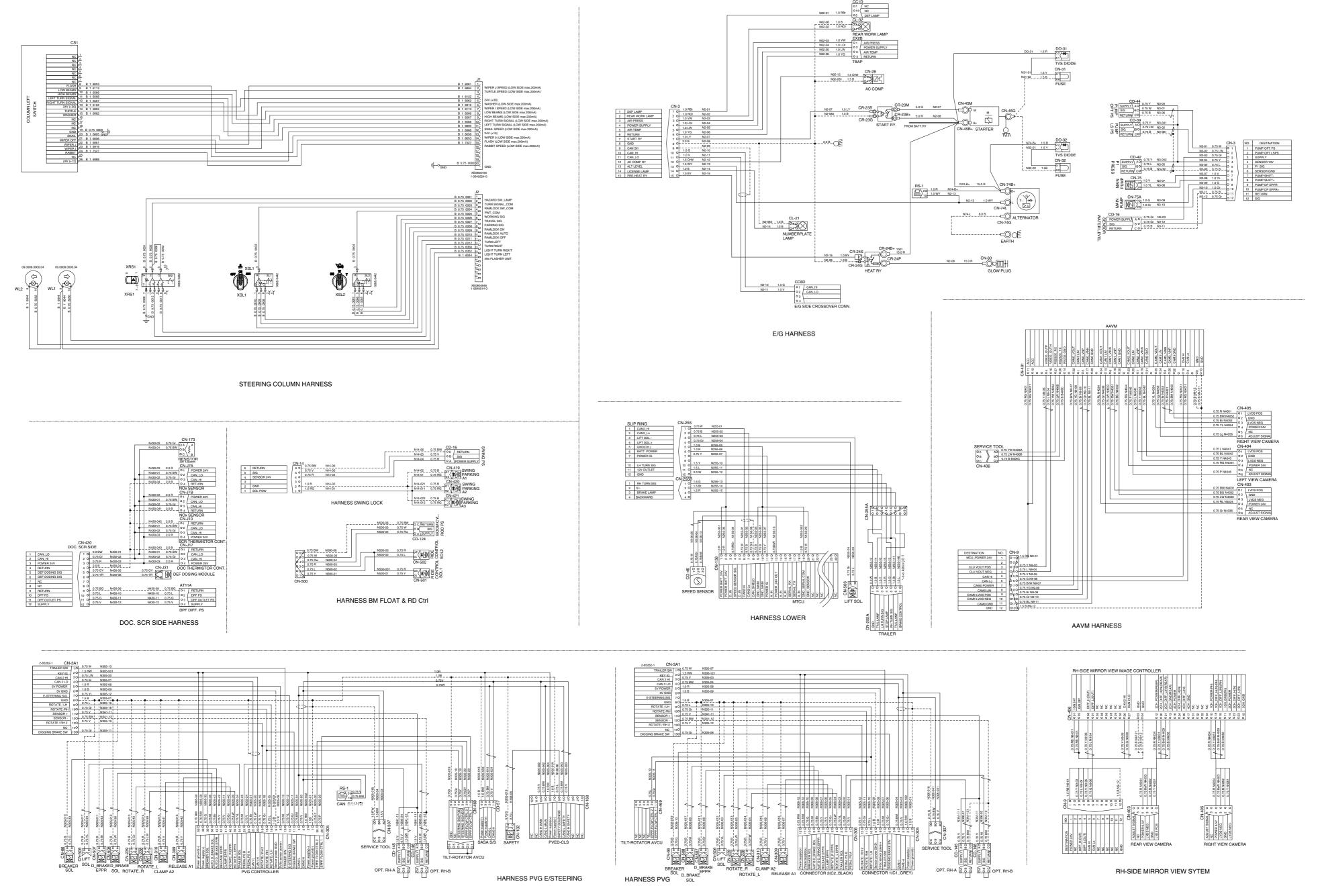
GROUP 2 ELECTRICAL CIRCUIT

ELECTRICAL CIRCUIT (1/3)




ELECTRICAL CIRCUIT (2/3, 10F2)

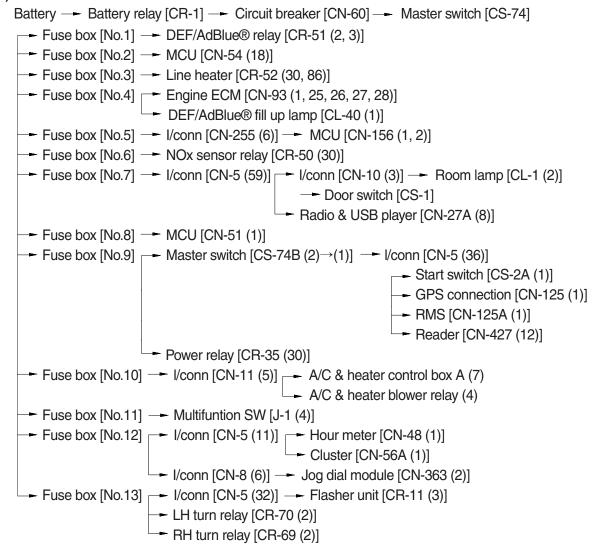
20K8-98106-01 1OF2


ELECTRICAL CIRCUIT (2/3, 2OF2)

20K8-98106-01 2OF2

· ELECTRICAL CIRCUIT (3/3)

20K8-98307-00


MEMORANDUM

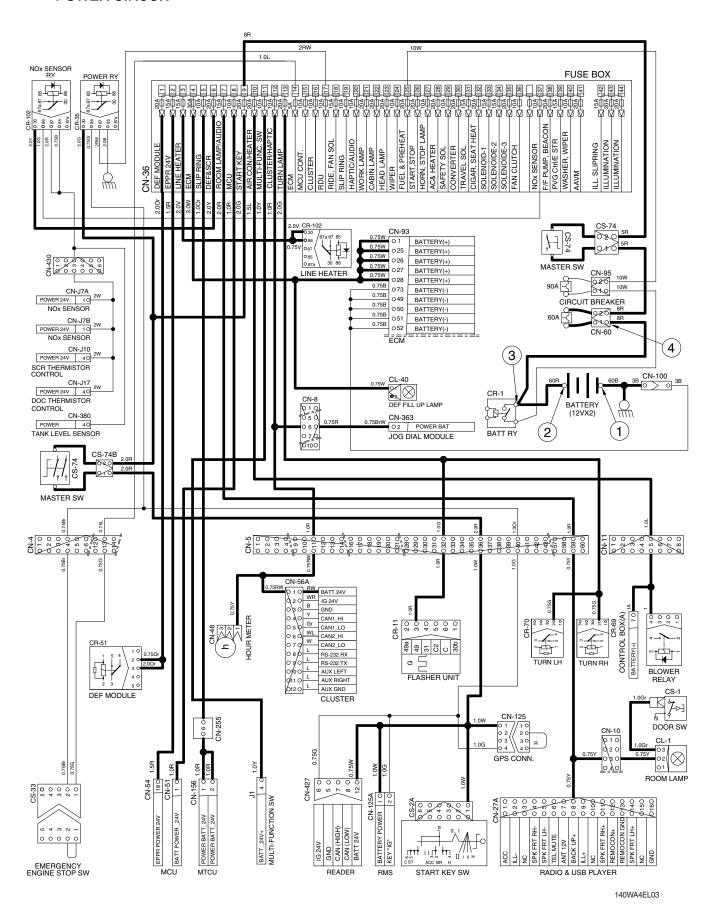
1. POWER CIRCUIT

The negative terminal of battery is grounded to the machine chassis directly.

When the start switch is in the OFF position, the current flows from the positive battery terminal as shown below.

1) OPERATING FLOW

I/conn: Intermediate connector


2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery 1EA)	10~12.5 V
STOP	OFF	② - GND (battery 2EA)	20~25 V
5106		③ - GND (battery relay 2EA)	20~25 V
		④ - GND (circuit breaker)	20~25 V

***** GND : Ground

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

POWER CIRCUIT

The circuit diagram may differ from the equipment, so please check before a repair.

2. STARTING CIRCUIT

1) OPERATING FLOW

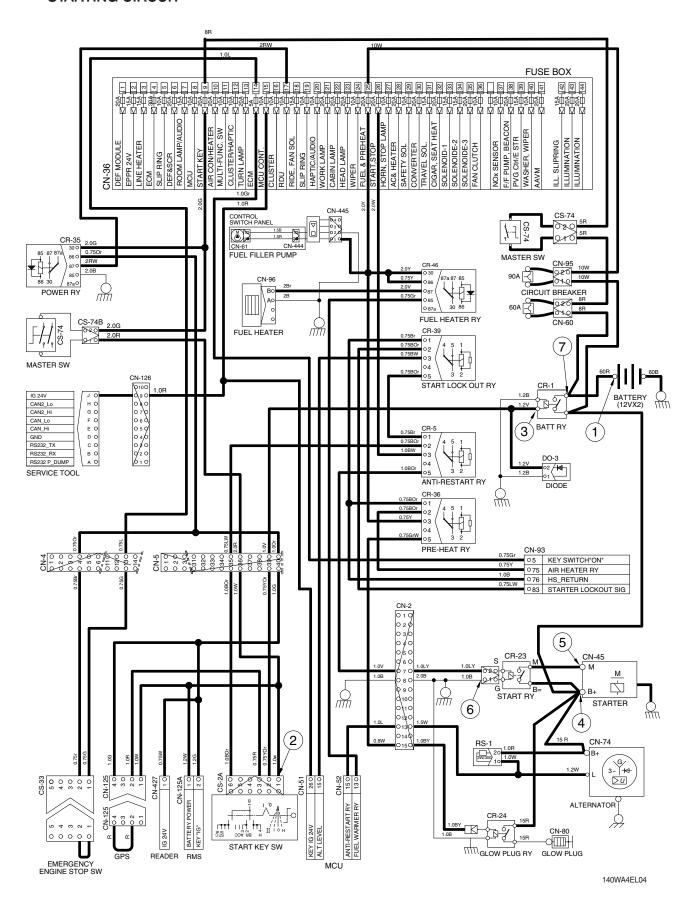
```
Battery (+) terminal — Battery relay [CR-1] — Circuit breaker [CN-60] — Master switch [CS-74] — Fuse box [No.9] — Master switch [CS-74B] — I/conn [CN-5 (36)] — Start switch [CS-2A (1)] — Power relay [CR-35 (30)]
```

(1) When start key switch is in ON position

```
Start switch ON [CS-2A (2)] → I/conn [CN-5 (39)] → Battery relay [CR-1]
→ Battery relay operating (all power is supplied with the electric component)

Start switch ON [CS-2A (3)] → GPS conn [CN-125 (2)→(4)] → RMS [CN-125A (2)]
→ Reader [CN-427 (6)]
→ Reader [CN-427 (6)]
→ I/conn [CN-5 (40)]
→ MCU [CN-51 (26)]
→ I/conn [CN-4 (4)] → Emergency engine stop sw [CS-33 (2) → (1)]
→ I/conn [CN-4 (13)] → Fuse box [No. 14] → ECM [CN-93 (5)]
```

(2) When start key switch is in START position


Start switch START [CS-2A (6)]
$$\longrightarrow$$
 I/conn [CN-5 (35)] \longrightarrow Anti-restart relay [CR-5 (2) \rightarrow (5)] \longrightarrow I/conn [CN-2 (7)] \longrightarrow Start relay [CR-23 (S)] \longrightarrow Starter motor operating

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery)	
		② - GND (start key)	
		③ - GND (battery relay M4)	
OPERATING	START	④ - GND (starter B ⁺)	20~25V
		⑤ - GND (starter M)	
		⑥ - GND (start relay G)	
		⑦- GND (battery relay M8)	

The circuit diagram may differ from the equipment, so please check before a repair.

STARTING CIRCUIT

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

3. CHARGING CIRCUIT

When the starter is activated and the engine is started, the operator releases the start switch to the ON position.

Charging current generated by operating alternator flows into the battery through the battery relay [CR-1].

The current also flows from alternator to each electrical component and controller through the fuse box.

1) OPERATING FLOW

(1) Warning flow

Alternator [CN-74 (L)] → I/conn [CN-2 (13)] → MCU alternator level [CN-51 (15)] → Cluster charging warning lamp (via CAN interface)

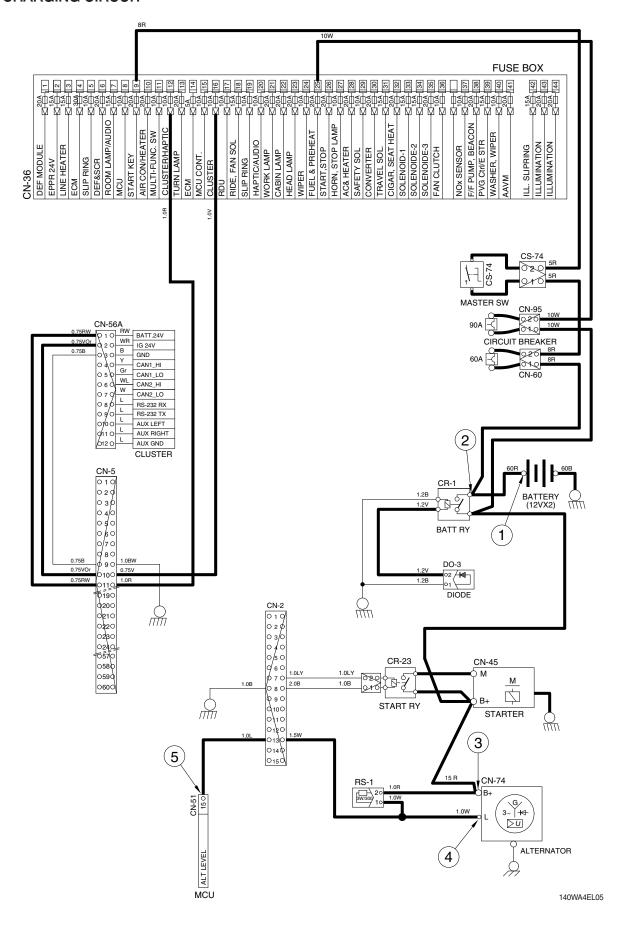
(2) Charging flow

```
Alternator [CN-74 (B<sup>+</sup>)] — Starter [CN-45 (B<sup>+</sup>) — Battery relay (M8)

Battery (+) terminal

Circuit breaker [CN-60] — Master switch [CS-74] — Fuse box [No. 1~13]

Circuit breaker [CN-95] — Fuse box [No. 20~41]
```


2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (battery voltage)	
		② - GND (battery relay)	
Run	ON	③ - GND (alternator B ⁺ terminal)	20~30 V
		④ - GND (alternator L terminal)	
		⑤ - GND (MCU)	

% GND : Ground

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

CHARGING CIRCUIT

The circuit diagram may differ from the equipment, so please check before a repair.

4. HEAD AND WORK LIGHT CIRCUIT

1) OPERATING FLOW

Fuse box (No.23)

Head light low relay [CR-13 (30, 86)]

Head light high relay [CR-14 (30, 86)]

Head light power relay [CR-78 (86)]

Illumination relay [CR-15 (2, 3)]

Work light relay [CR-3 (30, 86)]

Rear work light relay [CR-44 (30, 86)]

Fuse box (No.17)

Membrane controller [CN-376 (1)]

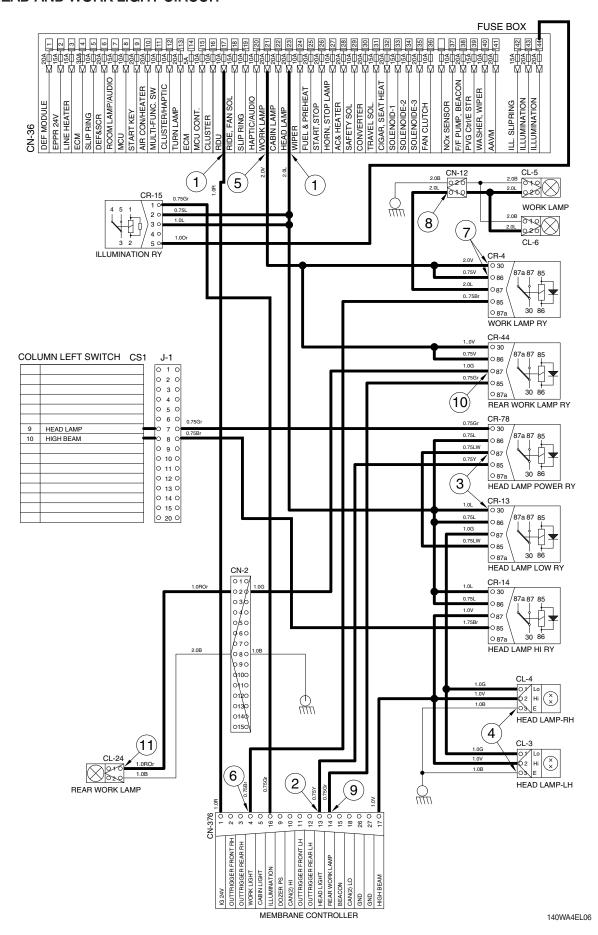
(1) Head light switch ON

- -- Head light switch ON [CN-376 (13)]
- \rightarrow Head light power relay [CR-78 (85) \rightarrow (87)]
- → Head light low relay [CR-13 (85)→(87)] → Head light ON [CL-3 (1)], CL-4 (1)]

(2) Work light switch ON

Work light switch ON [CN-376 (4)] \longrightarrow Work light relay [CR-3 (85) \rightarrow (87)] \longrightarrow I/conn [CN-12 (1)] \longrightarrow Work light ON [CL-5 (2), CL-6 (2)]

(3) Rear work light switch ON


Work light switch ON [CN-376 (14)] \longrightarrow Rear work light relay [CR-44 (85) \rightarrow (87)] \longrightarrow I/conn [CN-2 (2)] \longrightarrow Rear work light ON [CL-24 (1)]

2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (fuse box)	
		② - GND (switch power output)	
		③ - GND (head light relay)	
		④ - GND (head light)	
		⑤ - GND (fuse box)	
STOP	ON	⑥ - GND (switch power output)	20~30 V
		⑦ - GND (work light relay)	
		8 - GND (work light)	
		GND (switch power output)	
		GND (rear work light relay)	
		① - GND (rear work light)	

The circuit diagram may differ from the equipment, so please check before a repair.

HEAD AND WORK LIGHT CIRCUIT

^{*} The circuit diagram may differ from the equipment, so please check before a repair.

5. BEACON LAMP AND CAB LIGHT CIRCUIT

1) OPERATING FLOW

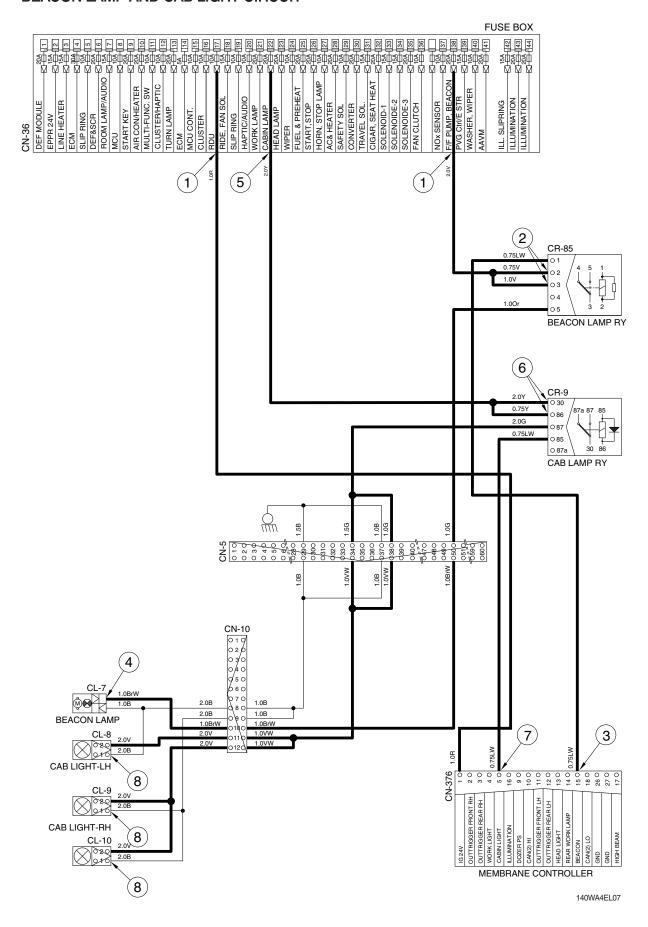
Fuse box (No.38) → Beacon lamp relay [CR-85 (2, 3)]
Fuse box (No.22) → Cab light relay [CR-9 (30, 86)]
Fuse box (No.17) → Membrane controller [CN-376 (1)]

(1) Beacon lamp switch ON

Beacon lamp switch ON [CN-376 (15)] \longrightarrow Beacon light relay [CR-85 (1) \rightarrow (5)] \longrightarrow I/conn [CN-5 (50)] \longrightarrow I/conn [CN-10 (10)] \longrightarrow Beacon lamp ON [CL-7]

(2) Cab light switch ON

Cab light switch ON [CN-376 (5)] — Cab lamp relay [CR-9 (85) → (87)]
— I/conn [CN-10 (11)] — Cab light ON [CL-8 (2)]
— I/conn [CN-10 (12)] — Cab light ON [CL-9 (2), CL-10 (2)]


2) CHECK POINT

Engine	Start switch	Check point	Voltage	
		① - GND (fuse box)		
		② - GND (beacon lamp relay)		
		③ - GND (switch power output)		
CTOD	ON	ON	④ - GND (beacon lamp)	20~25 V
STOP		⑤ - GND (fuse box)	20~25 V	
		⑥ - GND (cab light relay)		
		⑦ - GND (switch power output)		
		8 - GND (cab light)		

****** GND : Ground

The circuit diagram may differ from the equipment, so please check before a repair.

BEACON LAMP AND CAB LIGHT CIRCUIT

The circuit diagram may differ from the equipment, so please check before a repair.

6. WIPER AND WASHER CIRCUIT

1) OPERATING FLOW

(1) Key switch ON

Fuse box (No.11) — I/conn [J-1 (4)] — Column left switch [CS1 (13)]

Fuse box (No.24) — I/conn [J-1 (12)] — Column left switch [CS1 (26)]

Fuse box (No.40) — Wiper motor [CN-21 (1)]

Washer pump relay [CR-49 (1, 3)]

Int wiper relay [CR-6 (3)]

Wiper relay [CR-4 (86, 87)]

(2) Wiper switch ON: 1st step

Wiper switch ON [Column left switch CS1 (23)] \longrightarrow I/conn [J-1 (6)] \longrightarrow Int wiper relay [CR-6 (1) \rightarrow (2)] \longrightarrow Wiper relay [CR-4 (85) \rightarrow (87a)] \longrightarrow Wiper motor intermittently operating [CN-21 (3)]

(3) Wiper switch ON: 2nd step

Wiper switch ON [Column left switch CS1 (22)] \longrightarrow I/conn [J-1 (1)] \longrightarrow Int wiper relay [CR-6 (4) \rightarrow (3)] \longrightarrow Wiper relay [CR-4 (87) \rightarrow (30)] \longrightarrow Wiper motor operating [CN-21 (2)]

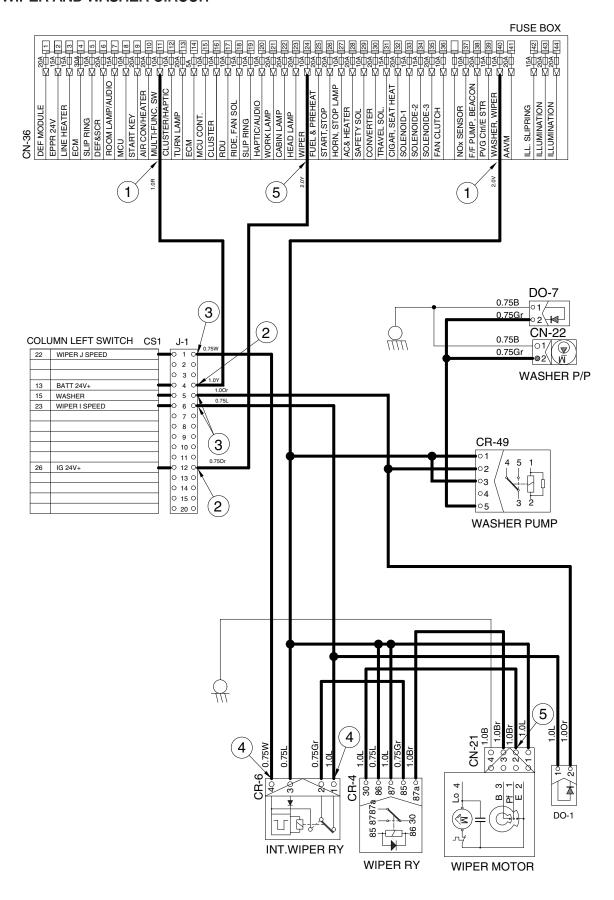
(4) Washer switch ON

Washer switch ON [Column left switch CS1 (15)] → I/conn [J-1 (5)]

→ Washer pump relay [CR-49 (2)→(5)] → Washer pump [CN-22 (2)] → Washer operating

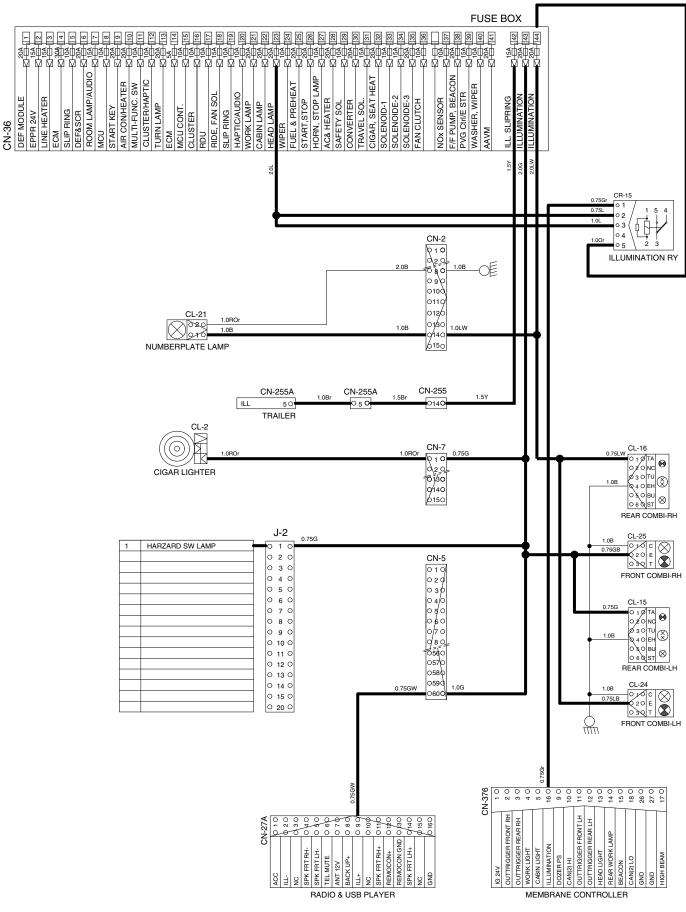
(5) Auto parking (when switch OFF)

Switch OFF [Column left switch OFF position] - Wiper motor parking position by control unit.


2) CHECK POINT

Engine	Start switch	Check point	Voltage
		① - GND (fuse box)	20~25 V
		② - GND (switch power input)	20~25 V
STOP	ON	③ - GND (switch power output)	0~5 V
		④ - GND (Inter wiper relay input)	U~5 V
		⑤ - GND (wiper motor)	0 or 24 V

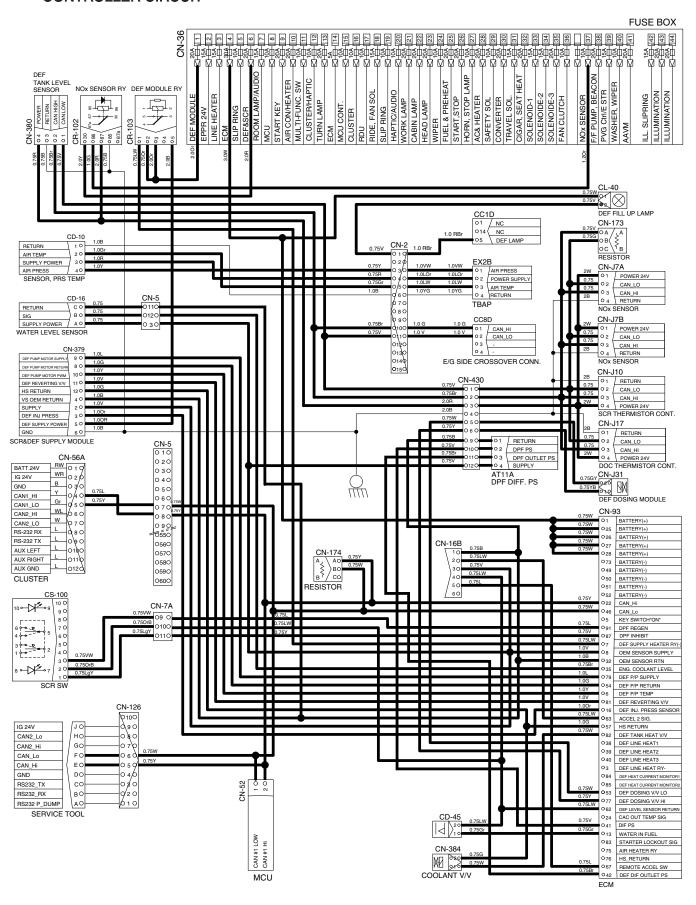
***** GND : Ground


The circuit diagram may differ from the equipment, so please check before a repair.

WIPER AND WASHER CIRCUIT

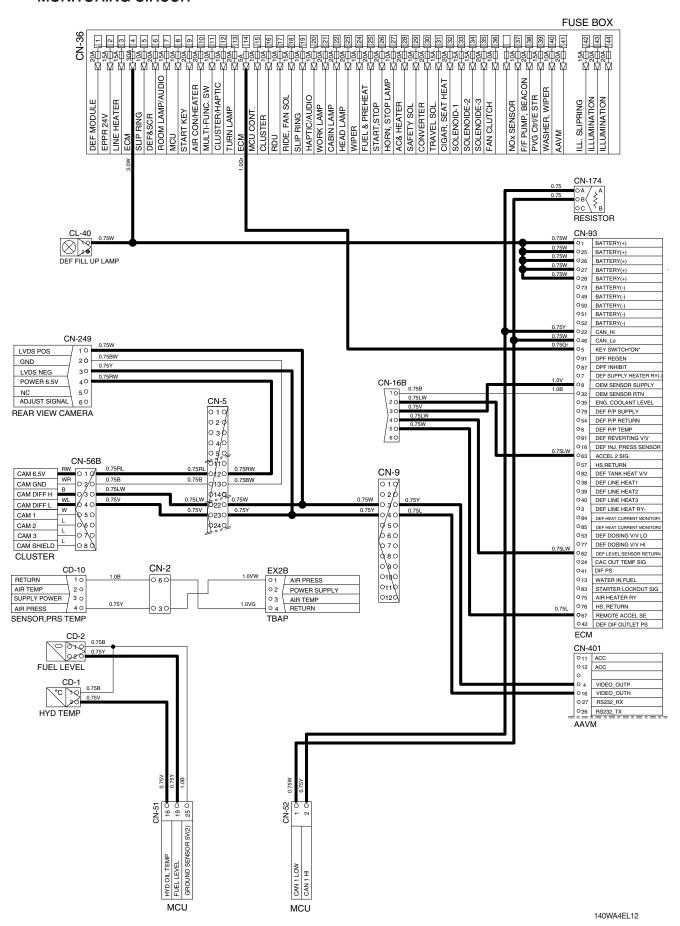

140WA4EL08

ILLUMINATION CIRCUIT

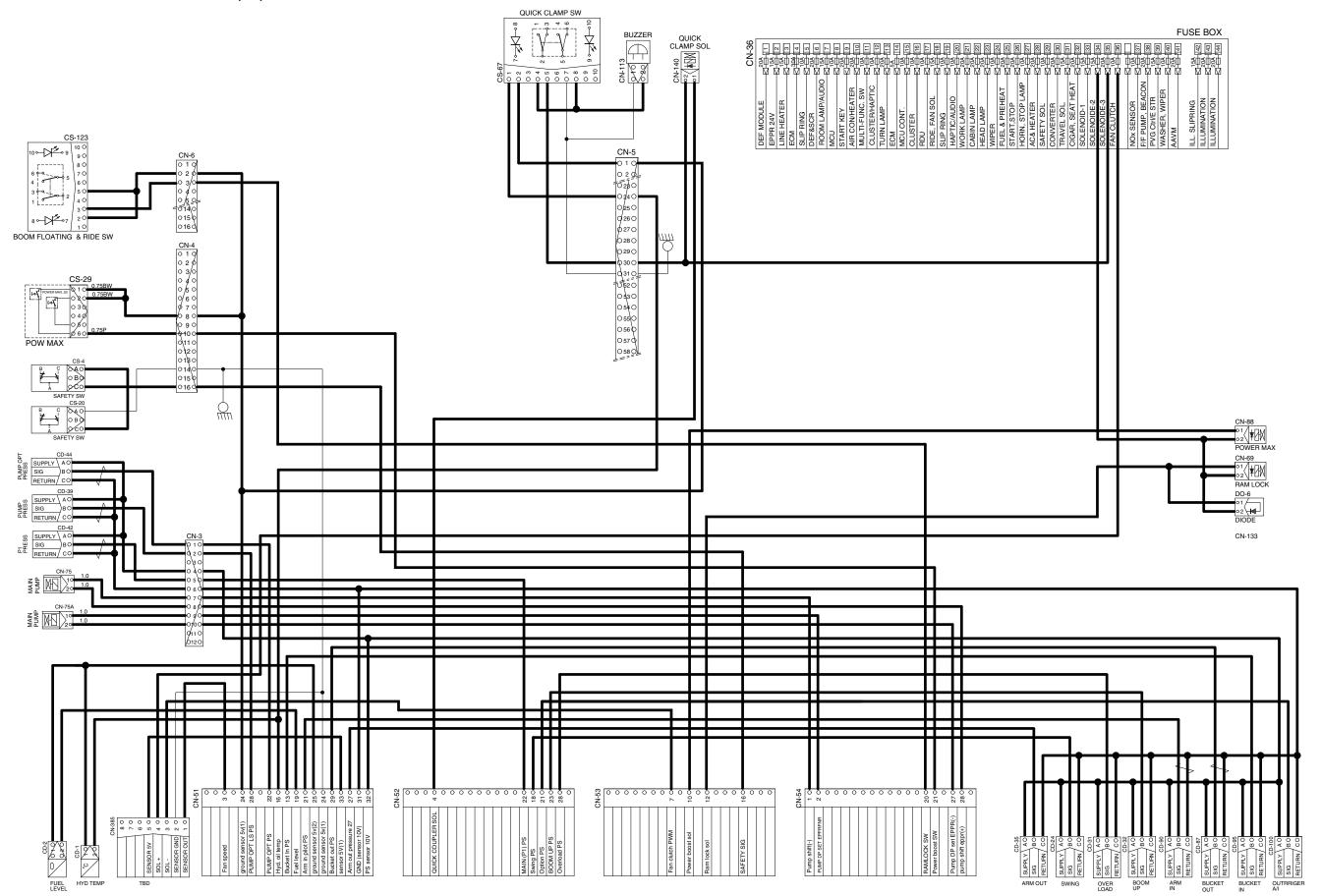

140WA4EL09

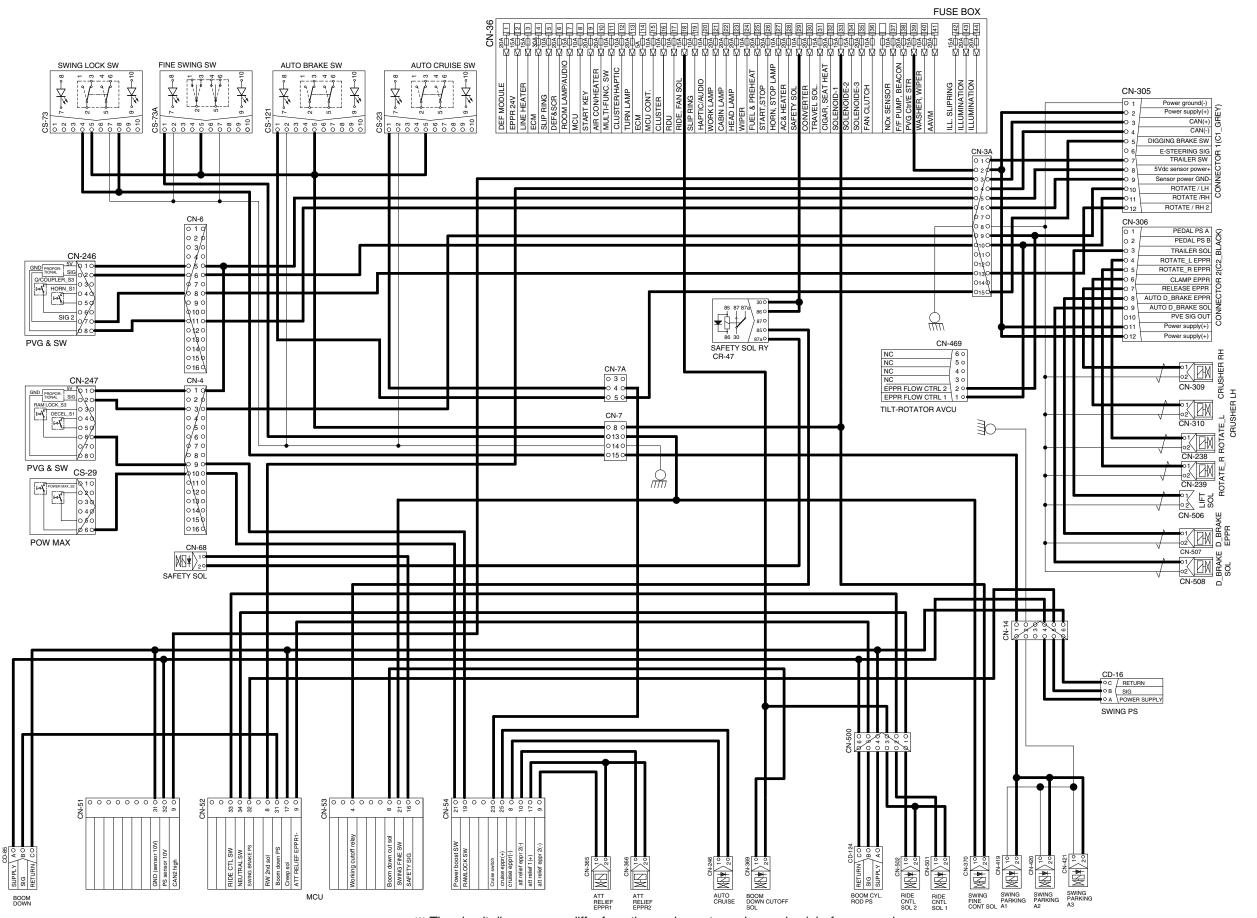
COMBINATION LAMP CIRCUIT

* The circuit diagram may differ from the equipment, so please check before a repair.


CONTROLLER CIRCUIT

140WA4EL11


The circuit diagram may differ from the equipment, so please check before a repair.


MONITORING CIRCUIT

The circuit diagram may differ from the equipment, so please check before a repair.

ELECTRIC CIRCUIT FOR HYDRAULIC (1/2)

GROUP 3 ELECTRICAL COMPONENT SPECIFICATION

Part name	Symbol	Specifications	Check
Battery		12V × 100Ah (2EA)	 Check specific gravity 1.280 over : Over charged 1.280 ~ 1.250 : Normal 1.250 below : Recharging
Battery relay	CR-1	Rated load: 24V 100A (continuity) 1000A (30 seconds)	 ※ Check coil resistance(M4 to M4) Normal : About 50 Ω ※ Check contact Normal : ∞ Ω
Glow plug relay	CR-24	24V 200A	% Check contactNormal : 0.942 Ω(For terminal 1-GND)
Start key	CS-2A	B-BR : 24V 1A B-ACC : 24V 10A B-ST : 24V 40A	% Check contact OFF: $\infty \Omega$ (for each terminal) ON: 0Ω (for terminal 1-3 and 1-2) START: 0Ω (for terminal 1-6)
Pressure sensor	CD-3 CD-5 CD-16 CD-24 CD-31 CD-32 CD-35 CD-37 CD-38 CD-39 CD-42 CD-44 CD-71 CD-73 CD-74 CD-85 CD-87 CD-90 CD-95 CD-100 CD-101 CD-102 CD-124 CD-145 CD-146 CD-156	8~30V	% Check contact Normal: 0.1 Ω
Stop lamp pressure sensor	O A SUPPLY O B RETURN O C SIG CD-4	8~30V	* Check contact Normal : 0.1 Ω

Part name	Symbol	Specifications	Check
Resistor	○ A	3W	* Check resistance A-B: 120Ω
Glow plug	CN-80	24V 200A	* Check resistance 0.25~0.12 Ω
Temperature sensor (hydraulic)	°C 20	-	% Check resistance 50°C : 804Ω 80°C : 310Ω 100°C : 180Ω
Fan speed sensor	DB CD-52	-	-
Fuel level sender	CD-2	-	* Check resistance Full: 50Ω 6/12: 350Ω 11/12: 100Ω 5/12: 400Ω 10/12: 150Ω 4/12: 450Ω 9/12: 200Ω 3/12: 500Ω 8/12: 250Ω 2/12: 550Ω 7/12: 300Ω 1/12: 600Ω Empty warning: 700Ω
Relay (air con blower)	3 4 4 0 3 0 2 0 1 2 1 0	24V 16A	** Check resistance Normal : About 200

Part name	Symbol	Specifications	Check
Relay	CR-2 CR-5 CR-15 CR-36 CR-39 CR-45 CR-49 CR-51 CR-69 CR-70 CR-81 CR-82 CR-83 CR-84 CR-85	24V 16A	% Check resistance Normal : About 160 Ω (for terminal 1-2) 0Ω (for terminal 3-4) $\infty\Omega$ (for terminal 3-5)
Relay	CR-3 CR-4 CR-7 CR-9 CR-12 CR-13 CR-14 CR-29 CR-30 CR-35 CR-44 CR-46 CR-47 CR-50 CR-52 CR-66 CR-78	24V 16A	% Check resistance Normal : About 160 Ω (for terminal 85-86) 0Ω (for terminal 30-87a) $\infty \Omega$ (for terminal 30-87)
Solenoid valve	CN-66 CN-68 CN-69 CN-70 CN-88 CN-122 CN-123 CN-140 CN-181 CN-197 CN-206 CN-214 CN-216 CN-218 CN-220 CN-370 CN-419 CN-420 CN-421 CN-501 CN-502 CN-506	24V 1A	% Check resistance Normal : 15~25 Ω (for terminal 1-2)
EPPR valve	CN-75 CN-75A CN-154 CN-155 CN-238 CN-239 CN-246 CN-309 CN-310 CN-365 CN-366 CN-369 CN-378 CN-503 CN-507 CN-508	700mA	* Check resistance Normal: 15~25
Speaker	CN-23(LH) CN-23(RH)	20W	** Check resistance Normal : A few Ω
Switch (locking type)	CS-23 CS-67 CS-73 CS-73A CS-121 CS-125	24V 1.5A	% Check contact Normal ON : 0 Ω (for terminal 2-3, 5-6) ∞ Ω (for terminal 1-2, 4-5) OFF: ∞ Ω (for terminal 2-3, 5-6) 0 Ω (for terminal 1-2, 4-5)

Part name	Symbol	Specifications	Check
Room lamp	3 O 2 O 1 O	24V 10W	% Check disconnection Normal : 1.0Ω ON : 0Ω (For terminal 1-2) Ω (For terminal 1-3) OFF : Ω (For terminal 1-2) Ω (For terminal 1-3)
Hazard switch	8+ 2 5 RS1 7- 1 3 4 6 0 1	24V 1.5A	% Check contact Normal ON : 0Ω (For terminal 2-3, 5-6) OFF : $\infty\Omega$ (For terminal 2-3, 5-6)
Work lamp, Cab lamp, Number plate lamp	CL-5 CL-6 CL-8 CL-9 CL-10 CL-21 CL-32	24V 65W (H3 Type)	* Check disconnection Normal : 1.2 Ω
Beacon lamp	CL-7	21V 70W (H1 Type)	** Check disconnection Normal : A few Ω
Fuel filler pump	M M2 M2 M2 M3 M3 M3 M3 M4 M4 M5 M5 M5 M5 M5 M5 M5 M5	24V 10A 35 ℓ /min	* Check resistance Normal : 1.0 Ω
Hour meter	3 h 2 h 1 CN-48	16~32V	** Check operation Supply power(24V) to terminal No.2 and connect terminal No.1 and ground

Part name	Symbol	Specifications	Check
Horn	CN-20 CN-25	DC22~28V 2A	** Check operation Supply power (24V) to each terminal and connect ground.
Safety switch	B C O B O C O C S-4 CS-20	24V 15A (N.C TYPE)	** Check contact Normal : 1.0Ω ON : 0Ω (for terminal A-B) $\propto \Omega$ (for terminal A-C) OFF : $\propto \Omega$ (for terminal A-B) 0Ω (for terminal A-C)
Int wiper relay	CR-6	-	-
Receiver dryer	Pa 2 0 CN-29	24V 2.5A	\Re Check contact Normal : $∞$ Ω
Radio & USB player	ACC GND	24V 2A	** Check voltage 20~25V (for terminal 1-3, 3-8)
Washer pump	M 2 Ø 1 O CN-22	24V 3.8A	% Check contact Normal : 10.7 Ω (for terminal 1-2)

Part name	Symbol	Specifications	Check
Wiper motor	B 3 0 40 0 30 0 20 0 10 CN-21	24V 2A	\divideontimes Check disconnection Normal : 7Ω (for terminal 2-4)
DC/DC converter	0 3 0 12V 12V 24V QND 24V CN-138	12V 3A	% Check voltage24V (for terminal 1-2)12V (for terminal 1-3)
Cigar lighter	CL-2	24V 5A 1.4W	 ※ Check coil resistance Normal : About 1MΩ ※ Check contact Normal : ∞Ω Operating time : 5~15sec
Alternator	© B+	24V 95A	※ Check contact Normal: 0Ω (for terminal B+-L) Normal: 24~27.5V
Starter	M M B+ CN-45	24V 4.8kW	※ Check contact Normal: 0.1 Ω
Travel alarm	CN-81	24V 0.5A	* Check contact Normal : 5.2 Ω

Part name	Symbol	Specifications	Check
Air conditioner compressor	CN-28	24V 79W	% Check contact Normal: 13.4Ω
Start relay	CR-23	24V 300A	% Check contact Normal : 0.94Ω (for terminal 1-2)
Blower motor	20 <u>M</u>	24V 9.5A	% Check resistance Normal: 2.5 Ω (for terminal 1-2)
Duct sensor (switch)	20	1°C OFF 4°C ON	** Check resistance Normal : 0 \(\Omega\$ (for terminal 1-2), the atmosphere temp : Over 4°C *C
Door switch	CS-1	24V 2W	** Check resistance Normal : About 5M Ω
Switch (power max, one touch decel, horn, breaker)		24V 6A	* Check resistance Normal : $∞$ Ω

Part name	Symbol	Specifications	Check
Radar	POWER 1 0 RETURN 2 0 CAN2 HIGH 3 0 CAN2 LOW 4 0 CN-441	-	-
Circuit breaker	CN-60 CN-95	CN-60 : 60A CN-95 : 90A	 Check disconnection Normal: 0Ω (connect ring terminal and check resist between terminal 1 and 2)
Master switch	○ ○ ○ CS-74B	6-36V	% Check disconnection Normal : 0.1Ω
Quick clamp buzzer	CN-113	24V 200mA 107±4dB	-
Socket	O1 O2 CN-139	12V 10A	-
SCR switch	CS-100	24V 8A	% Check contact Normal OFF : $\infty \Omega$ (for terminal 2-1, 2-3, 4-5, 5-6)

Part name	Symbol	Specifications	Check
Select switch	100 9 100 90 80 70 80 70 40 30 80 70 40 30 80 70 100 80 70 100 80 80 80 80 80 80 80 80 80 80 80 80 8	24V 8A	% Check contact Normal 0 or : $\infty \Omega$ (for terminal 2-1, 2-3, 4-5, 5-6)
Fuel heater	m	-	-
DEF/AdBlue® line heater	O 1 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2	-	-
WIF sensor	©2 ©1 CD-45	-	※ Check disconnection Normal: 68.8~4.94 Ω
Master switch	CS-74	6 - 36V	**Check disconnection Normal : 0.1 Ω
Rear combination lamp-LH,RH	TA 1 0 TU 2 0 NC 3 0 EH 0 4 0 BU 5 0 ST 0 6 0	24V 21W×2 LED	% Check resistance Normal : 4.8Ω (For terminal 1-4) Normal : 2.1Ω (For terminal 2-4, 4-5, 4-6)

Part name	Symbol	Specifications	Check
Front combination lamp-LH, RH	C 0 1 0 E 0 2 0 T 0 3 0 CL-24 CL-25	24V 21W 24V 10W	% Check resistance Normal : 4.8Ω (For terminal 1-2) Normal : 2.1Ω (For terminal 2-3)
Head lamp -LH, RH	O_1 Lo O_2 Hi O_3 E CL-3 CL-4	24V 75/70W	% Check resistance Normal : 1.0Ω (For terminal 1-3, 2-3) Normal : 1.5Ω (For terminal 1-2)
Pressure temperature sensor	O 1 RETURN O 2 AIR TEMP O 3 SUPPLY POWER O 4 AIR PRESS CD-10	5.0V 0.2A	* Check contact Normal 0Ω (for terminal 1-2, 47.5 Ω) Ω (for terminal 3-1, 1k Ω) Ω (for terminal 4-1, 1k Ω)
Sensor (NOx, SCR, DOC)	O1	-	-
DEF/AdBlue® fill up warning lamp (LED)	CL-40	-	-
Seat belt switch	2 0 2 0 1 0 CS-250	-	-

Part name	Symbol	Specifications	Check
DEF/AdBlue® full lamp	CL-40	-	-
DEF lamp	○ 1	-	-
Air conditioner temperature sensor (incar, ambient)		-	-
EPPR valve	CN-384 CN-J31	24V 700mA	**Check resistance Normal : 15~25Ω (For terminal 1-2)
DEF/AdBlue® tank level senosr	O 1 POWER O 2 RETURN O 3 CAN HIGH O 4 CAN LOW CN-380	-	-
ТВАР	O 1 AIR PRESS O 2 POWER SUPPLY O 3 AIR TEMP O 4 RETURN EX2B	-	-

Part name	Symbol	Specifications	Check
Dozer act pressure switch	Pa 2 0 1 0 CD-50	N.O type	% Check resistance Normal : $∞$ $Ω$ (open)
Flasher unit	G 49a 2 0 3 0 4 0 C2 C 6 0 30b 1 0 CR-11	24V 85~190 C/M 50dB	-
Speed sensor	1 O 2 O 3 O CD-46	-	-
DEF Dif pressure sensor	O 1 RETURN O 2 DPF PS O 3 DPF OUTLET PS O 4 SUPPLY AT11A	-	-
Smart button	○ A	-	-
Camera	01 LVDS POS 02 GND 03 LVDS NEG 04 POWER 24V 05 NC 06 ADJUST SIGNAL CN-249 CN-402 CN-403 CN-404 CN-405	-	-

GROUP 4 CONNECTORS

1. CONNECTOR DESTINATION

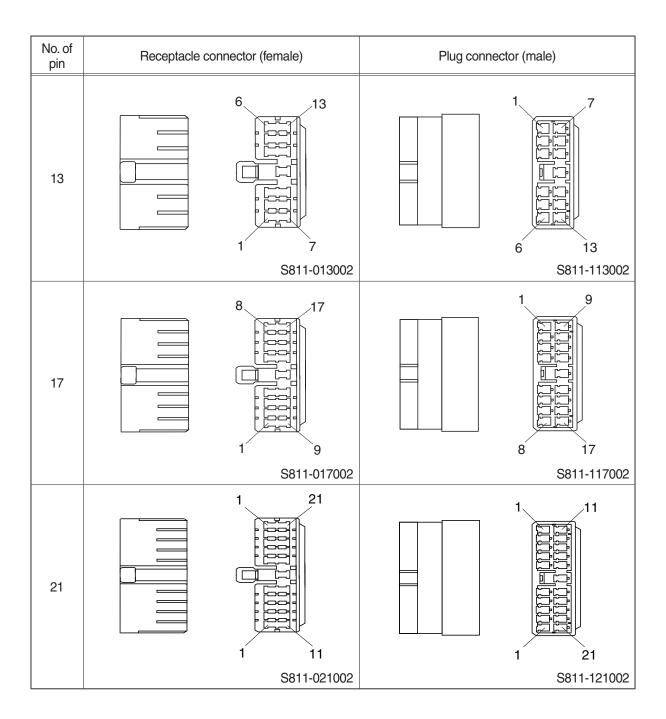
Connector Type		No. of	Destination	Connecto	or part No.
number	туре	pin	Destination	Female	Male
CN-2	DELPHI	15	I/conn (Frame harness-Engine harness)	2-85262-1	368301-1
CN-3	TYCO	12	I/conn (Frame harness-Engine harness)	174661-2	368537-1
CN-3A	AMP/TYCO	12	I/conn (Frame harness-PVG harness)	2-85262-1	368301-1
CN-4	AMP	16	l/conn (Console harness LH-Frame harness)	368047-1	S816-116002
CN-5	DEUTSCH	60	I/conn (Side harness RH-Frame harness)	DRB16-60SAE-L018	DRB12-60PAE-L018
CN-6	AMP	16	l/conn (Console harness RH-Frame harness)	368047-1	S816-116002
CN-7	AMP	15	l/conn (Console harness RH-Frame harness)	2-85262-1	368301-1
CN-7A	AMP	12	l/conn (Console harness RH-Frame harness)	174661-2	368537-1
CN-8	AMP	10	l/conn (Console harness RH-Frame harness)	S816-010002	S816-110002
CN-9	DEUTSCH	12	I/conn (Frame harness-AAVM harness)	DT06-12S	DT04-12PA-P021
CN-10	DEUTSCH	12	I/conn (Cab harness-Side harness RH)	DT06-12S-EP06	DT04-12PA-P021
CN-11	DEUTSCH	8	Air conditioner harness	DT06-8S-EP06	-
CN-12	DEUTSCH	2	I/conn (Frame harness-Boom wire harness)	DT06-2S-EP06	DT04-2P-E005
CN-14	DEUTSCH	6	I/conn (Frame harness-swing parking harness)	DT06-6S-EP06	DT04-6P-EP06
CN-16	AMP	6	Emergency engine start & speed control	S816-006002	-
CN-16A, B	AMP	6	Emergency engine start & speed control	-	S816-106002
CN-20	DEUTSCH	2	Horn	DT06-2S-EP06	-
CN-21	DEUTSCH	4	Wiper motor	DT06-4S-EP06	-
CN-22	KET	2	Washer pump	MG640605	-
CN-23	KET	2	Speaker-LH	MG610070	-
CN-24	KET	2	Speaker-RH	MG610070	-
CN-25	DEUTSCH	2	Horn	DT06-2S-EP06	-
CN-27A	KUM	16	Radio & USB player	PK145-16017	-
CN-27B	AMP	8	USB player	-	174984-2
CN-28	KET	2	Aircon compressor	MG610320	-
CN-29	KET	2	Receiver dryer	MG640795	-
CN-31	-	2	Fuse 1	-	174352-2
CN-32	-	2	Fuse 1	-	174352-2
CN-36	TYCO	-	Fuse box (micro relay)	-	3-1393292-8
CN-45	RING-TERM	-	Starter motor B+ /G terminal	S820-410000	-
CN-45	RING-TERM	-	Starter motor M terminal	ST710246-2	-
CN-48	KET	1	Service meter	2-520193-2	-
CN-51	TE	34	MCU	2-1437285-3	-
CN-52	TE	34	MCU	4-1437290-1	-
CN-53	TE	26	MCU	1473416-1	-

IVA		No. of	Destination	Connecto	Connector part No.		
number	туре	pin	Destination	Female	Male		
CN-54	TE	34	MCU	4-1437290-0	-		
CN-56A	AMP	12	Cluster	-	174663-2		
CN-56B	AMP	8	Cluster	-	174984-2		
CN-60	YAZAKI	2	Circuit breaker	-	7222-4220-30		
CN-61	DEUTSCH	4	Fuel filler pump	DT06-4S-EP06	DT04-4P		
CN-68	DEUTSCH	2	Safety solenoid	DT06-2S-EP06	-		
CN-69	DEUTSCH	2	Ram lock solenoid	DT06-2S-EP06	-		
CN-70	DEUTSCH	2	Travel high solenoid	DT06-2S-EP06	-		
CN-74	RING-TERM	1	Alternator "L" terminal	MG820-105000	-		
CN-74	RING-TERM	1	Alternator "B+" terminal	MG820-108000	-		
CN-74	RING-TERM	1	Alternator "G" terminal	MG820-306001	-		
CN-75	DEUTSCH	2	Main pump shift EPPR valve	S816-002002	-		
CN-75A	DEUTSCH	2	Main pump DP EPPR valve	DT06-2S-EP06	-		
CN-80	RING-TERM	-	Glow plug	S820-406001	-		
CN-81	DEUTSCH	2	Travel buzzer solenoid	DT06-2S-EP06	-		
CN-88	DEUTSCH	2	Power max solenoid	DT06-2S-EP06	-		
CN-93	DELPHI	96	To ECU	13964577	-		
CN-95	YAZAKI	2	Circuit breaker	-	722-4220-30		
CN-96	-	2	Fuel warmer	1530 0027	-		
CN-100	KET	1	Battery earth	MG640994-5	-		
CN-113	KET	2	Quick clamp buzzer	MG651205-5	-		
CN-122	DEUTSCH	2	Forward solenoid	DT06-2S-EP06	-		
CN-123	DEUTSCH	2	Reverse solenoid	DT06-2S-EP06	-		
CN-125	Econoseal J	4	GPS connector	S816-004002	S816-104002		
CN-125A	DEUTSCH	12	GPS	DT06-12S-P021	DT04-12PA-P021		
CN-125B	DEUTSCH	8	RMS	DT06-8S-P021	DT04-8P		
CN-126	AMP	10	Service tool	S816-010002	S816-110002		
CN-126A	DEUTSCH	4	RMS service tool	DT06-4S	DT04-4P		
CN-131	-	6	I/conn (Stop lamp harness-Frame harness)	S816-006002	S816-106002		
CN-132	DEUTSCH	2	Safety solenoid	DT06-2S-EP06	-		
CN-138	FASTEN	3	DC/DC Converter	S810-003202	-		
CN-139	FASTEN	2	12V socket	172434-2	-		
CN-140	DEUTSCH	2	Quick clamp solenoid	DT06-2S-EP06	DT04-2P-E005		
CN-150	DEUTSCH	2	Auto grease solenoid	DT06-2S-EP06	DT04-2P-E005		
CN-154	DEUTSCH	2	Fan EPPR	DT06-2S-EP06	-		
CN-155	DEUTSCH	2	Fan reverse solenoid	DT06-2S-EP06	-		
CN-156	DEUTSCH	60	MTCU	DRC26-40SA	-		
CN-156	AMP	2	Air seat	-	S822-114002		

Connector			Destination	Connecto	or part No.
number	туре	pin	Destination	Female	Male
CN-157	AMP	1	Antena power	S822-014002	-
CN-168	DEUTSCH	12	PVED-CLS	DT06-12S	-
CN-173	DEUTSCH	3	Resistor	DT06-3S-EP06	DT04-3P-EP10
CN-174	DEUTSCH	3	Resistor	DT06-3S-EP06	-
CN-181	DEUTSCH	2	Travel low speed solenoid	DT06-2S-EP06	-
CN-197	DEUTSCH	2	Swing brake solenoid	DT06-2S-EP06	-
CN-206	DEUTSCH	2	Creep solenoid	DT06-2S-EP06	-
CN-214	DEUTSCH	2	Front outrigger solenoid - RH	DT06-2S-EP06	DT04-2P-E005
CN-216	DEUTSCH	2	Front outrigger solenoid - LH	DT06-2S-EP06	DT04-2P-E005
CN-218	DEUTSCH	2	Rear outrigger solenoid - RH	DT06-2S-EP06	DT04-2P-E005
CN-220	DEUTSCH	2	Rear outrigger solenoid - LH	DT06-2S-EP06	DT04-2P-E005
CN-238	DEUTSCH	2	Rotate-LH (A1)	DT06-2S-EP06	DT04-2P
CN-239	DEUTSCH	2	Rotate-RH (A2)	DT06-2S-EP06	DT04-2P
CN-246	DEUTSCH	2	Cruise solenoid	DT06-2S-EP06	-
CN-246	DEUTSCH	8	PVG switch	DT06-8S	-
CN-247	DEUTSCH	8	PVG signal	DT06-8S	-
CN-249	DEUTSCH	6	Rear view camera	DT06-6S-EP06	DT04-6P
CN-253	-	16	Slipring	368047-1	-
CN-255	-	18	Slipring	8-1447231-1	8-1447231-9
CN-255A	DEUTSCH	8	Trailer hitch	DT06-8S	DT04-8P
CN-255B	-	7	Trailer socket	-	-
CN-305	DEUTSCH	12	PVG connector	DTM06-12SA	-
CN-306	DEUTSCH	12	PVG connector	DTM06-12SB	-
CN-307	DEUTSCH	3	Service tool	DT06-3S-EP06	DT04-3P-E005
CN-309	DEUTSCH	2	2 way clamp	DT06-2S-EP06	-
CN-310	DEUTSCH	2	2 way release	DT06-2S-EP06	-
CN-313	DEUTSCH	4	Service tool	DT06-4S	-
CN-363	-	12	Jog dial module	174045-2	-
CN-365	DEUTSCH	2	Attachment relief EPPR valve 1	DT06-2S-EP06	-
CN-366	DEUTSCH	2	Attachment relief EPPR valve 2	DT06-2S-EP06	-
CN-369	DEUTSCH	2	Boom down cut-off solenoid	DT06-2S-E005	DT04-2P-E005
CN-370	DEUTSCH	2	Swing fine control solenoid	DT06-2S-EP06	DT04-2P-E005
CN-376	TYCO	34	RDU	4-1437290-1	-
CN-379	TYCO	12	SCR supply module	2-1703639-1	-
CN-380	DEUTSCH	4	DEF/AdBlue® tank level sensor	DT06-4S-EP06	-
CN-381	DEUTSCH	2	DEF/AdBlue® line heater 1	DT06-2S-EP06	-
CN-382	DEUTSCH	2	DEF/AdBlue® line heater 2	DT06-2S-EP06	-
CN-383	DEUTSCH	2	DEF/AdBlue® line heater 3	DT06-2S-EP06	-

Connector Type		No. of	Destination	Connecto	r part No.
number	туре	pin	Destination	Female	Male
CN-384	TYCO	2	Coolant valve	1-967325-3	-
CN-401	TE	35	AAVM controller	776164-1	-
CN-402	DEUTSCH	6	Front view camera	DT06-6S-P021	DT04-6P-P021
CN-403	DEUTSCH	6	Rear view camera	-	DT04-6P-EP14
CN-404	DEUTSCH	6	Left view camera	-	DT04-6P-EP14
CN-405	DEUTSCH	6	Right view camera	-	DT04-6P-EP14
CN-406	DEUTSCH	3	RS 232	DT06-3S-EP06	DT04-3P-E005
CN-419	DEUTSCH	2	Swing parking A1	DT06-2S-EP06	-
CN-420	DEUTSCH	2	Swing parking A2	DT06-2S-EP06	-
CN-421	DEUTSCH	2	Swing parking A3	DT06-2S-EP06	-
CN-427	MOLEX	12	Reader	5557-12R	5559-12P
CN-430	DEUTSCH	12	I/conn (Side harness RH-Aftertreatment harness)	DT06-12S-EP06	DT06-12P-E005
CN-431	KET	20	Aux monitor	MG653026	-
CN-441	DEUTSCH	4	Radar	DT06-4S-EP06	DT04-4P
CN-451	CARLING	9	Trailer indicator	VC2-01	-
CN-500	DEUTSCH	6	Ride control solenoid connector	DT06-6S-EP06	DT04-6P
CN-500	DEUTSCH	3	I/conn (Frame harness-Ride control harness)	-	DT04-6P
CN-501	DEUTSCH	2	Ride control solenoid 1	DT06-2S-E005	-
CN-502	DEUTSCH	2	Ride control solenoid 2	DT06-2S-E005	-
CN-503	DEUTSCH	2	Ride control solenoid 3	DT06-2S-E005	-
CN-506	DEUTSCH	8	Lift solenoid	DT06-2S	DT04-2P
CN-506	DEUTSCH	2	Lift solenoid	DT06-2S-EP06	DT04-2P
CN-507	DEUTSCH	2	Digging brake EPPR	DT06-2S-EP06	-
CN-508	DEUTSCH	2	Digging brake solenoid	DT06-2S-EP06	-
CN-J7A	TYCO	4	DOC NOx sensor	2-1418390-1	-
CN-J7B	TYCO	4	SCR NOx sensor	1-1418390-1	-
CN-J10	TYCO	4	SCR thermistor controller	5-1418390-1	-
CN-J17	TYCO	4	DOC thermistor controller	4-1418390-1	-
CN-J31	BOSCH	2	DEF/AdBlue® dosing module	1_928_403_874	-
CC1D	FCI	14	DEF lamp connector	13533441	-
CC8D	DEUTSCH	4	Engine side crossover connector	DT06-4S-EP06	-
EX2B	FCI	4	ТВАР	54200419	-
J-1	TE	20	Multifunction switch	-	1-0640514-0
J-2	TE	20	Multifunction switch	1-0640524-0	-
· Relay					
CR-1	RING-TERM	1	Battery relay B+/IG terminal	ST710285-2	-
CR-2	-	5	Horn relay	-	-
CR-3	-	5	Working lamp relay	-	-

Connector Type		No. of Destination		Connector part No.	
number	туре	pin	Destination	Female	Male
CR-5	-	5	Anti restart relay	-	-
CR-6	TE	4	Wiper relay	174202-1	-
CR-7	-	5	Aircon compressor relay	-	-
CR-9	-	5	Cabin lamp relay	-	-
CR-11	HELLA	6	Flasher unit relay	701-230-001	-
CR-12	-	5	Travel speed relay	-	-
CR-13	-	5	Head lamp low relay	-	-
CR-14	-	5	Head lamp high relay	-	-
CR-15	-	5	Illumination relay	-	-
CR-23	RINGTERM	1	Start relay S/G terminal	ST712089-2	-
CR-23	RINGTERM	1	Start relay B+/M terminal	ST710384-2	-
CR-24	RING TERM	1	Preheat relay B+/P terminal	S820-406001	-
CR-24	RING TERM	1	Preheat relay G terminal	S820-108000	-
CR-24	RING TERM	1	Preheat relay S terminal	S820-108000	-
CR-30	-	5	Travel reverse relay	-	-
CR-35	-	5	Power relay	-	-
CR-36	-	5	Preheat relay	-	-
CR-39	-	5	Starter lockout relay	-	-
CR-44	-	5	Rear work lamp relay	-	-
CR-45	-	5	Stop lamp relay	-	-
CR-46	-	5	Fuel warmer relay	-	-
CR-47	-	5	Safety solenoid relay	-	-
CR-50	-	5	NOx sensor relay	-	-
CR-51	-	5	DEF module relay	-	-
CR-52	-	5	Line heater relay	-	-
CR-62	-	5	Breaker relay	-	-
CR-66	-	5	Parking relay	-	-
CR-78	-	5	Head lamp power relay	-	-
CR-81	-	5	Front outrigger relay - RH	-	-
CR-82	-	5	Front outrigger relay - LH	-	-
CR-83	-	5	Rear outrigger relay - RH	-	-
CR-84	-	5	Rear outrigger relay - LH	-	-
CR-85	-	5	Beacon lamp relay	-	-
· Switch	1	1		1	1
CS-1	SHUR	1	Door switch	S822-014002	-
CS-2A	WP	6	Start key switch	S814-006100	-
CS-2B	DEUTSCH	3	Smart key	DT06-3S-EP06	DT04-3P-E005
CS-2C	KET	3	BKCU	MG651032	-

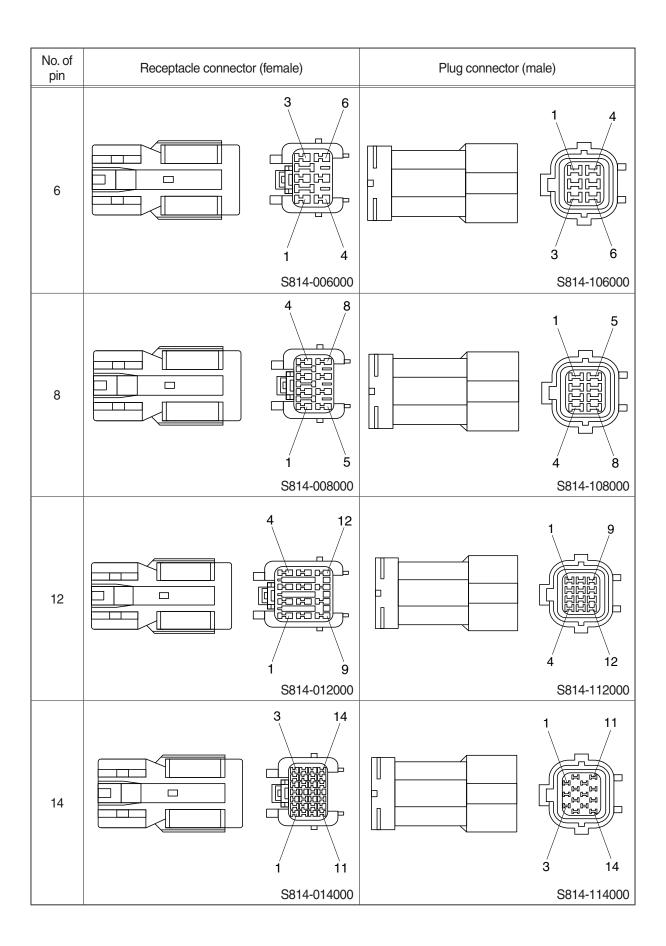

Connector Type		No. of	Destination	Connecto	r part No.
number	туре	pin	Destination	Female	Male
CS-2D	KET	3	Button key	-	MG641035
CS-4	DEUTSCH	3	Safety switch	DT06-3S	-
CS-10	DEUTSCH	6	FNR switch	DT06-6S	-
CS-20	AMP	3	Safety switch	-	DT04-3P
CS-23	CARLING	10	Auto cruise switch	VC2-01	-
CS-29	DEUTSCH	6	Power max switch	DT06-6S	-
CS-33	-	6	Emergency engine stop switch	S816-006002	S816-106002
CS-61	-	2	Boom floating switch	174352-2	S816-102002
CS-67	CARLING	10	Quick clamp switch	VC2-01	-
CS-73	CARLING	10	Swing lock switch	VC2-01	-
CS-73A	CARLING	10	Fine swing switch	VC2-01	-
CS-74	AMP	2	Master switch	S813-030201	-
CS-74B	DEUTSCH	2	Master switch	DT06-2S-EP06	-
CS-100	CARLING	10	SCR switch	VC2-01	-
CS-120	CARLING	10	Trailer lift switch	VC2-01	-
CS-121	CARLING	10	Auto digging brake switch	VC2-01	-
CS-122	CARLING	10	E steeing & crusher switch	VC2-01	-
CS-123	CARLING	10	Boom float & ride control switch	VC2-01	-
CS-124	CARLING	10	FNR emergency switch	VC2-01	-
CS-125	CARLING	10	FNR select switch	VC2-01	-
CS-250	-	2	Seat belt switch	-	-
· Light					
CL-1	KET	3	Room lamp	MG651032	-
CL-2	AMP	1	Cigar lighter	S822-014002	S822-114002
CL-3	-	3	Head lamp-LH	S810-003702	-
CL-4	-	3	Head lamp-RH	S810-003702	-
CL-5	DEUTSCH	2	Work lamp-LH	DT06-2S-EP06	-
CL-6	DEUTSCH	2	Work lamp-RH	DT06-2S-EP06	-
CL-7	DEUTSCH	2	Beacon lamp	DT06-2S-EP06	DT04-2P
CL-8	DEUTSCH	2	Cab light-LH	DT06-2S-EP06	DT04-2P
CL-9	DEUTSCH	2	Cab light-RH	DT06-2S-EP06	DT04-2P
CL-10	DEUTSCH	2	Cab light-RH	DT06-2S-EP06	DT04-2P
CL-15	AMP	6	Rear combination lamp-LH	PB625-06027	-
CL-16	AMP	6	Rear combination lamp-RH	PB625-06027	-
CL-21	KET	2	Number plate lamp	S814-002000	-
CL-24	AMP	3	Front combination lamp-LH	S816-003002	-
CL-24	DEUTSCH	2	Rear work lamp	DT06-2S-EP06	DT04-2P
CL-25	AMP	3	Front combination lamp-RH	S816-003002	-

Connector Type		No. of	Destination	Connecto	or part No.
number	туре	pin	Destination	Female	Male
CL-40	DEUTSCH	2	DEF/AdBlue® lamp	DT06-2S-EP06	-
· Sensor, s	sendor				1
CD-1	AMP	2	Hydraulic oil temp sender	85202-1	-
CD-2	DEUTSCH	2	Fuel level sender	DT06-2S-EP06	-
CD-3	DEUTSCH	3	Brake oil pressure sensor	DT06-3S-EP06	-
CD-4	DEUTSCH	3	Stop lamp pressure sensor	DT06-3S-EP06	-
CD-5	DEUTSCH	3	Transmission oil pressure sensor	DT06-3S-EP06	-
CD-10A	SUMITOMO	4	Pressure temperature sensor	6098-0144	-
CD-16	AMP	3	Water level sensor	1211-0293	-
CD-24	DEUTSCH	3	Swing pressure sensor	DT06-3S-EP06	-
CD-31	DEUTSCH	3	Overload pressure sensor	DT06-3S-EP06	DT04-3P-E005
CD-32	DEUTSCH	3	Boom up pressure sensor	DT06-3S-EP06	-
CD-35	DEUTSCH	3	Arm out pressure sensor	DT06-3S-EP06	-
CD-37	DEUTSCH	3	2 piece pressure sensor	DT06-3S-EP06	DT04-3P
CD-38	DEUTSCH	3	Work brake pressure sensor	DT06-3S-EP06	-
CD-39	DEUTSCH	3	Pump load sensing pressure sensor	DT06-3S-EP06	-
CD-42	DEUTSCH	3	P1 pressure sensor	DT06-3S-EP06	-
CD-44	DEUTSCH	3	Pump option pressure sensor	DT06-3S-EP06	-
CD-45	DEUTSCH	2	WIF sensor	DT06-2S-EP06	-
CD-46	AMP	3	Speed sensor	282087	-
CD-50	KET	2	Outrigger action pressure sensor	MG640975	-
CD-52	-	2	Fan speed sensor	174352-2	-
CD-57	DEUTSCH	4	SASA S/S	DT06-4S	-
CD-73	DEUTSCH	3	Travel forward pressure sensor	DT06-3S-EP06	-
CD-85	DEUTSCH	3	Boom down pressure sensor	DT06-3S-EP06	-
CD-87	DEUTSCH	3	Bucket out pressure sensor	DT06-3S-EP06	-
CD-90	DEUTSCH	3	Arm in pressure sensor	DT06-3S-EP06	-
CD-95	DEUTSCH	3	Bucket in pressure sensor	DT06-3S-EP06	-
CD-100	DEUTSCH	3	Outrigger pressure sensor	DT06-3S-EP06	-
CD-101	DEUTSCH	3	Load sensing pressure sensor	DT06-3S-EP06	-
CD-102	DEUTSCH	3	Brake pressure sensor	DT06-3S-EP06	-
CD-124	DEUTSCH	3	Boom rod cylinder pressure sensor	DT06-3S-E005	-
CD-145	DEUTSCH	3	Option RH - A	DT06-3S-EP06	DT04-3P-E005
CD-146	DEUTSCH	3	Option RH - B	DT06-3S-EP06	DT04-3P-E005
CD-156	DEUTSCH	3	Swing brake pressure sensor	DT06-3S-EP06	-

2. CONNECTION TABLE FOR CONNECTORS

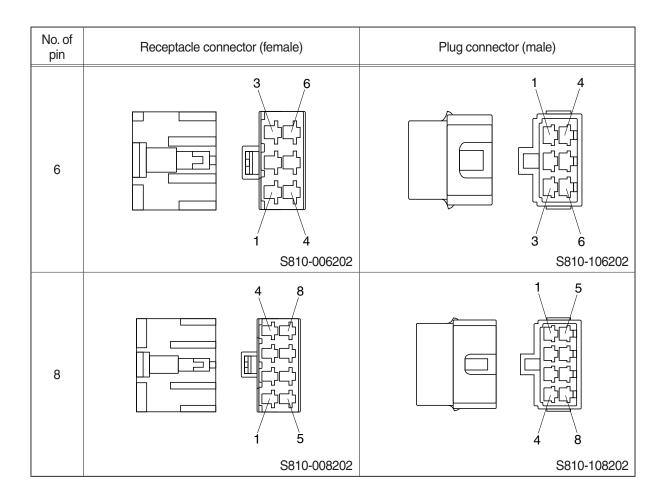
1) PA TYPE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector	r (male)
5	2	3	2 5
7	1	-005002 7 4 -007002	S811-105002 1 4 3 7 S811-107002
9	1	5-009002	1 5 4 9 3S811-109002
11	5 1 S811-		1 6 5 11 5811-111002



2) J TYPE CONNECTOR

No. of pin	Receptacle conne	ector (female)	Plug connector	r (male)
2		2 S816-002001		2 1 S816-102001
3		3 1 S816-003001		3 1 2 S816-103001
4		3 1 4 2 S816-004001		3 1 S816-104001
8		6 3 1 8 5 2 S816-008001		8 5 2 0000 6 3 1 S816-108001


3) SWP TYPE CONNECTOR

No. of pin	Receptacle connector (fem-	ale)	Plug connector (male)	
1		5814-001000		S814-101000
2		1 5814-002000		1 2 S814-102000
3		1 6814-003000		2 3 S814-103000
4		2 4 3 3 6814-004000		1 3 2 4 S814-104000

4) CN TYPE CONNECTOR

No. of pin	Receptacle connector (female)		Plug connector (male)	
1		1		1
		S810-001202		S810-101202
2		2		2
		S810-002202		S810-102202
3		1 2		1 3
		S810-003202		S810-103202
4		2 4		1 3
		S810-004202		S810-104202

5) 375 FASTEN TYPE CONNECTOR

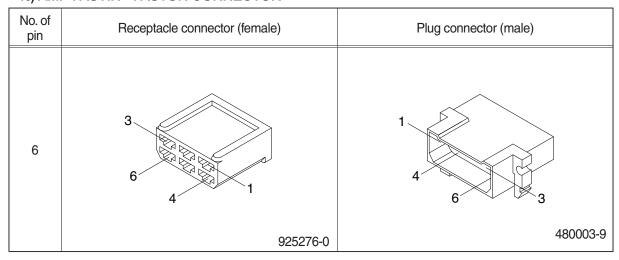
No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2 S810-002402	1 2 S810-102402

6) AMP ECONOSEAL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
36	12 24 36 13	13 25 25 36 12
	344111-1	344108-1

7) AMP TIMER CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	85202-1	


8) AMP 040 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
12	1 6	
	174045-2	

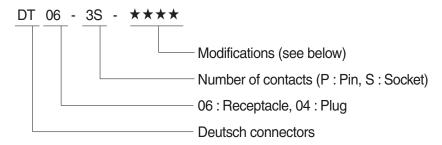
9) AMP 070 MULTILOCK CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
14	1 7 14 173852	

10) AMP FASTIN - FASTON CONNECTOR

11) KET 090 CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1	
	MG610070	


12) KET 090 WP CONNECTORS

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2 MG640605	
2	1	
	MG640795	

13) KET SDL CONNECTOR

pin		Plug connector (male)
14	7 14 6 MG610406	

14) DEUTSCH DT CONNECTORS

Modification

E003: Standard end cap - gray

E004 : Color of connector to be black

E005 : Combination - E004 & E003

EP04: End cap

EP06: Combination P012 & EP04

P012: Front seal enhancement - connectors color to black for 2, 3, 4 & 6pin

	. From Sear enhancement - connectors color to	т
No. of pin	Receptacle connector (female)	Plug connector (male)
2		1 2
	DT06-2S	DT04-2P
3	1 2 3	2 1 1 3
	DT06-3S	DT04-3P
4	2 3	3 2
	DT06-4S	DT04-4P

No. of pin	Receptacle conr	nector (female)	Plug connector (male)
6		3 4	
		DT06-6S	DT04-6P
8		5 4 8 1	4 5 5 1 1 8 PT04 0P
		DT06-8S	DT04-8P
12		7 6	1 12
		DT06-12S	DT04-12P

15) MOLEX 2CKTS CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 2	
	35215-0200	

16) ITT SWF CONNECTOR

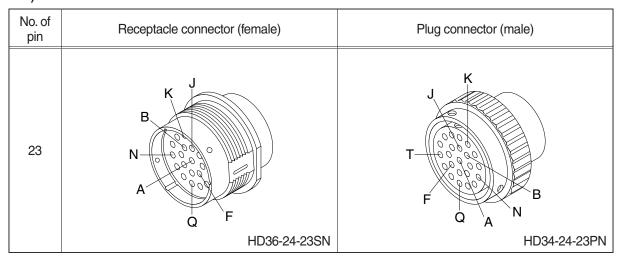
No. of pin	Receptacle connector (female)	Plug connector (male)
10	1 9	
	SWF593757	

17) MWP NMWP CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)		
1	1			
	NMWP01F-B			

18) ECONOSEAL J TYPE CONNECTORS

No. of pin	Receptacle connector (female)	Plug connector (male)			
1	S816-001002	S816-101002			
2	1 2 S816-002002	2 1 S816-102002			
3	1 2 3 S816-003002	3 2 1 S816-103002			
4	3 4 S816-004002	2 1 4 3 S816-104002			


No. of pin	Receptacle connector (female)	Plug connector (male)			
6	3 4 6 S816-006002	3 1 6 4 S816-106002			
8	5 8 S816-008002	4 1 8 5 S816-108002			
10	5 6 10 S816-010002	5 10 6 S816-110002			
12	7 12 S816-012002	6 1			

No. of pin	Receptacle connector (female)	Plug connector (male)
15	3 15 EEEEEE	15 3
	368301-1	2-85262-1

19) METRI-PACK TYPE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
2	1 12040753	

20) DEUTSCH HD30 CONNECTOR

21) DEUTSCH MCU CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
40	11 21 31 35 36 40 30	
	DRC26-40SA/B	

22) DEUTSCH SERVICE TOOL CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
9	E A B HD10-9-96P	

23) AMP FUEL WARMER CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
4	3 2 2	
	2-967325-3	

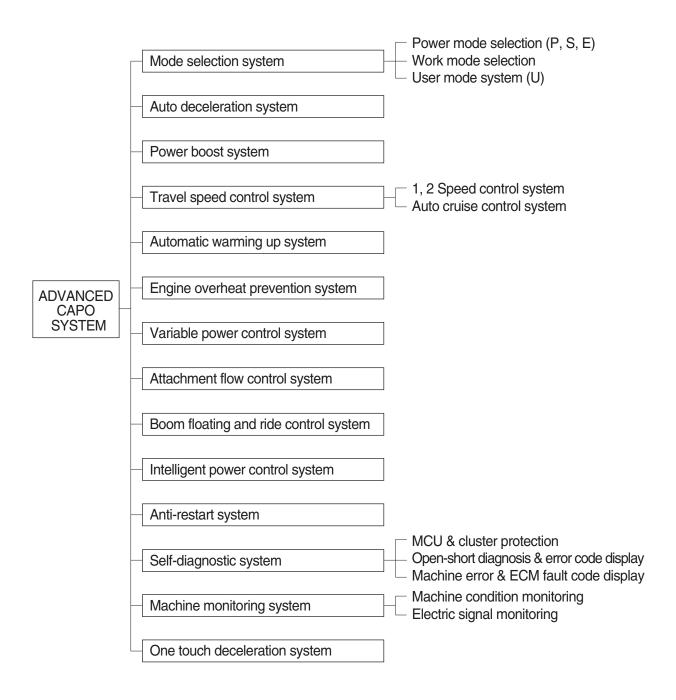
24) DEUTSCH ENGINE ECM CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
50	11 5 6 10 21 31 00000 000 000 000 000 000 000 000 0	

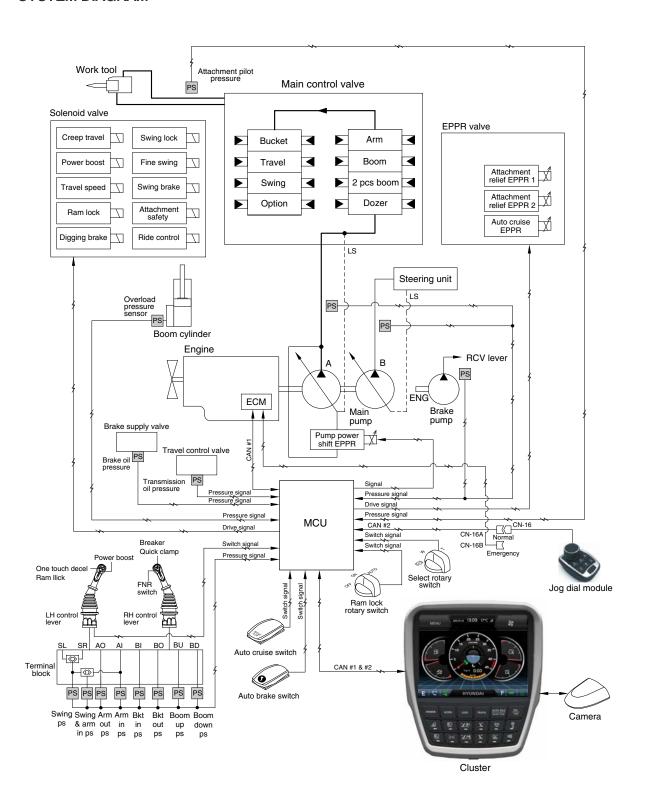
25) DEUTSCH INTERMEDIATE CONNECTOR

No. of pin	Receptacle connector (female)	Plug connector (male)
60	1 13 25 31 37 30 30 36 49 48 60 DRB16-60SAE-L018	

SECTION 5 MECHATRONICS SYSTEM

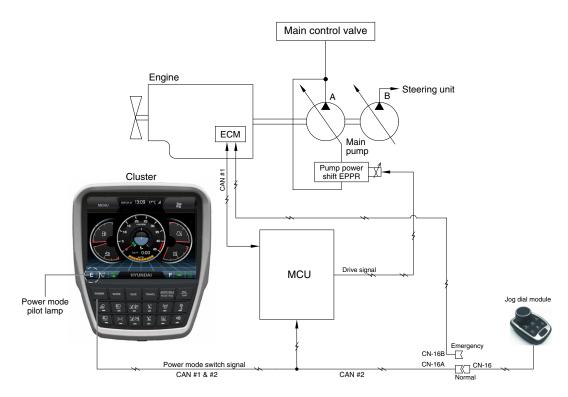

Group	1	Outline	5-1
Group	2	Mode Selection System ·····	5-3
Group	3	Automatic Deceleration System	5-6
Group	4	Power Boost System	5-7
Group	5	Travel Speed Control System	5-8
Group	6	Automatic Warming Up System ·····	5-9
Group	7	Engine Overheat Prevention System ·····	5-10
Group	8	Variable Power Control System ·····	5-11
Group	9	Attachment Flow Control System ·····	5-12
Group	10	Boom Floating Control System	5-13
Group	11	Intelligent Power Control System	5-14
Group	12	Anti-Restart System	5-16
Group	13	Self-Diagnostic System ·····	5-17
Group	14	Engine Control System ····	5-63
Group	15	EPPR Valve ····	5-64
Group	16	Monitoring System ····	5-67
Group	17	Fuel Warmer System	5-113
Group	18	1 or 2-Way Optional Piping Pressure Removal System	5-114

SECTION 5 MECHATRONICS SYSTEM


GROUP 1 OUTLINE

The ADVANCED CAPO (Computer Aided Power Optimization) system controls engine and pump mutual power at an optimum and less fuel consuming state for the selected work by mode selection, auto-deceleration, power boost function, etc. It monitors machine conditions, for instance, engine speed, coolant temperature, hydraulic oil temperature, and hydraulic oil pressure, etc.

It consists of a MCU, a cluster, an ECM, EPPR valves, and other components. The MCU and the cluster protect themselves from over-current and high voltage input, and diagnose malfunctions caused by short or open circuit in electric system, and display error codes on the cluster.


SYSTEM DIAGRAM

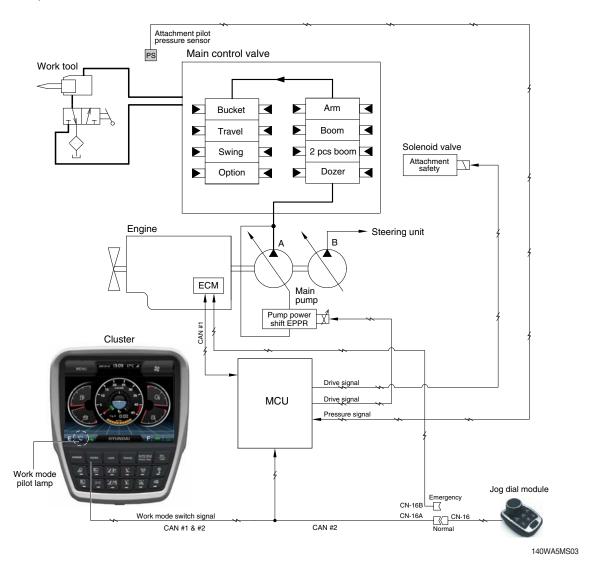
140WA5MS01

GROUP 2 MODE SELECTION SYSTEM

1. POWER MODE SELECTION SYSTEM

140WA5MS02

Mode selection system (micro computer based electro-hydraulic pump and engine mutual control system) optimizes the engine and pump performance.


The combination of 3 power modes (P, S, E) and acceleration mode (10 set) of haptic controller makes it possible to use the engine and pump power more effectively corresponding to the work conditions from a heavy and great power requesting work to a light and precise work.

Mode		Engine rpm		PF EPPR		Delta P EPPR	
		Natara	Current (mA)		Current (mA)		
		No load	Load	No load	Load	No load	Load
	Р	1500	1600	350	320	250	250
Standard	S	1400	1500	420	390	250	250
	E	1300	1400	450	420	250	250
	Р	1600	1600	320	320	250	250
Option	S	1500	1500	390	390	250	250
	E	1400	1400	420	420	250	250
AUTO DEC	CEL	1100±50	-	600	-	600	-
One touch decel		1100±50	-	600	-	600	-
KEY START (low idle)		1000±50	-	600	-	600	-

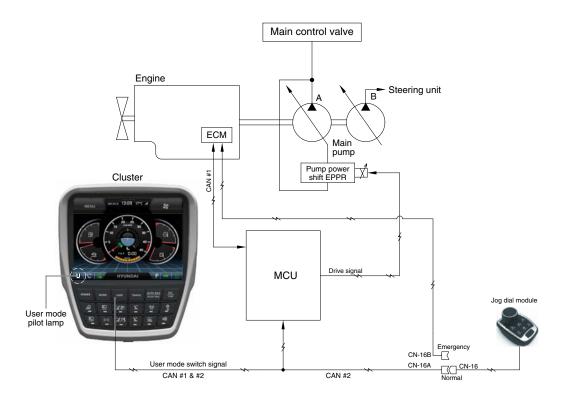
- In work modes, engine speed stays at 1000 rpm if the safety knob is at "LOCK" position. (Low idle goes to 1100 rpm if "UNLOCK")
- * Auto decel, one touch decel and low idle speed may increase to 1300 rpm while automatic exhaust system cleaning is being performed.

2. WORK MODE SELECTION SYSTEM

Work mode consists of the general operation (bucket) and the optional attachment (breaker, crusher).

1) GENERAL WORK MODE (bucket)

This mode is used to general digging work.

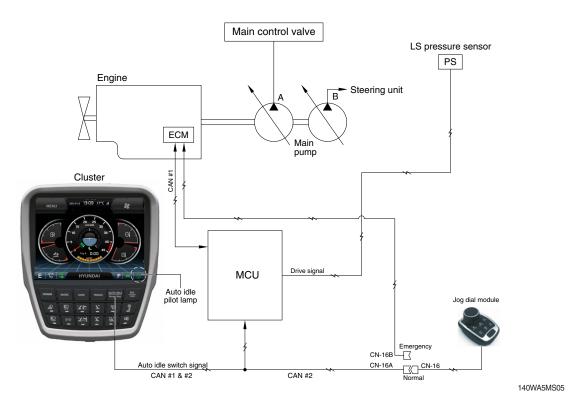

2) ATT WORK MODE (breaker, crusher)

It controls the pump flow and system pressure according to the operation of breaker or crusher.

Description	General mode	Work tool	
Description	Bucket	Breaker	Crusher
Attachment safety solenoid	OFF	-	ON
Attachment flow EPPR current	100 mA	100~700 mA	100~700 mA

[★] When breaker operating button is pushed.

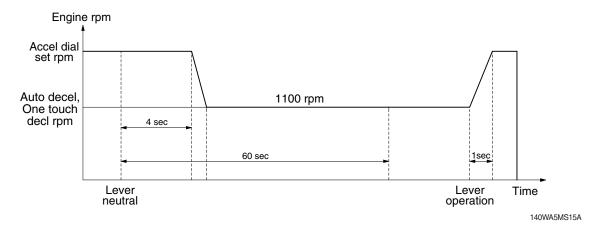
3. USER MODE SELECTION SYSTEM


140WA5MS04

1) High idle rpm, auto idle rpm and EPPR pressure can be adjusted and memorized in the U-mode.

2) LCD segment vs parameter setting

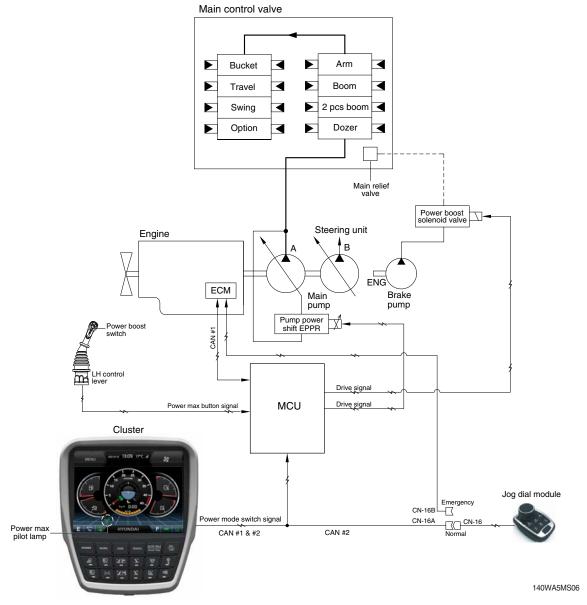
Step (■)	Engine speed (rpm)	Idle speed (rpm)	PF EPPR current (mA)
1	1400	800	600
2	1450	850	555
3	1500	900	511
4	1550	950	466
5	1600	1000	422
6	1650	1050	377
7	1700	1100 (auto decel)	333
8	1750	1150	288
9	1800	1200	244
10	1900	1250	200


GROUP 3 AUTOMATIC DECELERATION SYSTEM

1. WHEN AUTO IDLE PILOT LAMP ON

When all of the work equipment control levers including swing and travel levers are at neutral for 4 seconds, MCU sends throttle command to ECM to reduce the engine speed to 1100 rpm. If the control levers are at neutral for 1 minute, MCU reduces the engine speed to 1100 rpm. As the result of reducing the engine speed, fuel consumption and noise are effectively cut down during non-operation of the control levers.

When the Auto idle pilot lamp is turned off by pressing the switch or any control lever is operated, the reduced engine speed rises upto the speed before deceleration in a second.

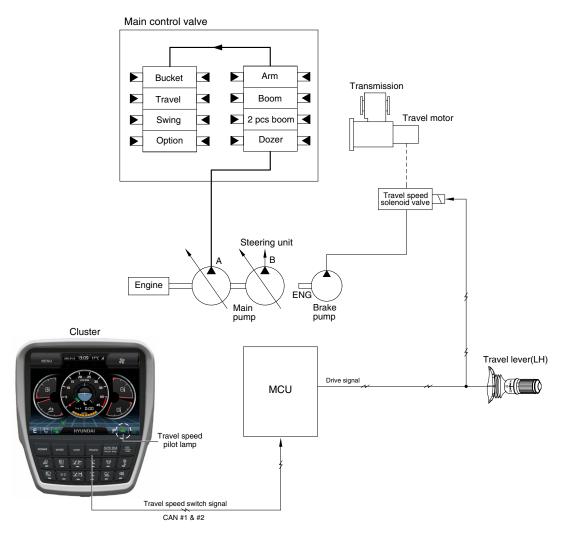


2. WHEN AUTO IDLE PILOT LAMP OFF

The engine speed can be set as desired using the accel dial switch, and even if the control levers are neutral, the engine speed is not reduced.

Auto idle function can be activated when accel dial position is over 4.

GROUP 4 POWER BOOST SYSTEM

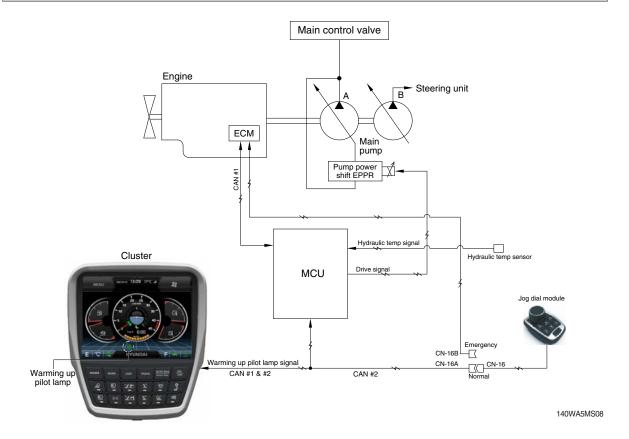


- When the power boost switch on the left control lever pushed ON, the power mode is set P mode and maximum digging power is increased by 10 %.
- When the power boost function is activated, the power boost solenoid valve pilot pressure raises the set pressure of the main relief valve to increase the digging power.

Description	Condition	Function
Activated	Power boost switch : ON Accel dial : over 8	- Power mode : P - Multimodal dial power : 9 - Power boost solenoid : ON - Power boost pilot Imap : ON - Operating time : max 8 seconds
Canceled	Power boost switch : OFF	- Pre-set power mode- Power boost solenoid : OFF- Power boost pilot lamp : OFF

When the auto power boost is set to Enable and power mode is set to P mode on the cluster, the digging power is automatically increased as working conditions by the MCU. It is operated max 8 seconds.

GROUP 5 TRAVEL SPEED CONTROL SYSTEM

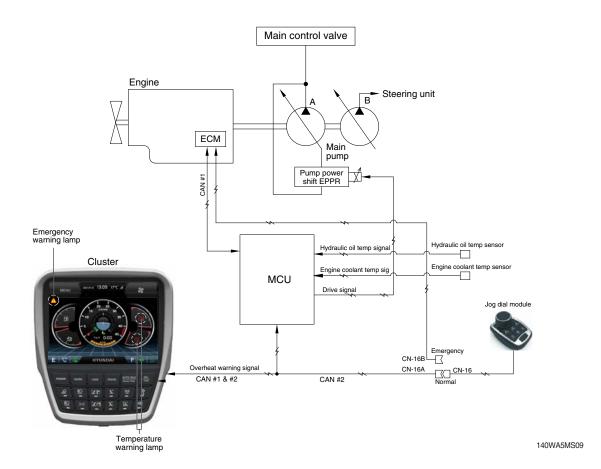

140WA5MS07A

Travel speed can be switched manually by pressing the travel speed switch on the cluster.

Speed	Travel speed solenoid valve	Lamp on cluster	Operation
Low	OFF	Turtle	Low speed, high driving torque in the travel motor
High	ON	Rabbit	High speed, low driving torque in the travel motor

Mercal Strate (Low)

GROUP 6 AUTOMATIC WARMING UP SYSTEM

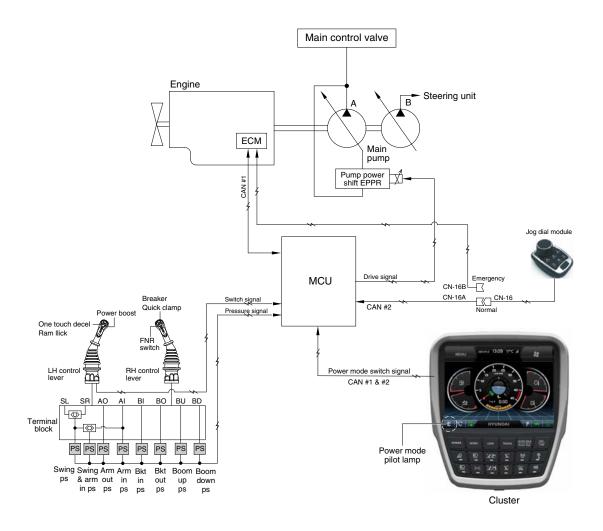


- 1. The MCU receives the engine coolant temperature from the ECM, and if the coolant temperature is below 30°C, it increases the engine speed from key start rpm to 1100 rpm. At this time the mode does not change. If the coolant temperature sensor has fault, the hydraulic oil temperature signal is substituted.
- 2. In case of the coolant temperature increases up to 30°C, the engine speed is decreased to key start speed. And if an operator changes power mode set during the warming up function, the MCU cancels the automatic warming up function.

3. LOGIC TABLE

Description	Condition	Function
Actuated	- Coolant temperature : below 30°C (after engine run)	- Power mode : Default (E mode) - Warming up time : 10 minutes (max) - Warming up pilot lamp : ON
Canceled	 Coolant temperature: Above 30°C Warming up time: Above 10 minutes Changed power mode set by operator RCV lever or pedal operating Auto idle cancel If any of the above conditions is applicable, the automatic warming up function is canceled 	- Power mode : set mode - Warming up pilot lamp : OFF

GROUP 7 ENGINE OVERHEAT PREVENTION SYSTEM



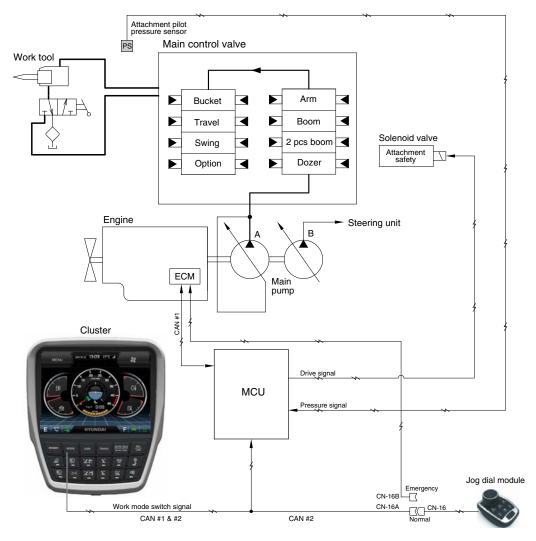
1. If the engine coolant temperature is overheated over 103°C or the hydraulic oil temperature is overheated over 100°C, the warning lamp is ON and the pump input torque or the engine speed is reduced as below logic table.

2. LOGIC TABLE

Descrip	otion	Condition	Function
	Activated		- Warning lamp : ON , buzzer : OFF - Pump input torque is reduced.
First step	Activated	- Hydraulic oil temperature : Above 100°C	Warning lamp & buzzer : ONPump input torque is reduced.
warning	- Coolant temperature : Less than 100°C - Hydraulic oil temperature : Less than 95°C		- Return to pre-set the pump absorption torque.
Second stop	Activated	- Coolant temperature : Above 107°C - Hydraulic oil temperature : Above 105°C	Emergency warning lamp pops up on the center of LCD and the buzzer sounds.Engine speed is reduced after 10 seconds.
Second step warning	Canceled	- Coolant temperature : Less than 103°C - Hydraulic oil temperature : Less than 100°C	 Return to pre-set the engine speed. Hold pump absorption torque on the first step warning.

GROUP 8 VARIABLE POWER CONTROL SYSTEM

140WA5MS10


The variable power control system controls the engine and pump mutual power according to RCV lever stroke and pump load.

It makes fuel saving and smooth control at precise work.

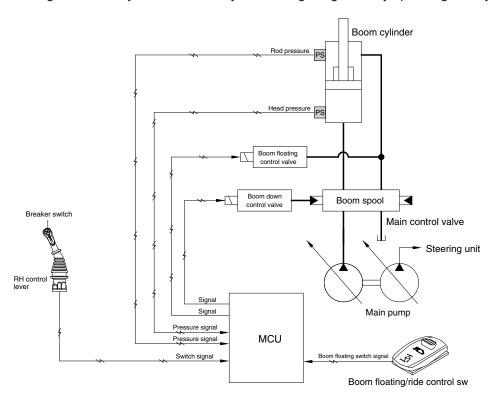
Description	Working condition
Power mode	P, S, E
Work mode	General (bucket)
Pressure sensor	Normal

* The variable power control function can be activated when the power mode is set to all power mode.

GROUP 9 ATTACHMENT FLOW CONTROL SYSTEM

140WA5MS11

• The system is used to control the pump delivery flow according to set of the work tool on the cluster by the attachment flow EPPR valve.

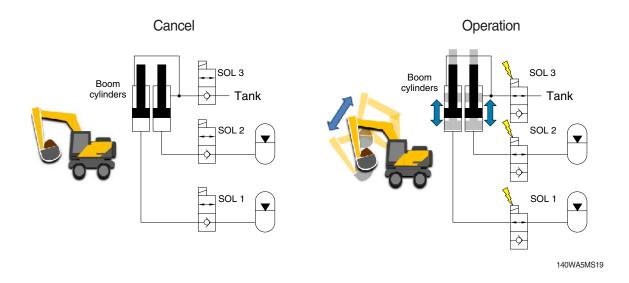

Description	Work tool	
Description	Breaker	Crusher
Flow level	50~110 lpm	50~260 lpm
Attach safety solenoid	-	ON

* Refer to the page 5-79 for the attachment kinds and max flow.

GROUP 10 BOOM FLOATING AND RIDE CONTROL SYSTEM

1. BOOM FLOATING CONTROL

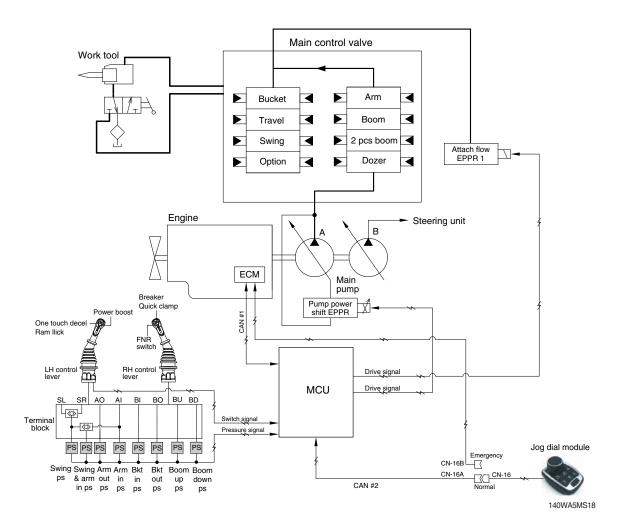
Boom floating automatically controls boom cylinder along the ground by operating arm cylinder only.


140WA5MS17A

Description	Condition	Function
Work mode ^{★1}	Condition	
General mode	Floating mode sw : ON	Boom floating control valve : ON
General mode	Rod pressure < Head pressure	Boom down control valve : OFF
Breaker mode	Floating mode sw : ON	Boom floating control valve : OFF
(Special function)	Breaker switch : Pressed	Boom down control valve : ON
Tamanayayih , aanaalad	During operation of boom floating	Boom floating control valve : OFF
Temporarily canceled	Boost sw : Pressed	Boom down control valve : OFF

^{*1} Boom floating is not activated when work mode is crusher mode.

2. BOOM RIDE CONTROL


This removes shocks when driving over a bumpy road.

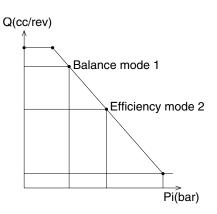
Description	Condition*1	Function
Operation	 Boom floating/ride switch position: Ride Select switch position: Working or travel Machine speed: Below 3 km/h Pressure: Boom rod < Boom head 	- Ride control sol valve 1, 2, 3 : ON
Cancel	- Boom floating/ride switch position : Floating - Select switch position : Parking	- Ride control sol valve 1, 2, 3 : OFF

^{*1} AND condition

GROUP 11 INTELLIGENT POWER CONTROL SYSTEM

1. When the requirement of pump flow rate is low, IPC mode controls pump flow rate to improve fuel efficiency.

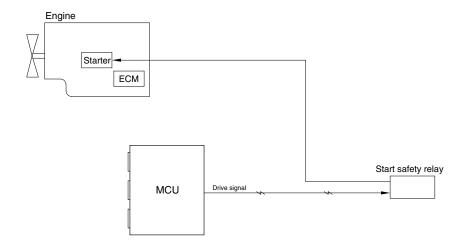
Condition★1	Function
IPC mode : ON*2	
Boom up	
Arm in	Limitation of pump flow rate : Activated
Not travel motion	
Not swing motion	
None of upper condition	Limitation of pump flow rate : Canceled


^{*1} AND condition

^{*2} IPC mode ON/OFF is selected at "Monitor > Management". See next page.

2. IPC MODE SELECTION

IPC mode ON/OFF and the levels of flow rate limit can be selected at "Monitor > Management"



140WF5MS19A

IPC mode	Description
Balance mode (default)	IPC mode ON, limit level 1
Efficiency mode	IPC mode ON, limit level 2
Speed mode	IPC mode OFF

GROUP 12 ANTI-RESTART SYSTEM

300L5MS12

1. ANTI-RESTART FUNCTION

After a few seconds from the engine starts to run, MCU turns off the start safety relay to protect the starter from inadvertent restarting.

GROUP 13 SELF-DIAGNOSTIC SYSTEM

1. OUTLINE

When any abnormality occurs in the ADVANCED CAPO system caused by electric parts malfunction and by open or short circuit, the MCU diagnoses the problem and sends the error codes to the cluster and also stores them in the memory.

2. MONITORING

1) Active fault

· The active faults of the MCU, engine ECM, FATC, AAVM (option) can be checked by this menu.

2) Logged fault

• The logged faults of the MCU, engine ECM, FATC, AAVM (option) can be checked by this menu.

3) Delete logged fault

• The logged faults of the MCU, engine ECM, FATC, AAVM (option) can be deleted by this menu.

3. MACHINE ERROR CODES TABLE

DTC		Discounting Office in	Application					
HCESPN	FMI	Diagnostic Criteria	G	С	W			
101	3	10 seconds continuous, Hydraulic Oil Temp. Measurement Voltage > 3.8V	•					
	4	10 seconds continuous, Hydraulic Oil Temp. Measurement Voltage < 0.3V						
	(Resu	llts / Symptoms)						
	1. Moi	nitor – Hydraulic oil temperature display failure						
	2. Cor	ntrol Function – Fan revolutions control failure						
	(Chec	king list)						
	1. CD	-1 (#2), CN-51 (#16) Checking Open/Short						
	2. CD	-1 (#1), CN-51 (#25) Checking Open/Short						
	0	10 seconds continuous, Load Sensing Press. Sensor						
		Measurement Voltage > 5.2V						
	1	10 seconds continuous, 0.3V≤ Load Sensing Press. Sensor Measurement						
		Voltage < 0.8V						
	4	10 seconds continuous, Load Sensing Press. Sensor						
		Measurement Voltage < 0.3V			<u></u>			
105	(Results / Symptoms)							
	1. Monitor – Load Sensing Press. display failure							
	Control Function – Auto Idle operation failure, Engine variable horse power control operation failure							
	(Chao							
	(Checking list)							
	1. CD-101 (#B) – CN-52 (#19) Checking Open/Short 2. CD-101 (#A) – CN-51 (#32) Checking Open/Short							
	3. CD-101 (#A) – CN-51 (#31) Checking Open/Short							
	0.00	10 seconds continuous, Travel Oil Press. Sensor						
	0	Measurement Voltage > 5.2V						
		10 seconds continuous, 0.3V ≤ Travel Oil Press. Sensor Measurement						
	1	Voltage < 0.8V						
	4	10 seconds continuous, Travel Oil Press. Sensor						
		Measurement Voltage < 0.3V						
108	(Resu	lts / Symptoms)						
(N.A)	Monitor – Travel Oil Press. display failure							
, ,	2. Control Function – Auto Idle operation failure, Engine variable horse power control operation							
	failure, IPC operation failure, Driving alarm operation failure							
	(Checking list)							
	1. CD-06 (#B) – CN-52 (#27) Checking Open/Short							
	2. CD-06 (#A) – CN-51 (#32) Checking Open/Short							
	3. CD	-06 (#C) – CN-51 (#31) Checking Open/Short						

 $\ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

G : General C : Crawler Type W : Wheel Type

DTC				Application					
HCESPN	FMI	Diagnostic Criteria	G	С	W				
	0	10 seconds continuous, Main Pump (A) Press. Sensor Measurement	•						
		Voltage > 5.2V 10 seconds continuous, 0.3V ≤ Main Pump (A) Press. Sensor Measurement							
	1	Voltage < 0.8V							
	4	10 seconds continuous, Main Pump (A) Press. Sensor Measurement							
		Voltage < 0.3V							
120	(Results / Symptoms)								
		nitor – Main Pump (A) Press. display failure			احسلت				
	2. Cor	ntrol Function – Automatic voltage increase operation failure, Overload at compe failure	ensat	ion cc	ntroi				
	(Chec	king list)							
	,	-42 (#B) – CN-52 (#22) Checking Open/Short							
		-42 (#A) – CN-51 (#32) Checking Open/Short							
	3. CD-	-42 (#C) – CN-51 (#31) Checking Open/Short							
	0	10 seconds continuous, Main Pump (B) Press. Sensor Measurement							
	0	Voltage > 5.2V							
	1	10 seconds continuous, 0.3V≤ Main Pump (B) Press. Sensor Measurement Voltage < 0.8V	•						
		10 seconds continuous, Main Pump (B) Press. Sensor Measurement							
	4	Voltage < 0.3V							
121	(Results / Symptoms)								
121	1. Monitor – Main Pump (B) Press. display failure								
	2. Control Function – Automatic voltage increase operation failure, Overload at compensation control								
	failure								
	(Checking list)								
	1. CD-44 (#B) – CN-51 (#22) Checking Open/Short 2. CD-44 (#A) – CN-51 (#32) Checking Open/Short								
	3. CD-44 (#C) – CN-51 (#32) Checking Open/Short								
	0.02	(when you had conditions mounting pressure sensor)							
	1	10 seconds continuous, 0.3V ≤ Overload Press. Sensor Measurement							
		Voltage < 0.8V							
		(when you had conditions mounting pressure sensor)							
	4	10 seconds continuous, Overload Press. Sensor							
		Measurement Voltage < 0.3V							
122	(Results / Symptoms)								
	Monitor – Overload Press. display failure Control Function – Overload warning alarm failure								
	Control Function – Overload warning alarm failure (Checking list)								
	1. CD-31 (#B) – CN-52 (#28) Checking Open/Short								
	2. CD-31 (#A) – CN-51 (#32) Checking Open/Short								
		-31 (#C) – CN-51 (#31) Checking Open/Short							

 $\ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

 ${\sf G:General} \qquad \qquad {\sf C:Crawler\,Type} \qquad \qquad {\sf W:Wheel\,Type}$

DTC		Dia manatia Odhada		Application				
HCESPN	FMI			С	W			
	0	10 seconds continuous, Negative 1 Press. Sensor						
	U	Measurement Voltage > 5.2V						
	1	10 seconds continuous, 0.3V≤ Negative 1 Press. Sensor Measurement						
		Voltage < 0.8V						
	4	10 seconds continuous, Negative 1 Press. Sensor						
123	/D	Measurement Voltage < 0.3V						
(N.A)	,	Its / Symptoms)						
		nitor – Negative 1 Press. display failure	مين داد د					
		ntrol Function – IPC operation failure, Option attachment flow control operation f king list)	allure	!				
	,	-70 (#B) – CN-51 (#22) Checking Open/Short						
		-70 (#B) - 0N-31 (#22) Onecking Open/Short						
		-70 (#A) - GN 31 (#32) GNecking Open/Short						
	0.00	10 seconds continuous, Negative 2 Press. Sensor						
	0	Measurement Voltage > 5.2V						
	1	10 seconds continuous, 0.3V≤ Negative 2 Press. Sensor Measurement						
		Voltage < 0.8V						
	4	10 seconds continuous, Negative 2 Press. Sensor						
104		Measurement Voltage < 0.3V						
124	(Results / Symptoms)							
(N.A)	1. Mo	Monitor – Negative 2 Press. display failure						
	2. Cor	2. Control Function – Option attachment flow control operation failure						
	(Chec	(Checking list)						
		CD-71 (#B) – CN-51 (#28) Checking Open/Short						
		CD-71 (#A) – CN-51 (#32) Checking Open/Short						
	3. CD	-71 (#C) – CN-51 (#31) Checking Open/Short						
	0	10 seconds continuous, Boom Up Pilot Press. Sensor						
		Measurement Voltage > 5.2V						
	1	10 seconds continuous, 0.3V≤ Boom Up Pilot Press. Sensor Measurement						
	4	Voltage < 0.8V 10 seconds continuous, Boom Up Pilot Press. Sensor Measurement < 0.3V						
		•						
127	(Results / Symptoms) 1. Monitor – Boom Up Pilot Press. display failure							
127	Nontrol – Booth Op Filot Fress. display failure Control Function – Engine/Pump variable horse power control operation failure, IPC operation							
	failure, Boom first operation failure							
	(Checking list)							
	1. CD-32 (#B) – CN-52 (#23) Checking Open/Short							
	2. CD-32 (#A) – CN-51 (#32) Checking Open/Short							
		-32 (#C) – CN-51 (#31) Checking Open/Short						
	l	· / · · · · · · · · · · · · · · · · · ·						

 $\ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

G : General C : Crawler Type W : Wheel Type

DTC		Dia was akin Oribania	Ар	Application	
HCESPN	FMI			С	W
128	0	(when you had conditions mounting pressure sensor) 10 seconds continuous, Boom Down Pilot Press. Sensor Measurement Voltage > 5.2V	•		
	1	(when you had conditions mounting pressure sensor) 10 seconds continuous, 0.3V≤ Boom Down Pilot Press. Sensor Measurement Voltage < 0.8V	•		
	4	(when you had conditions mounting pressure sensor) 10 seconds continuous, Boom Down Pilot Press. Sensor Measurement Voltage < 0.3V	•		
	1. Mor 2. Cor (Chec 1. CD- 2. CD-	Its / Symptoms) nitor – Boom Down Pilot Press. display failure ntrol Function – Boom floating operation failure king list) -85 (#B) – CN-52 (#31) Checking Open/Short -85 (#A) – CN-51 (#32) Checking Open/Short -85 (#C) – CN-51 (#31) Checking Open/Short			
	0	10 seconds continuous, Arm In Pilot Press. Sensor Measurement Voltage > 4.8V 10 seconds continuous, 0.3V≤ Arm In Pilot Press. Sensor Measurement	•		
	4	Voltage < 0.8V 10 seconds continuous, Arm In Pilot Press. Sensor Measurement Voltage < 0.3V	•		
129	1. Mor 2. Cor (Chec 1. CD- 2. CD-	lts / Symptoms) nitor – Arm In Pilot Press. display failure ntrol Function – IPC operation failure king list) -90 (#B) – CN-51 (#21) Checking Open/Short -90 (#A) – CN-51 (#32) Checking Open/Short -90 (#C) – CN-51 (#31) Checking Open/Short			
133	0	10 seconds continuous, Arm Out Pilot Press. Sensor Measurement Voltage > 5.2V 10 seconds continuous, 0.3V≤ Arm Out Pilot Press. Sensor Measurement Voltage < 0.8V	•		
	4	10 seconds continuous, Arm Out Pilot Press. Sensor Measurement Voltage < 0.3V	•		
	1. Mor 2. Cor (Chec 1. CD- 2. CD-	Its / Symptoms) nitor – Arm Out Pilot Press. display failure ntrol Function – Engine variable horse power control operation failure king list) -35 (#B) – CN-51 (#27) Checking Open/Short -35 (#A) – CN-51 (#32) Checking Open/Short -35 (#C) – CN-51 (#31) Checking Open/Short			

* Some error codes are not applied to this machine.

 $\mbox{$G:$ General } \mbox{$C:$ Crawler Type} \mbox{$W:$ Wheel Type}$

DTC		Discounting Office in	Application						
HCESPN	FMI			С	W				
	0	10 seconds continuous, Swing Pilot Press. Sensor							
		Measurement Voltage > 5.2V							
	1	10 seconds continuous, 0.3V≤ Swing Pilot Press. Sensor Measurement							
		Voltage < 0.8V							
	4	10 seconds continuous, Swing Pilot Press. Sensor							
	(D	Measurement Voltage < 0.3V							
135	١,	Its / Symptoms)							
		nitor – Swing Pilot Press. display failure							
		ntrol Function – IPC operation, Boom first operation failure							
	١,	king list)							
		-24 (#B) – CN-52 (#18) Checking Open/Short -24 (#A) – CN-51 (#32) Checking Open/Short							
		-24 (#A) – CN-51 (#32) Checking Open/Short							
	3. CD								
	0	Monitor – Select Attachment (breaker / crusher) 10 seconds continuous, Attachment Pilot Press. Sensor Measurement							
		Voltage > 5.2V							
	1	Monitor – Select Attachment (breaker / crusher)							
		10 seconds continuous, 0.3V≤ Attachment Pilot Press. Sensor							
		Measurement Voltage < 0.8V							
	4	Monitor – Select Attachment (breaker / crusher)							
138		10 seconds continuous, Attachment Pilot Press. Sensor Measurement							
(N.A)		Voltage < 0.3V							
	(Resu	Its / Symptoms)							
	Monitor – Attachment Pilot Press. display failure								
	2. Control Function – Option attachment flow control operation failure								
	(Chec	(Checking list)							
	1. CD-69 (#B) - CN-52 (#32) Checking Open/Short								
	2. CD-69 (#A) – CN-51 (#32) Checking Open/Short								
	3. CD-69 (#C) – CN-51 (#31) Checking Open/Short								
	1	10 seconds continuous, 0.3V≤ Option Pilot Press. Sensor Measurement							
		Voltage < 0.8V							
	4	10 seconds continuous, Option Pilot Press. Sensor							
		Measurement Voltage < 0.3V							
139	(Results / Symptoms)								
(N.A)	Monitor – Option Pilot Press. display failure Control Function — Auto Idla energian failure								
	2. Control Function – Auto Idle operation failure								
	(Checking list)								
		1. CD-37 (#B) – CN-52 (#21) Checking Open/Short							
		-37 (#A) – CN-51 (#32) Checking Open/Short							
	3. UD	-37 (#C) – CN-51 (#31) Checking Open/Short							

 $\ensuremath{\,\%\,}$ Some error codes are not applied to this machine.

G : General C : Crawler Type W : Wheel Type

DTC	;	Diagnacatic Criteria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	(Detection) (When Pump Shift EPPR Current is more than 10 mA) 10 seconds continuous, Pump Shift EPPR drive current < 0 mA (Cancellation) (When Pump Shift EPPR Current is more than 10 mA) 3 seconds continuous, Pump Shift EPPR drive current ≥10 mA	•		
140	6	 (Detection) 10 seconds continuous, Pump Shift EPPR drive current > 1.0A (Cancellation) 3 seconds continuous, Pump Shift EPPR drive current ≤ 1.0 A 	•		
	,	ontrol Function – Pump horse power setting specification difference			
	1. CN	(Fuel efficiency/speed specification failure) king list) -75 (#2) – CN-54 (#28) Checking Open/Short -75 (#1) – CN-54 (#01) Checking Open/Short			
	5	(Model Parameter) mounting Boom Priority EPPR (Detection) (When Boom Priority EPPR Current is more than 10 mA) 10 seconds continuous, Boom Priority EPPR drive current < 0 mA (Cancellation) (When Boom Priority EPPR Current is more than 10 mA) 3 seconds continuous, Boom Priority EPPR drive current ≥ 10 mA	•		
141 (N.A)	6	(Detection) 10 seconds continuous, Boom Priority EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Boom Priority EPPR drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN	olts / Symptoms) Introl Function – Boom first control operation failure Eking list) -133 (#2) – CN-54 (#34) Checking Open/Short -133 (#1) – CN-54 (#04) Checking Open/Short			

DTC	;	Dia mana akin Orita dia	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	(Detection) (When Travel EPPR Current is more than 10 mA) 10 seconds continuous, Travel EPPR drive current = 0 mA (Cancellation) (When Travel EPPR Current is more than 100 mA) 3 seconds continuous, Travel EPPR drive current ≥ 10 mA			•
143	6	(Detection) 10 seconds continuous, Travel EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Travel EPPR drive current ≤ 1.0 A			•
	1. Cor (Chec 1. CN	olts / Symptoms) Introl Function – cruise control operation failure Exing list) -246 (#2) – CN-54 (#25) Checking Open/Short -246 (#1) – CN-54 (#08) Checking Open/Short			
	5	 (Model Parameter) mounting Remote Cooling Fan EPPR (Detection) (When Remote Cooling Fan EPPR Current is more than 10 mA) 10 seconds continuous, Remote Cooling Fan EPPR drive current = 0 mA (Cancellation) (When Remote Cooling Fan EPPR Current is more than 10 mA) 3 seconds continuous, Remote Cooling Fan EPPR drive current ≥ 10 mA 	•		
145	6	(Detection) 10 seconds continuous, Remote Cooling Fan EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Remote Cooling Fan EPPR drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN	olts / Symptoms) Its / Symptoms) Introl Function – Remote fan control operation failure Isking list) Introl Function – Remote fan control operation failure Isking list) Introl Function – CN-54 (#06) Checking Open/Short Introl Function – CN-54 (#34) Checking Open/Short			

DTC		Dia was akin Osikasia	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
HCESPN 164	4 4	(Detection) (When Working Cutoff Relay is Off) 10 seconds continuous, Working Cutoff Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Working Cutoff Relay is Off) 3 seconds continuous, Working Cutoff Relay drive unit Measurement Voltage > 3.0V (Detection) (When Working Cutoff Relay is On) 10 seconds continuous, Working Cutoff Relay drive current > 6.5 A (Cancellation)	G	С	•
	(Resu	(When Working Cutoff Relay is On) 3 seconds continuous, Working Cutoff Relay drive current ≤ 6.5 A Its / Symptoms)			
	1. Cor (Chec 1. CR	ntrol Function – (Wheel Excavator) In driving mode, attachment hydraulic pilot p failure king list) -47 (#85) – CN-53 (#04) Checking Open/Short -47 (#30, #86) – fuse box (#28) Checking Open/Short	ressu	ire cut	off
	4	(Detection) (When Power Max Solenoid is Off) 10 seconds continuous, Power Max Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Power Max Solenoid is Off) 3 seconds continuous, Power Max Solenoid drive unit Measurement Voltage > 3.0V	•		
166	6	(Detection) (When Power Max Solenoid is On) 5 seconds continuous, Power Max Solenoid drive current > 4.5 A (Cancellation) (When Power Max Solenoid is On) 3 seconds continuous, Power Max Solenoid drive current ≤ 4.5 A	•		
	1. Cor (Chec 1. CN-	Its / Symptoms) htrol Function – Voltage increase operation failure king list) -88 (#1) – CN-53 (#10) Checking Open/Short -88 (#2) – fuse box (#34) Checking Open/Short			

 $\frak{\#}$ Some error codes are not applied to this machine.

 $\mbox{$G:$ General } \mbox{$C:$ Crawler Type} \mbox{$W:$ Wheel Type}$

		Diamental Criteria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
		(Detection) (When Travel Speed Solenoid is Off) 10 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Travel Speed Solenoid is Off) 3 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage > 3.0V		•	
167	4	(When Parking mode is not) (Detection) (When Travel Speed Solenoid is Off) 10 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Travel Speed Solenoid is Off) 3 seconds continuous, Travel Speed Solenoid drive unit Measurement Voltage > 3.0V			•
	6	(Detection) (When Travel Speed Solenoid is On) 10 seconds continuous, Travel Speed Solenoid drive current > 4.5 A (Cancellation) (When Travel Speed Solenoid is On) 3 seconds continuous, Travel Speed Solenoid drive current ≤ 4.5 A	•		
	1. Cor (Chec 1. CN	Ilts / Symptoms) Introl Function – driving in 1/2 transmission operation failure Eking list) -70 (#2) – 52 (#05) Checking Open/Short -70 (#1) – GND Checking Open/Short		1	1

DTC	;	Diamental Criteria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	4	Monitor – Selecting attachment (breaker / crusher) (Detection) (When Attachment Conflux Solenoid is Off) 10 seconds continuous, Attachment Conflux Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Attachment Conflux Solenoid is Off) 3 seconds continuous, Attachment Conflux Solenoid drive unit Measurement Voltage > 3.0V	•		
169 (N.A)	6	(Detection) (When Attachment Conflux Solenoid is On) 10 seconds continuous, Attachment Conflux Solenoid drive Current > 6.5 A (Cancellation) (When Attachment Conflux Solenoid is On) 3 seconds continuous, Attachment Conflux Solenoid drive Current ≤ 6.5 A	•		
	1. Cor (Eco (Chec 1. CN	lts / symptoms) ntrol Function – Option attachment flow control – Joining operation failure breaker mode, crusher mode) king list) -237 (#1) – CN-52 (#16) Checking Open/Short -237 (#2) – fuse box (#34) Checking Open/Short			
	4	(Model Parameter) mounting Arm Regenerating Solenoid (Detection) (When Arm Regeneration Solenoid is Off) 10 seconds continuous, Arm Regeneration Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Arm Regeneration Solenoid is Off) 3 seconds continuous, Arm Regeneration Solenoid drive unit Measurement Voltage > 3.0V	•		
170 (N.A)	6	(Detection) (When Arm Regeneration Solenoid is On) 10 seconds continuous, Arm Regeneration Solenoid drive current > 4.5 A (Cancellation) (When Arm Regeneration Solenoid is On) 3 seconds continuous, Arm Regeneration Solenoid drive current ≤ 4.5 A	•		
	1. Cor (Eco (Chec 1. CN	lts / symptoms) htrol Function – Arm regeneration operation failure breaker mode, crusher mode) king list) -135 (#1) – CN-52 (#07) Checking Open/Short -135 (#2) – fuse box (#33) Checking Open/Short			

DTC	;	Diamenatia Critaria	Application				
HCESPN	FMI	Diagnostic Criteria	G	С	W		
	4	Monitor – Selecting attachment (crusher) (Detection) (When Attachment Safety Solenoid is Off) 10 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Attachment Safety Solenoid is Off) 3 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage > 3.0V	•				
171	6	(Detection) (When Attachment Safety Solenoid is On) 10 seconds continuous, Attachment Safety Solenoid drive current > 6.5 A (Cancellation) (When Attachment Safety Solenoid is On) 3 seconds continuous, Attachment Safety Solenoid drive current ≤ 6.5 A	•				
	(Resu	Its / Symptoms)					
		ntrol Function – Option attachment flow control – Option spool pilot pressur	e cut	off fa	ilure		
	(crusher mode)						
	(Chec	king list)					
	1. CN	-68 (#1) – CN-53 (#16) Checking Open/Short					
		-68 (#2) – fuse box (#28) Checking Open/Short					
	4	Monitor – Selecting attachment (breaker / crusher) (Detection) (When Breaker Operating Solenoid is Off) 10 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Breaker Operating Solenoid is Off) 3 seconds continuous, Attachment Safety Solenoid drive unit Measurement Voltage > 3.0V	•				
179 (N.A)	6	(Detection) (When Breaker Operating Solenoid is On) 10 seconds continuous, Attachment Safety Solenoid drive current > 6.5 A (Cancellation) (When Breaker Operating Solenoid is On) 3 seconds continuous, Attachment Safety Solenoid drive current ≤ 6.5 A	•				
	(Resu	Its / Symptoms)					
	(Chec	ntrol Function – Option attachment flow control – Breaker operation failure (breaking list) -66 (#1) – CN-52 (#08) Checking Open/Short	ıker m	node)			
	2. CN	-66 (#2) – fuse box (#40) Checking Open/Short					

DTC	;	Dia was atta Oritaria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	4	 (Model Parameter) mounting Reverse Cooling Fan Solenoid (Detection) (When Reverse Cooling Fan Solenoid is Off) 10 seconds continuous, Reverse Cooling Fan Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Reverse Cooling Fan Solenoid is Off) 3 seconds continuous, Reverse Cooling Fan Solenoid drive unit Measurement Voltage > 3.0V 	•		
181	6	(Detection) (When Reverse Cooling Fan Solenoid is On) 10 seconds continuous, Reverse Cooling Fan Solenoid drive current > 4.5 A (Cancellation) (When Reverse Cooling Fan Solenoid is On) 3 seconds continuous, Reverse Cooling Fan Solenoid drive current ≤ 4.5 A	•		
	,	Its / Symptoms)			
		ntrol Function – Cooling Fan reverse control operation failure			
	,	king list)			
		-155 (#1) – CN-52 (#14) Checking Open/Short			
	Z. CIN	-155 (#2) – fuse box (#18) Checking Open/Short			
	5	(Detection) (When Pump (A) EPPR current is equal or more than 300 mA) 10 seconds continuous, Pump (A) EPPR drive current < 100 mA (Cancellation) (When Pump (A) EPPR current is equal or more than 300 mA) 3 seconds continuous, Pump (A) EPPR drive current ≥ 100 mA	•		
188	6	(Detection) 10 seconds continuous, Pump (A) EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Pump (A) EPPR drive current ≤ 1.0 A	•		
	(Resu	Its / Symptoms)			'
	1. Cor (Chec 1. CN	ntrol Function – IPC operation failure, Option attachment flow control operation f king list) -75A (#2) – CN-54 (#27) Checking Open/Short -75A (#1) – CN-54 (#02) Checking Open/Short	failure) 	

DTC	;	Diamagatic Criteria	Ар	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	(Detection) (When Pump P2 regulator EPPR current is equal or more than 300 mA) 10 seconds continuous, Pump P2 regulator EPPR drive current < 100 mA (Cancellation) (When Pump P2 regulator EPPR current is equal or more than 300 mA) 3 seconds continuous, Pump P2 regulator EPPR drive current ≥ 100 mA	•		
189 (N.A)	6	(Detection) 10 seconds continuous, Pump P2 regulator EPPR drive current > 1.0 A (Cancellation) 3 seconds continuous, Pump P2 regulator EPPR drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN	Its / Symptoms) htrol Function – Option attachment flow control operation failure king list) -243 (#2) – CN-54 (#26) Checking Open/Short -243 (#1) – CN-54 (#03) Checking Open/Short			
	0	HW145 10 seconds continuous, Attachment flow control EPPR 1 press. Sensor Measurement Voltage > 5.2V HW145 10 seconds continuous, 0.3V≤ Attachment flow control EPPR 1 press. Sensor Measurement Voltage < 0.8V			
196 (N.A)	4 (Resu	HW145 10 seconds continuous, Attachment flow control EPPR 1 press. Sensor Measurement Voltage < 0.3V Its / Symptoms)			
	1. Cor (Chec 1. CD 2. CD	htrol Function – Driving second pump joining function operation failure king list) -33 (#B) – CN-52 (#11) Checking Open/Short -33 (#A) – CN-51 (#3) Checking Open/Short -33 (#C) – CN-51 (#13) Checking Open/Short			
200	l ,	10 seconds continuous, Pump EPPR Press. Sensor Measurement Voltage > 5.2V 10 seconds continuous, 0.3V≤ Pump EPPR Press. Sensor Measurement Voltage < 0.8V 10 seconds continuous, Pump EPPR Press. Sensor Measurement Voltage < 0.3V Its / Symptoms) nitor – Pump EPPR Press. display failure	•		
	2. Cor (Fuel of (Chect 1. CD- 2. CD-	ntrol Function – Pump input horse power control failure, Overload at compensat operation failure efficiency/speed performance failure) king list) -44 (#B) – CN-51 (#22) Checking Open/Short -44 (#A) – CN-51 (#32) Checking Open/Short -44 (#C) – CN-51 (#31) Checking Open/Short	ion co	ontrol	

DTC	;	Dia was atta Oritaria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	0	(Mounting pressure sensor) 10 seconds continuous, Boom Cylinder Rod Press. Sensor Measurement Voltage > 5.2V	•		
	1	(Mounting pressure sensor) 10 seconds continuous, 0.3V≤ Boom Cylinder Rod Press. Sensor Measurement Voltage < 0.8V	•		
205	4	(Mounting pressure sensor) 10 seconds continuous, Boom Cylinder Rod Press. Sensor Measurement Voltage < 0.3V	•		
	1. Moi 2. Cor (Chec 1. CD- 2. CD-	Its / Symptoms) nitor – Boom Cylinder Rod Press. display failure ntrol Function – Boom floating control operation failure king list) -124 (#B) – CN-51 (#13) Checking Open/Short -124 (#A) – CN-51 (#32) Checking Open/Short -124 (#C) – CN-51 (#31) Checking Open/Short			
	4	Mounting pressure sensor (HCESPN128 or HCESPN 205) (Detection) (When Boom Up Floating Solenoid is Off) 10 seconds continuous, Boom Up Floating Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Boom Up Floating Solenoid is Off) 3 seconds continuous, Boom Up Floating Solenoid drive unit Measurement Voltage > 3.0V	•		
218	6	(Detection) (When Boom Up Floating Solenoid is On) 10 seconds continuous, Boom Up Floating Solenoid drive current > 6.5 A (Cancellation) (When Boom Up Floating Solenoid is On) 3 seconds continuous, Boom Up Floating Solenoid drive current ≤ 6.5 A	•		
	1. Cor (Chec 1. CD	lts / Symptoms) htrol Function – Boom floating control operation failure king list) -503 (#1) – CN-53 (#06) Checking Open/Short -503 (#2) – fuse (#18) Checking Open/Short			

* Some error codes are not applied to this machine.

DTC	,	Diagnostic Critoria	Ap	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	4	Mounting pressure sensor (HCESPN 128 or 205) (Detection) (When Boom Down Pilot Pressure Cutoff Solenoid is Off) 10 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Boom Down Pilot Pressure Cutoff Solenoid is Off) 3 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive unit Measurement Voltage > 3.0V	•		
220	6	(Detection) (When Boom Down Pilot Pressure Cutoff Solenoid is On) 10 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive current > 6.5 A (Cancellation) (When Boom Down Pilot Pressure Cutoff Solenoid is On) 3 seconds continuous, Boom Down Pilot Pressure Cutoff Solenoid drive current ≤ 6.5 A	•		
	1. Cor (Chec 1. CD	Its / Symptoms) Its / Symptoms Its / Sym			
	5	Monitor – Selecting attachment (breaker / crusher) (Detection) (When ATT Relief Setting EPPR 1 Current is equal or more than 10 mA) 10 seconds continuous, ATT Relief Setting EPPR 1 drive current = 0 mA (Cancellation) ATT Relief Setting EPPR 1 Current is equal or more than 10 mA) 3 seconds continuous, ATT Relief Setting EPPR 1 drive current ≥ 10 mA	•		
221	6	(Detection) 10 seconds continuous, ATT Relief Setting EPPR 1 drive current > 1.0 A (Cancellation) 3 seconds continuous, ATT Relief Setting EPPR 1 drive current ≤ 1.0 A	•		
	1. Cor (Chec 1. CN	lts / Symptoms) htrol Function – Option attachment flow control – P1 relief pressure setting failur king list) -365 (#2) – CN-54 (#17) Checking Open/Short -365 (#1) – CN-54 (#09) Checking Open/Short	re		

DTC	;	D: 1: 0 1: 1	Application		
HCESPN	FMI	Diagnostic Criteria	G	С	W
	5	Monitor – Selecting attachment (crusher) (Detection) (When ATT Relief Setting EPPR 2 Current is equal or more than 10 mA) 10 seconds continuous, ATT Relief Setting EPPR 2 drive current = 0 mA (Cancellation) (When ATT Relief Setting EPPR 2 Current is equal or more than 10 mA) 3 seconds continuous, ATT Relief Setting EPPR 2 drive current ≥ 10mA	•		
222	6	(Detection) 10 seconds continuous, ATT Relief Setting EPPR 2 drive current > 1.0 A (Cancellation) 3 seconds continuous, ATT Relief Setting EPPR 2 drive current ≤ 1.0 A	•		
	,	Its / Symptoms)			
		ntrol Function – Option attachment flow control – P2 relief pressure setting fail	lure		
	`	king list)			
		-366 (#2) – CN-54 (#17) Checking Open/Short -366 (#1) – CN-54 (#10) Checking Open/Short			
	3	10 seconds continuous, Fuel Level Measurement Voltage > 3.8V			
	4	10 seconds continuous, Fuel Level Measurement Voltage < 0.3V			
301	1. Moi	lts / Symptoms) nitor – Fuel remaining display failure king list)			
	,	-2 (#2) – CN-51 (#25) Checking Open/Short			
		-2 (#1) – CN-51 (#19) Checking Open/Short			
	4	(Model Parameter) mounting Fuel Warmer Relay (Detection) (When Fuel Warmer Relay is Off) 10 seconds continuous, Fuel Warmer Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Fuel Warmer Relay is Off) 3 seconds continuous, Fuel Warmer Relay drive unit Measurement Voltage > 3.0V	•		
325	1. Cor (Chec 1. CR	(Detection) (When Fuel Warmer Relay is On) 10 seconds continuous, Fuel Warmer Relay drive current > 4.5 A (Cancellation) (When Fuel Warmer Relay is On) 3 seconds continuous, Fuel Warmer Relay drive current ≤ 4.5 A lts / Symptoms) ntrol Function – Fuel warmer operation failure king list) -46 (#85) – CN-52 (#13) Checking Open/Short -46 (#30, #86) – fuse box (#25) Checking Open/Short	•		

DTC		Diagnostic Critoria		plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
501	0	10 seconds continuous, Transmission Oil Press. Sensor Measurement Voltage > 5.2V			•
	1	10 seconds continuous, $0.3V \le Transmission Oil Press. Sensor Measurement Voltage < 0.8V$			•
	4	10 seconds continuous, Transmission Oil Press. Sensor Measurement Voltage < 0.3V			•
	1. Mo (Chec 1. CD 2. CD	olts / Symptoms) nitor – Transmission Oil Press. display failure, Transmission Oil low pressure was sking list) -05 (#B) – CN-52 (#26) Checking Open/Short -05 (#A) – CN-54 (#32) Checking Open/Short -05 (#C) – CN-54 (#31) Checking Open/Short	arninç	g failu	re
	0	10 seconds continuous, Brake Oil Press. Sensor Measurement Voltage > 5.2V			•
	1	10 seconds continuous, 0.3V≤ Brake Oil Press. Sensor Measurement Voltage < 0.8V			•
500	4	10 seconds continuous, Brake Oil Press. Sensor Measurement Voltage < 0.3V			•
503	1. Mo (Chec 1. CD 2. CD	alts / Symptoms) nitor – Brake Oil Press. display failure, Brake Oil low pressure warning failure sking list) -03 (#B) – CN-52 (#29) Checking Open/Short -03 (#A) – CN-51 (#32) Checking Open/Short -03 (#C) – CN-51 (#31) Checking Open/Short			
	0	10 seconds continuous, Working Brake Press. Sensor Measurement Voltage > 5.2V			•
	1	10 seconds continuous, 0.3V≤ Working Brake Press. Sensor Measurement Voltage < 0.8V			•
505	4	10 seconds continuous, Working Brake Press. Sensor Measurement Voltage < 0.3V			•
505	1. Mo (Chec 1. CD 2. CD	ults / Symptoms) nitor – Working Brake Oil Press. display failure, Working Brake Oil low pressure sking list) -38 (#B) – CN-51 (#30) Checking Open/Short -38 (#A) – CN-51 (#32) Checking Open/Short -38 (#C) – CN-51 (#31) Checking Open/Short	warr	ning fa	ıilure

DTC		Diagnostic Criteria	Application		
HCESPN	FMI	Diagnostic Criteria		С	W
	4	(Detection) (When Parking Relay is Off) 10 seconds continuous, Parking Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Parking Relay is Off) 3 seconds continuous, Parking Relay drive unit			•
514	6	Measurement Voltage > 3.0V (Detection) (When Parking Relay is On) 10 seconds continuous, Parking Relay drive current > 6.5 A (Cancellation) (When Parking Relay is On) 3 seconds continuous, Parking Relay drive current ≤ 6.5 A			•
	(Resu	Its / Symptoms)		l	
	(Chec	ntrol Function – Parking Relay operation failure king list) -66 (#85) – CN-53 (#11) Checking Open/Short -66 (#30, #86) – fuse box (#30) Checking Open/Short			
	4	(Detection) (When Traveling Cutoff Relay is Off) 10 seconds continuous, Traveling Cutoff Relay drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Traveling Cutoff Relay is Off) 3 seconds continuous, Traveling Cutoff Relay drive unit Measurement Voltage > 3.0V			•
517	6	(Detection) (When Traveling Cutoff Relay is On) 10 seconds continuous, Traveling Cutoff Relay drive current > 6.5 A (Cancellation) (When Traveling Cutoff Relay is On) 3 seconds continuous, Traveling Cutoff Relay drive current ≤ 6.5 A			•
	1. Cor (Chec 1. CR	Its / Symptoms) Its / Symptoms Its / Sym			

 $\frak{\#}$ Some error codes are not applied to this machine.

DTC		Diamenta Criteria	Ap	Application			
HCESPN	FMI	Diagnostic Criteria	G	С	W		
	4	(Detection) (When Ram Lock Solenoid is Off) 10 seconds continuous, Ram Lock Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Ram Lock Solenoid is Off) 3 seconds continuous, Ram Lock Solenoid drive unit Measurement Voltage > 3.0V			•		
525	6	(Detection) (When Ram Lock Solenoid is On) 10 seconds continuous, Ram Lock Solenoid drive current > 6.5 A (Cancellation) (When Ram Lock Solenoid is On) 3 seconds continuous, Ram Lock Solenoid drive current ≤ 6.5 A			•		
	(Resu	lts / Symptoms)					
	1. Cor	Control Function – Ram lock control operation failure					
	(Chec	king list)					
	1. CN	-69 (#1) – CN-53 (#12) Checking Open/Short					
	2. CN	-69 (#2) – fuse box (#34) Checking Open/Short					
	4	(Detection) (When Creep Solenoid is Off) 10 seconds continuous, Creep Solenoid drive unit Measurement Voltage ≤ 3.0V (Cancellation) (When Creep Solenoid is Off) 3 seconds continuous, Creep Solenoid drive unit Measurement Voltage > 3.0V			•		
527	6	(Detection) (When Creep Solenoid is On) 10 seconds continuous, Creep Solenoid drive current > 6.5 A (Cancellation) (When Creep Solenoid is On) 3 seconds continuous, Creep Solenoid drive current ≤ 6.5 A			•		
	1. Cor (Chec 1. CN	Its / Symptoms) Its / Symptoms Its /					

 $\frak{\#}$ Some error codes are not applied to this machine.

DTC		Dia was astis Oritaria	Application		on		
HCESPN	FMI Diagnostic Criteria		G	С	W		
	0	10 seconds continuous, Travel Forward Press. Sensor Measurement					
		Voltage > 5.2V					
	1	10 seconds continuous, 0.3V≤ Travel Forward Press. Sensor Measurement Voltage < 0.8V			•		
	4	10 seconds continuous, Travel Forward Press. Sensor Measurement Voltage < 0.3V			•		
530	(Resu	Its / Symptoms)					
	•	nitor – Travel Forward Press. display failure					
		ntrol Function – Driving interoperability power control operation failure					
	(Chec	king list)					
	1. CD-	-73 (#B) – CN-51 (#20) Checking Open/Short					
	2. CD-	-73 (#A) – CN-51 (#32) Checking Open/Short					
	3. CD-	-73 (#C) – CN-51 (#31) Checking Open/Short					
	1	10 seconds continuous, 0.3V≤ Travel Reverse Press. Sensor Measurement Voltage < 0.8V			•		
		10 seconds continuous, Travel Reverse Press. Sensor Measurement					
	4	Voltage < 0.3V					
	(Resu	lts / Symptoms)					
531	1. Mor	nitor – Travel Reverse Press. display failure					
(N.A)	2. Cor	ntrol Function – Driving interoperability power control operation failure					
	(Chec	king list)					
	1. CD-74 (#B) – CN-52 (#20) Checking Open/Short						
	2. CD-74 (#A) – CN-51 (#32) Checking Open/Short						
	3. CD	74 (#C) – CN-51 (#31) Checking Open/Short					
	0	10 seconds continuous, Battery input Voltage > 35V	•				
	1	10 seconds continuous, Battery input Voltage < 18V					
705	(Resu	Its / Symptoms)					
7.00	Control Function – Startup impossibility						
	(Checking list)						
	1. CS-	74B (#1) – CN-51 (#26) Checking Open/Short					
		(When Engine is equal or more than 400 rpm) 10 seconds continuous,					
	1	Alternator Node L Measurement Voltage < 18V					
		(In case 12v goods, Alternator Node L Measurement Voltage < 9V)					
707	(Resu	Its / Symptoms)					
	1. Cor	ntrol Function – Battery charging circuit failure					
	(Chec	king list)					
	1. CS-	74 (#1) – CN-51 (#01) Checking Open/Short					

DTC	;	Diagnostic Critoria	Ар	plicat	ion
HCESPN	FMI	Diagnostic Criteria	G	С	W
	3	(Model Parameter) Mounting Acc. Dial			
	3	10 seconds continuous, Acc. Dial Measurement Voltage > 5.2V			
	4	(Model Parameter) Mounting Acc. Dial			
714		10 seconds continuous, Acc. Dial Measurement Voltage < 0.3V			
(N.A)	(Resu	lts / Symptoms)			
(IV.A)		nitor – Acc. Dial Voltage display failure			
	2. Cor	ntrol Function – Engine rpm control failure			
	`	king list)			
	1. CN	-7 (#15) – CN-52 (#23) Checking Open/Short			
		(Detection)			
		(When Travel Alarm (Buzzer) Sound is Off)			
		10 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive unit			
	4	Measurement Voltage \leq 3.0V			
	–	(Cancellation)			
		(When Travel Alarm (Buzzer) Sound Relay is Off)			
		3 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive unit			
		Measurement Voltage > 3.0V			
		(Detection)			
		(When Travel Alarm (Buzzer) Sound is On)			
722		10 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive			
	6	current > 4.5 A			
		(Cancellation)			
		(When Travel Alarm (Buzzer) Sound is On)			
		3 seconds continuous, Travel Alarm (Buzzer) Sound Relay drive			
		current ≤ 4.5 A			
	(Resu	lts / Symptoms)			
	1. Cor	ntrol Function – Driving alarm operation failure			
	(Chec	king list)			
	1. CN	-81 (#1) – CN-52 (#09) Checking Open/Short			
	2. CN	-81 (#2) – Fuse (#30) Checking Open/Short			
	2	(When mounting the A/C Controller)			
		60 seconds continuous, A/C Controller Communication Data Error			
	(Resu	lts / Symptoms)			
831	1. Cor	ntrol Function – A/C Controller operation failure			
	(Chec	king list)			
	1. CN	-11 (#8) – CN-51 (#09) Checking Open/Short			
	2. CN	-11 (#7) – CN-51 (#08) Checking Open/Short			
	2	60 seconds continuous, Cluster Communication Data Error			
	(Resu	llts / Symptoms)			1
	l ,	ntrol Function – Cluster operation failure			
840		king list)			
	l ,	-56A (#5) – CN-52 (#01) Checking Open/Short			
		-56A (#4) – CN-52 (#01) Checking Open/Short			
	Z. OIV	σολ (πτ) στος (πος) στισολιτία σροτισοποίτ			

DTC		Dia manadia Oritaria	Ap	plicat	ion	
HCESPN	FMI	Diagnostic Criteria	G	С	W	
	2	10 seconds continuous, ECM Communication Data Error				
	(Resu	Its / Symptoms)				
841	Control Function – ECM operation failure					
041	(Chec	king list)				
	1. CN	-93 (#22) – CN-52 (#02) Checking Open/Short				
	2. CN	-93 (#46) – CN-52 (#01) Checking Open/Short				
	2	(When mounting the Jog Dial Module)				
		60 seconds continuous, Jog Dial Module Communication Data Error		Application C V		
	(Resu	Its / Symptoms)				
848	1. Cor	ntrol Function – Jog Dial Module operation failure				
	(Chec	king list)				
	1. CN	-8 (#2) – CN-51 (#09) Checking Open/Short				
	2. CN	-8 (#3) – CN-51 (#08) Checking Open/Short				
	2	(When mounting the RMCU)				
		60 seconds continuous, RMCU communication Data Error				
	,	luts / Symptoms)				
850		ntrol Function – RMCU operation failure				
	`	king list)				
		-125A (#3) – CN-51 (#09) Checking Open/Short				
	2. CN	-125A (#11) – CN-51 (#08) Checking Open/Short	1	ı		
	2	(When mounting the AAVM)				
		60 seconds continuous, AAVM communication Data Error				
	,	Its / Symptoms)				
866		ntrol Function – AAVM operation failure				
	l ,	king list)				
		-401 (#15) – CN-51 (#09) Checking Open/Short				
		-401 (#3) – CN-51 (#08) Checking Open/Short				
	2	60 seconds continuous, RDU communication Data Error				
	l '	Its / Symptoms)				
867		ntrol Function – RDU operation failure				
	,	king list)			ļ	
		-376 (#10) – CN-51 (#09) Checking Open/Short			ļ	
	2. CN	-376 (#18) – CN-51 (#08) Checking Open/Short				

DTC		Diagnostic Critoria		Application			
HCESPN	FMI	Diagnostic Criteria	G	G C			
	2	60 seconds continuous, Switch Controller communication Data Error					
	(Resu	Its / Symptoms)					
868	1. Cor	ntrol Function – Switch Controller operation failure					
000	(Chec	king list)					
	1. CN-56A (#7) – CN-51 (#08) Checking Open/Short						
	2. CN-56A (#6) – CN-51 (#09) Checking Open/Short						
	2	(When mounting the BKCU)					
		60 seconds continuous, BKCU communication Data Error					
	(Resu	Its / Symptoms)					
869	Control Function – BKCU operation failure						
	(Checking list)						
	1. CS	-2B (#A) – CN-51 (#08) Checking Open/Short					
	2. CS	-2B (#B) - CN-51 (#09) Checking Open/Short					

W : Wheel Type

G : General C : Crawler Type

^{*} Some error codes are not applied to this machine.

4. ENGINE FAULT CODE

Fault code J1939 SPN J1939 FMI	ltem	Description
111 629 12	Engine control module critical internal failure	Bad intelligent device or component
122 102 3	Intake manifold 1 pressure sensor circuit	Voltage above normal, or shorted to high source
123 102 4	Intake manifold 1 pressure sensor circuit	Voltage below normal, or shorted to low source
124 102 16	Intake manifold 1 pressure	Data valid but above normal operating range - moderately severe level
125 102 18	Intake manifold 1 pressure	Data valid but below normal operating range - moderately severe level
133 974 3	Remote accelerator pedal or lever position sensor 1 circuit	Voltage above normal, or shorted to high source
134 974 4	Remote accelerator pedal or lever position sensor 1 circuit	Voltage below normal, or shorted to low source
135 100 3	Engine oil rifle pressure 1 sensor circuit	Voltage above normal, or shorted to high source
141 100 4	Engine oil rifle pressure 1 sensor circuit	Voltage below normal, or shorted to low source
143 100 18	Engine oil rifle pressure	Data valid but below normal operating range - moderately severe level
144 110 3	Engine coolant temperature 1 sensor circuit	Voltage above normal, or shorted to high source
145 110 4	Engine coolant temperature 1 sensor circuit	Voltage below normal, or shorted to low source
146 110 16	Engine coolant temperature	Data valid but above normal operating range - moderately severe level
147 91 1	Accelerator pedal or lever position 1 sensor circuit frequency	Data valid but below normal operating range
148 91 0	Accelerator pedal or lever position sensor 1	Data valid but above normal operational range - most severe level
151 110 0	Engine coolant temperature	Data valid but above normal operational range - most severe level

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
153 105 3	Intake manifold 1 temperature sensor circuit	Voltage above normal, or shorted to high source
154 105 4	Intake manifold 1 temperature sensor circuit	Voltage below normal, or shorted to low source
187 3510 4	Sensor supply 2 circuit	Voltage below normal, or shorted to low source
197 111 18	Coolant level	Data valid but below normal operating range - moderately severe level
227 3510 3	Sensor supply 2 circuit	Voltage above normal, or shorted to high source
234 190 0	Engine crankshaft speed/position	Data valid but above normal operational range - most severe level
235 111 1	Coolant level	Data valid but below normal operational range - most severe level
237 644 2	External speed command input (Multiple unit synchronization)	Data erratic, intermittent or incorrect
238 3511 4	Sensor supply 3 circuit	Voltage below normal, or shorted to low source
239 3511 3	Sensor supply 3 circuit	Voltage above normal, or shorted to high source
241 84 2	Wheel-based vehicle speed	Data erratic, intermittent or incorrect
242 84 10	Wheel-based vehicle speed sensor circuit tampering has been detected	Abnormal rate of change
271 1347 4	Engine fuel pump pressurizing assembly 1 circuit	Voltage below normal, or shorted to low source
272 1347 3	Engine fuel pump pressurizing assembly 1 circuit	Voltage above normal, or shorted to high source
285 639 9	SAE J1939 multiplexing pgn timeout error	Abnormal update rate
286 639 13	SAE J1939 multiplexing configuration error	Out of calibration

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
288 974 19	SAE J1939 multiplexing remote accelerator pedal or lever position sensor system	Received network data in error
293 441 3	Auxiliary temperature sensor input 1 circuit	Voltage above normal, or shorted to high source
294 441 4	Auxiliary temperature sensor input 1 circuit	Voltage below normal, or shorted to low source
297 1388 3	Auxiliary pressure sensor input 2 circuit	Voltage above normal, or shorted to high source
298 1388 4	Auxiliary pressure sensor input 2 circuit	Voltage below normal, or shorted to low source
322 651 5	Injector solenoid driver cylinder 1 circuit	Current below normal or open circuit
324 653 5	Injector solenoid driver cylinder 3 circuit	Current below normal or open circuit
331 652 5	Injector solenoid driver cylinder 2 circuit	Current below normal or open circuit
332 654 5	Injector solenoid driver cylinder 4 circuit	Current below normal or open circuit
334 110 2	Engine coolant temperature	Data erratic, intermittent or incorrect
343 629 12	Engine control module warning internal hardware failure	Bad intelligent device or component
349 191 16	Transmission output shaft speed	Data valid but above normal operating range - moderately severe level
351 3597 12	Injector power supply	Bad intelligent device or component
352 3509 4	Sensor supply 1 circuit	Voltage below normal, or shorted to low source
386 3509 3	Sensor supply 1 circuit	Voltage above normal, or shorted to high source
415 100 1	Engine oil rifle pressure	Data valid but below normal operational range - most severe level

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
418 97 15	Water in fuel indicator	Data valid but above normal operating range - least severe level
428 97 3	Water in fuel indicator sensor circuit	Voltage above normal, or shorted to high source
429 97 4	Water in fuel indicator sensor circuit	Voltage below normal, or shorted to low source
431 558 2	Accelerator pedal or lever idle validation switch	Data erratic, intermittent or incorrect
432 558 13	Accelerator pedal or lever idle validation switch circuit	Out of calibration
435 100 2	Engine oil rifle pressure	Data erratic, intermittent or incorrect
451 157 3	Injector metering rail 1 pressure sensor circuit	Voltage above normal, or shorted to high source
452 157 4	Injector metering rail 1 pressure sensor circuit	Voltage below normal, or shorted to low source
488 105 16	Intake manifold 1 temperature	Data valid but above normal operating range - moderately severe level
489 191 18	Transmission output shaft speed	Data valid but below normal operating range - moderately severe level
497 1377 2	Multiple unit synchronization switch	Data erratic, intermittent or incorrect
515 3514 3	Sensor supply 6 circuit	Voltage above normal, or shorted to high source
516 3514 4	Sensor supply 6 circuit	Voltage below normal, or shorted to low source
527 702 3	Auxiliary input/output 2 circuit	Voltage above normal, or shorted to high source
529 703 3	Auxiliary input/output 3 circuit	Voltage above normal, or shorted to high source
553 157 16	Injector metering rail 1 pressure	Data valid but above normal operating range - moderately severe level

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
555 101 16	Crankcase pressure	Data valid but above normal operating range - moderately severe level
556 101 0	Crankcase pressure	Data valid but above normal operational range - most severe level
559 157 18	Injector metering rail 1 pressure	Data valid but below normal operating range - moderately severe level
584 677 3	Starter relay driver circuit	Voltage above normal, or shorted to high source
585 677 4	Starter relay driver circuit	Voltage below normal, or shorted to low source
599 640 14	Auxiliary commanded dual output shutdown	Special instructions
611 1383 31	Engine shut down hot	Condition exists
649 1378 31	Engine oil change interval	Condition exists
687 103 18	Turbocharger 1 speed	Data valid but below normal operating range - moderately severe level
689 190 2	Engine crankshaft speed/position	Data erratic, intermittent or incorrect
691 1172 3	Turbocharger 1 compressor intake temperature circuit	Voltage above normal, or shorted to high source
692 1172 4	Turbocharger 1 compressor intake temperature circuit	Voltage below normal, or shorted to low source
693 1172 7	Turbocharger 1 compressor intake temperature	Data erratic, intermittent or incorrect
731 723 7	Engine speed / position camshaft and crankshaft misalignment	Mechanical system not responding or out of adjustment
741 1176 3	Turbocharger 1 compressor intake pressure circuit	Voltage above normal, or shorted to high source
742 1176 4	Turbocharger 1 compressor intake pressure circuit	Voltage below normal, or shorted to low source

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
743 1176 2	Turbocharger 1 compressor intake pressure	Data erratic, intermittent or incorrect
769 597 3	Brake switch circuit	Voltage above normal, or shorted to high source
771 597 4	Brake switch circuit	Voltage below normal, or shorted to low source
778 723 2	Engine camshaft speed / position sensor	Data erratic, intermittent or incorrect
1117 3597 2	Power supply lost with ignition on	Data erratic, intermittent or incorrect
1239 2623 3	Accelerator pedal or lever position sensor 2 circuit	Voltage above normal, or shorted to high source
1241 2623 4	Accelerator pedal or lever position sensor 2 circuit	Voltage below normal, or shorted to low source
1242 91 2	Accelerator pedal or lever position sensor 1	Data erratic, intermittent or incorrect
1358 91 3	Accelerator pedal or lever position sensor 1 circuit	Voltage above normal, or shorted to high source
1359 91 4	Accelerator pedal or lever position sensor 1 circuit	Voltage below normal, or shorted to low source
1515 91 19	SAE J1939 multiplexed accelerator pedal or lever sensor system	Received network data in error
1539 1387 3	Auxiliary pressure sensor input 1 circuit	Voltage above normal, or shorted to high source
1621 1387 4	Auxiliary pressure sensor input 1 circuit	Voltage below normal, or shorted to low source
1668 1761 4	Aftertreatment 1 diesel exhaust fluid tank level sensor circuit	Voltage below normal, or shorted to low source
1669 1761 3	Aftertreatment 1 diesel exhaust fluid tank level sensor circuit	Voltage above normal, or shorted to high source
1673 1761 1	Aftertreatment 1 diesel exhaust fluid tank level	Data valid but below normal operational range -most severe level

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
1677 3031 4	Aftertreatment 1 diesel exhaust fluid tank temperature sensor	Voltage below normal, or shorted to low source
1678 3031 3	Aftertreatment 1 diesel exhaust fluid tank temperature sensor	Voltage above normal, or shorted to high source
1679 3031 2	Aftertreatment 1 diesel exhaust fluid tank temperature	Data erratic, intermittent or incorrect
1682 3362 31	Aftertreatment 1 diesel exhaust fluid dosing unit input lines	Condition exists
1685 3364 4	Aftertreatment diesel exhaust fluid quality sensor circuit	Voltage below normal, or shorted to low source
1686 3364 3	Aftertreatment diesel exhaust fluid quality sensor circuit	Voltage above normal, or shorted to high source
1695 3513 3	Sensor supply 5	Voltage above normal, or shorted to high source
1696 3513 4	Sensor supply 5	Voltage below normal, or shorted to low source
1713 3363 16	Aftertreatment 1 diesel exhaust fluid tank heater	Data valid but above normal operating range - moderately severe level
1714 3364 13	Aftertreatment diesel exhaust fluid quality	Out of calibration
1715 3364 11	Aftertreatment diesel exhaust fluid quality	Root cause not known
1843 101 3	Crankcase pressure circuit	Voltage above normal, or shorted to high source
1844 101 4	Crankcase pressure circuit	Voltage below normal, or shorted to low source
1852 97 16	Water in fuel indicator	Data valid but above normal operating range - moderately severe level
1879 3251 3	Aftertreatment diesel particulate filter differential pressure sensor circuit	Voltage above normal
1881 3251 4	Aftertreatment diesel particulate filter differential pressure sensor circuit	Voltage below normal

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
1883 3251 2	Aftertreatment diesel particulate filter differential pressure sensor	Data erratic, intermittent or incorrect
1885 3216 4	Aftertreatment 1 intake NOx sensor circuit	Voltage below normal, or shorted to low source
1887 3226 4	Aftertreatment 1 outlet NOx sensor circuit	Voltage below normal, or shorted to low source
1921 3251 16	Aftertreatment diesel particulate filter differential pressure	Data valid but above normal operating range
1922 3251 0	Aftertreatment diesel particulate filter differential pressure	Data valid but above normal operating range
1993 4795 31	Aftertreatment 1 diesel particulate filter missing	Condition exists
2185 3512 3	Sensor supply 4 circuit	Voltage above normal, or shorted to high source
2186 3512 4	Sensor supply 4 circuit	Voltage below normal, or shorted to low source
2311 633 31	Electronic fuel injection control valve circuit	Condition exists
2321 190 2	Engine crankshaft speed/position	Data erratic, intermittent or incorrect
2322 723 2	Engine camshaft speed / position sensor	Data erratic, intermittent or incorrect
2373 1209 3	Exhaust gas pressure sensor 1 circuit	Voltage above normal, or shorted to high source
2374 1209 4	Exhaust gas pressure sensor 1 circuit	Voltage below normal, or shorted to low source
2448 111 17	Coolant level	Data valid but below normal operating range - least severe level
2468 190 16	Engine speed	Engine crankshaft speed/position - data valid but above normal operating range - moderately severe level
2554 1209 2	Exhaust gas pressure 1	Data erratic, intermittent or incorrect

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
2557 697 3	Auxiliary PWM driver 1 circuit	Voltage above normal, or shorted to high source
2558 697 4	AuxiliaryPWM driver 1 circuit	Voltage below normal, or shorted to low source
2571 2630 3	Engine charge air cooler outlet temperature	Voltage above normal, or shorted to high source
2572 2630 4	Engine charge air cooler outlet temperature	Voltage below normal, or shorted to low source
2639 3251 15	Aftertreatment diesel particulate filter differential pressure	Data valid but above normal operating range
2771 3226 9	Aftertreatment 1 outlet NOx sensor	Abnormal update rate
2778 3481 16	Aftertreatment fuel rate	Data valid but above normal operating range - moderately severe level
2973 102 2	Intake manifold 1 pressure	Data erratic, intermittent or incorrect
2976 3361 2	Aftertreatment 1 diesel exhaust fluid dosing unit temperature	Data erratic, intermittent or incorrect
3133 3610 3	Aftertreatment 1 diesel particulate filter outlet pressure sensor circuit	Voltage above normal, or shorted to high source
3134 3610 4	Aftertreatment 1 diesel particulate filter outlet pressure sensor circuit	Voltage below normal, or shorted to low source
3135 3610 2	Aftertreatment 1 diesel particulate filter outlet pressure	Data erratic, intermittent or incorrect
3139 3667 3	Engine air shutoff circuit	Voltage above normal, or shorted to high source
3141 3667 4	Engine air shutoff circuit	Voltage below normal, or shorted to low source
3142 4360 3	Aftertreatment 1 SCR intake temperature sensor circuit	Voltage above normal, or shorted to high source
3144 4360 2	Aftertreatment 1 SCR intake temperature sensor	Data erratic, intermittent or incorrect

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
3146 4363 3	Aftertreatment 1 SCR outlet temperature sensor circuit	Voltage above normal, or shorted to high source
3147 4363 4	Aftertreatment 1 SCR outlet temperature sensor circuit	Voltage below normal, or shorted to low source
3148 4363 2	Aftertreatment 1 SCR outlet temperature sensor	Data erratic, intermittent or incorrect
3151 4974 31	Aftertreatment 1 SCR catalyst system missing	Condition exists
3165 4363 0	Aftertreatment 1 SCR outlet temperature	Data valid but above normal operational range - most severe
3232 3216 9	Aftertreatment 1 intake NOx sensor	Abnormal update rate
3235 4363 16	Aftertreatment 1 SCR outlet temperature	Data valid but above normal operating range - moderately severe level
3251 4765 16	Aftertreatment 1 diesel oxidation catalyst intake temperature	Data valid but above normal operating range
3253 3242 16	Aftertreatment 1 diesel particulate filter intake temperature	Data valid but above normal operating range
3254 3242 16	Aftertreatment 1 diesel particulate filter intake temperature	Data valid but above normal operating range
3255 3246 16	Aftertreatment 1 diesel particulate filter outlet temperature	Data valid but above normal operating range
3311 3242 0	Aftertreatment 1 diesel particulate filter intake temperature	Data valid but above normal operation
3312 3246 0	Aftertreatment 1 diesel particulate filter outlet temperature	Data valid but above normal operation
3313 4765 4	Aftertreatment 1 diesel oxidation catalyst intake temperature sensor circuit	Voltage below normal, or shorted to low source
3314 4765 3	Aftertreatment 1 diesel oxidation catalyst intake temperature sensor circuit	Voltage above normal, or shorted to high source
3315 4765 2	Aftertreatment 1 diesel oxidation catalyst intake temperature	Data erratic, intermittent or incorrect

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Item	Description
3316 3242 4	Aftertreatment 1 diesel particulate filter intake temperature sensor circuit	Voltage below normal, or shorted to low source
3317 3242 3	Aftertreatment 1 diesel particulate filter intake temperature sensor circuit	Voltage above normal, or shorted to high source
3318 3242 2	Aftertreatment 1 diesel particulate filter intake temperature	Data erratic, intermittent or incorrect
3319 3246 3	Aftertreatment 1 diesel particulate filter outlet temperature sensor circuit	Voltage above normal, or shorted to high source
3321 3246 4	Aftertreatment 1 diesel particulate filter outlet temperature sensor circuit	Voltage below normal, or shorted to low source
3322 3246 2	Aftertreatment 1 diesel particulate filter outlet temperature	Data erratic, intermittent or incorrect
3326 91 9	SAE J1939 multiplexed accelerator pedal or lever sensor system	Abnormal update rate
3341 107 16	Engine air filter differential pressure - data valid but above normal operating range	Moderately severe level
3375 5397 31	Aftertreatment diesel particulate filter regeneration too frequent	Condition exists
3376 5319 31	Aftertreatment diesel particulate filter incomplete regeneration	Condition exists
3497 1761 17	Aftertreatment 1 diesel exhaust fluid tank level	Data valid but below normal operating range - least severe level
3498 1761 18	Aftertreatment 1 diesel exhaust fluid tank level	Data valid but below normal operating range - moderately severe level
3527 558 19	Accelerator pedal or lever idle validation switch	Received network data in error
3528 558 9	Accelerator pedal or lever idle validation switch	Abnormal update rate
3545 3226 31	Aftertreatment 1 outlet NOx sensor	Abnormal rate of change
3547 4096 31	Aftertreatment diesel exhaust fluid tank empty	Condition exists

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
3558 3361 3	Aftertreatment 1 diesel exhaust fluid dosing unit	Voltage above normal, or shorted to high source
3559 3361 4	Aftertreatment 1 diesel exhaust fluid dosing unit	Voltage below normal, or shorted to low source
3567 5394 5	Aftertreatment diesel exhaust fluid dosing valve	Current below normal or open circuit
3568 5394 7	Aftertreatment diesel exhaust fluid dosing valve	Mechanical system not responding or out of adjustment
3571 4334 3	Aftertreatment 1 diesel exhaust fluid pressure sensor	Voltage above normal, or shorted to high source
3572 4334 4	Aftertreatment 1 diesel exhaust fluid pressure sensor	Voltage below normal, or shorted to low source
3574 4334 18	Aftertreatment 1 diesel exhaust fluid pressure sensor	Data valid but below normal operating range
3575 4334 16	Aftertreatment 1 diesel exhaust fluid pressure sensor	Data valid but above normal operating range
3577 4376 3	Aftertreatment diesel exhaust fluid return valve	Voltage above normal, or shorted to high source
3578 4376 4	Aftertreatment diesel exhaust fluid return valve	Voltage above normal, or shorted to low source
3583 5031 10	Aftertreatment 1 outlet nox sensor heater	Abnormal rate of change
3596 4334 2	Aftertreatment 1 diesel exhaust fluid pressure sensor	Data erratic, intermittent or incorrect
3641 748 9	Transmission output retarder	Abnormal update rate
3649 5024 10	Aftertreatment 1 intake NOx sensor heater	Abnormal rate of change
3681 3228 2	Aftertreatment 1 outlet NOx sensor power supply	Data erratic, intermittent or incorrect
3682 3218 2	Aftertreatment 1 intake NOx sensor power supply	Data erratic, intermittent or incorrect

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
3697 630 12	Engine control module calibration memory	Bad intelligent device or component
3712 5246 0	Aftertreatment SCR operator inducement	Data valid but above normal operational range - most severe level
3714 1569 31	Engine protection torque derate	Condition exists
3725 3216 10	Aftertreatment 1 intake NOx sensor	Abnormal rate of change
3727 5571 7	High pressure common rail fuel pressure relief valve	Mechanical system not responding or out of adjustment
3737 1675 31	Engine starter mode overcrank protection	Condition exists
3741 5571 0	High pressure common rail fuel pressure relief valve	Data valid but above normal operational range
3748 3216 20	Aftertreatment 1 intake NOx sensor	Data not rational - drifted high
3765 442 3	Auxiliary temperature sensor input 2 circuit	Voltage above normal, or shorted to high source
3766 442 4	Auxiliary temperature sensor input 2 circuit	Voltage below normal, or shorted to low source
3838 2978 9	Estimated engine parasitic losses - percent torque	Abnormal update rate
3841 596 2	Cruise control enable switch	Data erratic, intermittent or incorrect
3843 5603 9	Cruise control disable command	Abnormal update rate
3845 5603 31	Cruise control disable command	Condition exists
3866 3364 1	Aftertreatment diesel exhaust fluid quality	Data valid but below normal operational range - most severe level
3868 3364 9	Aftertreatment diesel exhaust fluid quality	Abnormal update rate

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
3878 3364 2	Aftertreatment diesel exhaust fluid quality	Data erratic, intermittent or incorrect
4151 5742 9	Aftertreatment diesel particulate filter temperature sensor module	Abnormal update rate
4152 5743 9	Aftertreatment selective catalytic reduction temperature sensor module	Abnormal update rate
4156 5746 4	Aftertreatment 1 diesel exhaust fluid dosing unit heater relay	Voltage below normal, or shorted to low source
4158 5742 12	Aftertreatment diesel particulate filter temperature sensor module	Bad intelligent device or component
4159 5743 12	Aftertreatment selective catalytic reduction temperature sensor module	Bad intelligent device or component
4161 5742 3	Aftertreatment diesel particulate filter temperature sensor module	Voltage above normal, or shorted to high source
4162 5742 4	Aftertreatment diesel particulate filter temperature sensor module	Voltage below normal, or shorted to low source
4163 5742 16	Aftertreatment diesel particulate filter temperature sensor module	Data valid but above normal operating range
4164 5743 3	Aftertreatment selective catalytic reduction temperature sensor module	Voltage above normal, or shorted to high source
4165 5743 4	Aftertreatment selective catalytic reduction temperature sensor module	Voltage below normal, or shorted to low source
4166 5743 16	Aftertreatment selective catalytic reduction temperature sensor module	Data valid but above normal
4168 5745 3	Aftertreatment 1 diesel exhaust fluid dosing unit heater	Voltage above normal, or shorted to high source
4169 5745 4	Aftertreatment 1 diesel exhaust fluid dosing unit heater	Voltage below normal, or shorted to low source
4249 4337 10	Aftertreatment 1 diesel exhaust fluid dosing temperature	Abnormal rate of change
4251 5798 10	Aftertreatment 1 diesel exhaust fluid dosing unit heater temperature	Abnormal rate of change

[※] Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
4259 5742 11	Aftertreatment diesel particulate filter temperature sensor module	Root cause not known
4261 5743 11	Aftertreatment selective catalytic reduction temperature sensor module	Root cause not known
4277 3364 10	Aftertreatment diesel exhaust fluid quality	Abnormal rate of change
4284 5793 9	Desired engine fueling state	Abnormal update rate
4452 3226 7	Aftertreatment 1 outlet NOx sensor closed loop operation	Condition exists
4484 3667 7	Engine air shutoff	Mechanical system not responding or out of Adjustment
4526 521 2	Brake pedal position	Data erratic, intermittent or incorrect
4572 3031 9	Aftertreatment 1 diesel exhaust fluid tank temperature	Abnormal update rate
4584 3936 14	Aftertreatment diesel particulate filter system	Special instructions
4585 4792 14	Aftertreatment 1 SCR catalyst system	Special instructions
4677 1761 9	SAE J1939 multiplexing pgn timeout error	Abnormal update rate
4724 702 5	Auxiliary input/output 2 circuit	Current below normal or open circuit
4725 702 6	Auxiliary input/output 2 circuit	Current above normal or grounded circuit
4731 3031 13	Aftertreatment 1 diesel exhaust fluid tank temperature sensor	Out of calibration
4734 701 14	Auxiliary input/output 1	Special instructions
4737 3031 11	Aftertreatment 1 diesel exhaust fluid tank temperature	Root cause not known

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
4739 1761 11	Aftertreatment 1 diesel exhaust fluid tank level sensor	Root cause not known
4747 3217 20	Aftertreatment intake oxygen sensor	Data not rational - drifted high
4748 3217 21	Aftertreatment intake oxygen sensor	Data not rational - drifted low
4749 3227 20	Aftertreatment outlet oxygen	Data not rational - drifted high
4751 3227 21	Aftertreatment outlet oxygen	Data not rational - drifted low
4768 3521 11	Aftertreatment 1 diesel exhaust fluid property	Root cause not known
4769 1761 10	Aftertreatment 1 diesel exhaust fluid tank level sensor	Abnormal rate of change
4842 3364 15	Aftertreatment diesel exhaust fluid quality	Data valid but above normal operating range - Least severe level
4863 5245 31	Aftertreatment diesel exhaust fluid tank low level indicator	-
4953 3353 3	Alternator 1 status	Voltage above normal, or shorted to high source
4954 3353 4	Alternator 1 status	Voltage below normal, or shorted to low source
5248 1623 13	Tachograph output shaft speed	Out of calibration
5272 649 4	Engine exhaust back pressure regulator control circuit	Voltage below normal, or shorted to low source
5273 649 5	Engine exhaust back pressure regulator control circuit	Current below normal or open circuit
5274 5625 2	Engine exhaust back pressure regulator position	Data erratic, intermittent or incorrect
5275 5625 3	Engine exhaust back pressure regulator position sensor circuit	Voltage above normal, or shorted to high source

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
5276 5625 4	Engine exhaust back pressure regulator position sensor circuit	Voltage above normal, or shorted to low source
5292 520809 31	Excessive time since last engine air shutoff maintenance test	Condition exists
5383 3720 15	Aftertreatment 1 diesel particulate filter ash load percent	Data valid but above normal operating range - least severe level
5576 107 15	Engine air filter differential pressure	Data valid but above normal operating range - least severe level
5632 6918 31	SCR system cleaning inhibited due to inhibit switch	Condition exists
5652 1209 15	Exhaust pressure 1	Data valid but above normal operating range - least severe level
5653 6881 9	SCR operator inducement override switch	Abnormal update rate
5654 6881 13	SCR operator inducement override switch	Out of calibration
5655 4364 31	Aftertreatment 1 scr conversion efficiency	Condition exists
5689 3226 11	Aftertreatment 1 outlet nox sensor	Root cause not known
5715 3521 10	Aftertreatment 1 diesel particulate filter differential pressure	Abnormal rate of change
5716 3610 10	Aftertreatment 1 diesel particulate filter outlet pressure	Abnormal rate of change
5864 4375 3	Aftertreatment 1 diesel exhaust fluid pump command circuit	Voltage above normal or shorted to high source
5865 4375 4	Aftertreatment 1 diesel exhaust fluid pump command circuit	Voltage below normal or shorted to low source
5868 4339 7	Aftertreatment 1 scr feedback control status	Mechanical system not responding or out of adjustment
5935 4334 7	Aftertreatment 1 diesel exhaust fluid pressure	Mechanical system not responding or out of adjustment

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	Item	Description
5936 4334 15	Aftertreatment 1 diesel exhaust fluid pressure	Data valid but above normal operating range - least severe level
5938 3750 14	Aftertreatment 1 diesel particulate filter conditions not met for active regeneration	Special instructions
5939 520968 9	Machine constrained operation	Abnormal update rate. No communication or an Invalid data transfer rate has been detected on the J1939 data link between the ECM and the machine
5941 520968 19	Machine constrained operation	Received network data in error. The received J1939 datalink message was not valid.
6256 168 15	Battery 1 voltage	Data valid but below normal operating range - moderately severe level
6257 168 17	Battery 1 voltage	Data valid but below normal operating range - moderately severe level
6263 647 3	Fan control circuit	Voltage above normal, or shorted to high source
6264 647 4	Fan control circuit	Voltage below normal, or shorted to low source
6456 5484 3	Engine fan clutch 2 control circuit	Voltage above normal, or shorted to high source
6457 5484 4	Engine fan clutch 2 control circuit	Voltage below normal, or shorted to low source
6467 1639 15	Fan speed	Data valid but above normal operational range - most severe level
6468 1639 17	Fan speed	Data valid but below normal operational range - most severe level
6471 6799 3	Fan blade pitch position sensor circuit	Voltage above normal, or shorted to high source
6472 6799 4	Fan blade pitch position sensor circuit	Voltage below normal, or shorted to low source
6475 3363 7	Aftertreatment 1 diesel exhaust fluid tank heater	Mechanical system not responding or out of adjustment
6476 3363 18	Aftertreatment 1 diesel exhaust fluid tank heater	Data valid but below normal operating range - moderately severe level

[※] Some fault codes are not applied to this machine.

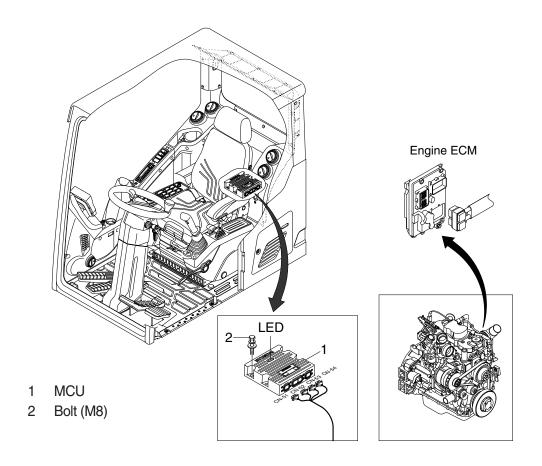
Fault code J1939 SPN	ltem	Description
5491 3	Aftertreatment diesel exhaust fluid line heater relay	Voltage above normal, or shorted to high source
6478 5491 4	Aftertreatment diesel exhaust fluid line heater relay	Voltage below normal, or shorted to low source
6479 3363 3	Aftertreatment 1 diesel exhaust fluid tank heater	Voltage above normal, or shorted to high source
6481 3363 4	Aftertreatment 1 diesel exhaust fluid tank heater	Voltage below normal, or shorted to low source
6511 6655 3	Maintain ECM power lamp	Voltage above normal, or shorted to high source
6512 6655 4	Maintain ECM power lamp	Voltage below normal, or shorted to low source
6513 5745 17	Aftertreatment 1 diesel exhaust fluid dosing unit heater	Data valid but below normal operating range
6522 111 3	Coolant level sensor 1 circuit	Voltage above normal, or shorted to high source
6523 111 4	Coolant level sensor 1 circuit	Voltage below normal, or shorted to low source
6526 1761 13	Aftertreatment 1 diesel exhaust fluid tank level sensor	Out of calibration
6527 4376 7	Aftertreatment diesel exhaust fluid return valve	Mechanical system not responding or out of adjust
6529 5746 3	Aftertreatment 1 diesel exhaust fluid dosing unit heater relay	Voltage above normal, or shorted to high source
6531 4340 3	Aftertreatment 1 diesel exhaust fluid line heater 1 circuit	Voltage above normal, or shorted to high source
6532 4340 4	Aftertreatment 1 diesel exhaust fluid line heater 1 circuit	Voltage below normal, or shorted to low source
6533 4342 3	Aftertreatment 1 diesel exhaust fluid line heater 2 circuit	Voltage above normal, or shorted to high source
6534 4342 4	Aftertreatment 1 diesel exhaust fluid line heater 2 circuit	Voltage below normal, or shorted to low source

^{*} Some fault codes are not applied to this machine.

Fault code J1939 SPN	Item	Description
J1939 FMI		·
6535 4344 3	Aftertreatment diesel exhaust fluid line heater 3 circuit	Voltage above normal, or shorted to high source
6536 4344 4	Aftertreatment diesel exhaust fluid line heater 3 circuit	Voltage below normal, or shorted to low source
6556 729 3	Engine intake air heater 1 circuit	Voltage above normal, or shorted to high source
6557 729 4	Engine intake air heater 1 circuit	Voltage below normal, or shorted to low source
6563 976 2	Auxiliary intermediate (PTO) speed switch validation	Data erratic, intermittent or incorrect
6568 3695 2	Aftertreatment regeneration inhibit switch	Data erratic, intermittent or incorrect
6583 441 14	Auxiliary temperature sensor input 1	Special instructions
6584 1388 14	Auxiliary pressure sensor input 2	Special instructions
6595 190 11	Engine speed	Root cause not known
6596 3713 31	Diesel particulate filter active regeneration inhibited due to system timeout	Condition exists
6599 521002 31	Engine cranks slowly	Condition exists
6611 6385 3	Engine starter motor relay control circuit	Voltage above normal or shorted to high source
6612 6385 4	Engine starter motor relay control circuit	Voltage below normal or shorted to low source
6613 5842 14	SCR monitoring system malfunction	Special instructions
6618 70 2	Parking brake switch	Data erratic, intermittent, or incorrect
6619 3515 10	Aftertreatment 1 diesel exhaust fluid temperature 2	Abnormal rate of change

 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

Fault code J1939 SPN J1939 FMI	ltem	Description
6654 5626 7	Engine exhaust back pressure regulator	Mechanical system not responding or out of adjustment
6726 4796 31	Aftertreatment 1 diesel oxidation catalyst missing	Condition exists
6752 3364 18	Aftertreatment diesel exhaust fluid quality	Data valid but below normal operating range - moderately severe level
6771 521032 14	Aftertreatment system assembly	Special instructions
6938 5793 9	Desired engine fueling state	Abnormal update rate
6939 7745 9	Engine start request	Abnormal update rate
7133 7745 13	Engine start request	Out of calibration
7134 7746 13	Engine start consent	Out of calibration
7135 103 15	Engine turbocharger speed	Data valid but above normal operating range - least severe level
7745 1569 14	Engine protection torque derate	Special instructions
7393 7745 9	Engine start request	Abnormal update rate
7453 3242 15	Aftertreatment 1 diesel particulate filter intake temperature	Data valid but above normal operating range - least severe level
7454 3246 15	Aftertreatment 1 diesel particulate filter outlet temperature	Data valid but above normal operating range - least severe level


 $[\]ensuremath{\,\%\,}$ Some fault codes are not applied to this machine.

5. AAVM FAULT CODE

Fault Code	Description
A01	AAVM Communication Error -AAVM
A02	AAVM Communication Error -Front Camera
A03	AAVM Communication Error -Rear Camera
A04	AAVM Communication Error -Left Camera
A05	AAVM Communication Error -Right Camera
A06	Manual Setting Fail
A07	No MCU CID
A08	MCU CID Format Error
A09	AAVM Hardware Error -AAVM
A10	AAVM Hardware Error -Front Camera
A11	AAVM Hardware Error -Rear Camera
A12	AAVM Hardware Error -Left Camera
A13	AAVM Hardware Error -Right Camera
A14	MCU CID Model is not registered
A15	MCU CID Model can't be applied

GROUP 14 ENGINE CONTROL SYSTEM

1. MCU and Engine ECM

140WA5MS13

2. MCU ASSEMBLY

- 1) To match the pump absorption torque with the engine torque, united MCU varies EPPR valve output pressure, which control pump discharge amount whenever feedbacked engine speed drops under the reference rpm of each mode set.
- 2) Three LED lamps on the MCU display as below.

LED lamp	Trouble	Service
G is turned ON	Normal	-
G and R are turned ON	Trouble on united MCU	· Change the united MCU
G and Y are turned ON	Trouble on serial communication line	Check if serial communication lines between united MCU and cluster are disconnected
Three LED are turned OFF	Trouble on united MCU power	 Check if the input power wire (24 V, GND) of united MCU is disconnected Check the fuse

G: green, R: red, Y: yellow

GROUP 15 EPPR VALVE

1. PUMP EPPR VALVE

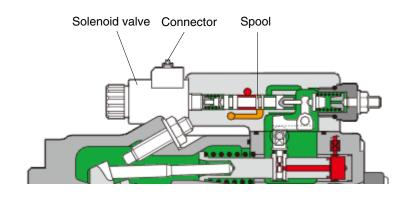
1) COMPOSITION

EPPR (Electro Proportional Pressure Reducing) valve consists of electro magnet and spool valve installed at main pump.

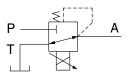
(1) Electro magnet valve

Receive electric current from MCU and move the spool proportionally according to the specific amount of electric current value.

(2) Spool valve

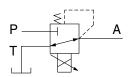

Is the two way direction control valve for pilot pressure to reduce main pump flow. When the electro magnet valve is activated, pilot pressure enters into flow regulator of main pump.

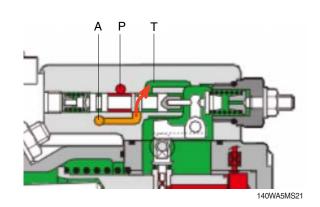
(3) Electric current value for each mode


Mode		E/G RPM		PF EPPR		Delta P EPPR	
		No Lood	Lood	Current (mA)		Current (mA)	
		No Load	Load	No Load	Load	No Load	Load
	Р	1500	1600	350	320	250	250
Standard	S	1400	1500	420	390	250	250
	E	1300	1400	450	420	250	250
	Р	1600	1600	320	320	250	250
Option	S	1500	1500	390	390	250	250
	Е	1400	1400	420	420	250	250

2) OPERATING PRINCIPLE

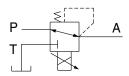
(1) Structure

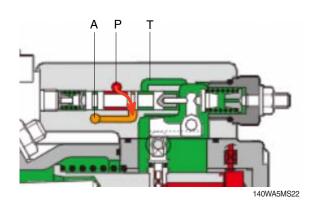

140WA5MS20



- P Pilot oil supply line (pilot pressure)
- T Return to tank
- A Secondary pressure to flow regulator at main pump

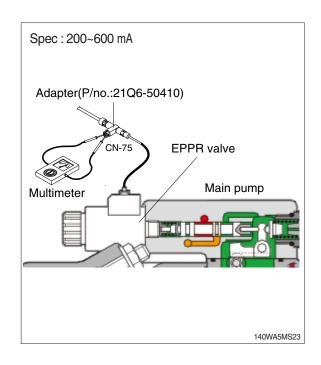
(2) Neutral

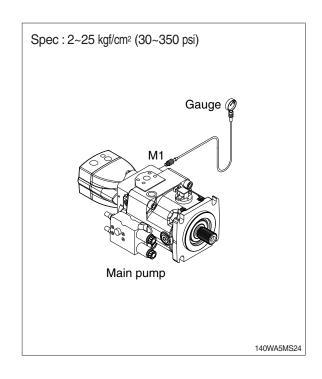

Pressure line is blocked and A oil returns to tank.



(3) Operating

Secondary pressure enters into A.


3) EPPR VALVE CHECK PROCEDURE


(1) Check electric current value at EPPR valve

- ① Disconnect connector CN-75 from EPPR valve.
- ② Insert the adapter to CN-75 and install multimeter as figure.
- ③ Start engine.
- 4 Set S-mode and cancel auto decel mode.
- 5 Position the multimodal dial at 10.
- 6 If rpm display show approx 1400 \pm 50 rpm check electric current at bucket circuit relief position.
- ⑦ Check electric current at bucket circuit relief position.

(2) Check pressure at EPPR valve

- ① Remove plug and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
- ② Start engine.
- ③ Set S-mode and cancel auto decel mode.
- 4 Position the multimodal dial at 10.
- \bigcirc If tachometer show approx 1400 \pm 50 rpm check pressure at relief position of bucket circuit by operating bucket control lever.
- 6 If pressure is not correct, adjust it.
- 7 After adjust, test the machine.

GROUP 16 MONITORING SYSTEM

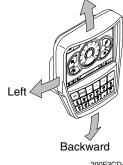
1. OUTLINE

Monitoring system consists of the monitor part and switch part.

The monitor part gives warnings when any abnormality occurs in the machine and informs the condition of the machine. Also, monitor part is to set and display for modes, monitoring and utilities with the switches.

Various select switches are built into the monitor panel, which act as the control portion of the machine control system.

2. CLUSTER


1) MONITOR PANEL

* The warning lamp pops up and/or blinks and the buzzer sounds when the machine has a problem.

The warning lamp lights up or blinks until the problem is cleared. Refer to page 5-65 for details.

- * This cluster is adjustable.
 - · Vertical (forward/backward) : each 15°
 - · Horizontal (left only): 15°

290F3CD47

2) CLUSTER CHECK PROCEDURE

(1) Start key: ON

① Check monitor

- a. Buzzer sounding for 4 seconds with HYUNDAI logo on cluster.
- * If the ESL mode is set to the enable, enter the password to start engine.
- ② After initialization of cluster, the operating screen is displayed on the LCD. Also, self diagnostic function is carried out.
 - a. Engine rpm display: 0 rpm
 - b. Engine coolant temperature gauge: White range
 - c. Hydraulic oil temperature gauge: White range
 - d. Fuel level gauge: White range
 - e. DEF/AdBlue® Level gauge: White range

③ Indicating lamp state

- a. Power mode pilot lamp: E mode or U mode
- b. Work mode pilot lamp : General operation mode (bucket)
- c. Travel speed pilot lamp: Low (turtle)

(2) Start of engine

① Check machine condition

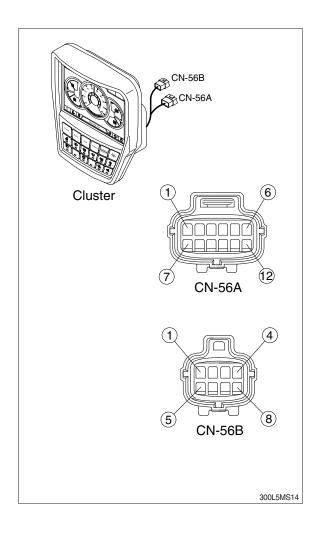
- a. RPM display indicates at present rpm
- b. Gauge and warning lamp: Indicate at present condition.
- * When normal condition: All warning lamp OFF
- c. Work mode selection: General work
- d. Power mode selection: E mode or U mode
- e. Travel speed pilot lamp: Low (turtle)

② When warming up operation

- a. Warming up pilot lamp: ON
- b. After engine started, engine speed increases to 1100 rpm.
- Others same as above.

3 When abnormal condition

- a. The warning lamp pops up and the buzzer sounds.
- If BUZZER STOP switch is pressed, buzzer sound is canceled but the warning lamp lights up or blinks until normal condition.
- * The pop-up warning lamp moves to the original position and warning lamp lights up or blinks when the buzzer stop switch is pushed. Also the buzzer stops.
- Refer to page 5-88 for details.


3) CLUSTER CONNECTOR

(1) CN-56A

No.	Name	Signal
1	Battery 24V	20~32V
2	Power IG (24V)	20~32V
3	GND	-
4	CAN 1 (H)	0~5V
5	CAN 1 (L)	0~5V
6	CAN 2 (H)	0~5V
7	CAN 2 (L)	20~32V
8	N.C	-
9	N.C	-
10	Aux left	0~5V
11	Aux right	0~5V
12	Aux GND	-

(2) CN-56B

No.	Name	Signal
1	CAM 6.5V	6.3~6.7V
2	CAM GND	-
3	CAM DIFF (H)	0~5V
4	CAM DIFF (L)	0~5V
5	N.C	-
6	N.C	-
7	N.C	-
8	N.C	-

4) GAUGE

(1) Operation screen

When you first turn starting switch ON, the operation screen will appear.

140WA3CD11

- 1 RPM / Speed gauge
- 2 Engine coolant temperature gauge
- 3 Hydraulic oil temperature gauge
- 4 Fuel level gauge

- 5 DEF/AdBlue® level gauge
- 6 Tripmeter display
- 7 Eco guage
- 8 Accel dial gauge

(2) RPM / Speed gauge

① This displays the engine speed.

② When traveling, the speed gauge is displayed.

(3) Engine coolant temperature gauge

290F3CD53

- ① This gauge indicates the temperature of coolant.
 - · White range: 40-107°C (104-225°F)
 - · Red range : Above 107°C (225°F)
- ② If the indicator is in the red range or lamp pops up and the buzzer sounds, turn OFF the engine and check the engine cooling system.

(4) Hydraulic oil temperature gauge

290F3CD54

- ① This gauge indicates the temperature of hydraulic oil.
 - · White range: 40-105°C(104-221°F)
 - · Red range : Above 105°C(221°F)
- ② If the indicator is in the red range or limit lamp pops up and the buzzer sounds reduce the load on the system. If the gauge stays in the red range, stop the machine and check the cause of the problem.
- * If the gauge indicates the red range or lamp blinks in red even though the machine is in the normal condition range, check the electric device as this can be caused by poor connection of electricity or sensor.

(5) Fuel level gauge

- ① This gauge indicates the amount of fuel in the fuel tank.
- If the gauge indicates the red range or lamp blinks in red even though the machine is on the normal condition range, check the electric device as this can be caused by poor connection of electricity or sensor.

(6) DEF/AdBlue® Level gauge

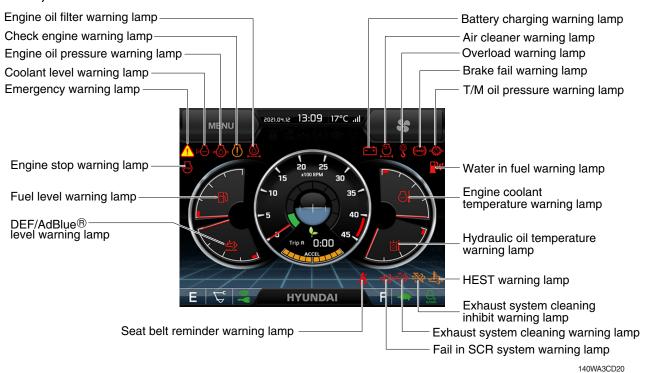
- ① This gauge indicates the amount of liquid in the DEF/AdBlue® tank
- 2 Fill the DEF/AdBlue® when in the red range, or lamp pops up and the buzzer sounds.
- 3 Do not overfull DEF/AdBlue®.
- * Refer to page 5-78.
- If the gauge indicates the red range or all lamp blinks in red even though the machine is in the normal condition range, check the electric device as this can be caused by poor connection of electricity or sensor.

(7) Tripmeter display

- ① This displays the engine the tripmeter.
- Refer to page 5-107 for details.

(8) Eco gauge

290F3CD58


- ① This gauge indicates the fuel consumption rate and machine load status so that the operators can operate the machine efficient in regards to fuel consumption.
- ② Fuel consumption rate or machine load is higher if the number of segments are increased.
- ③ The color of Eco gauge indicates operation status.
 - · White: Idle operation
 - · Green : Economy operation
 - · Yellow : Non-economy operation at a medium level.
 - · Red : Non-economy operation at a high level.

(9) Accel dial gauge

① This gauge indicates the level of accel dial.

5) WARNING LAMPS

Warning lamps and buzzer

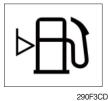
Warnings	When error happened	Lamps and buzzer
All warning lamps	Warning lamp pops up on	· The pop-up warning lamp moves to the original position,
except below	the center of the LCD and	blinks and the buzzer stops when;
	the buzzer sounds	- the buzzer stop switch Auto DEE is pushed
		- the knob of the jog dial module is pushed
		- the lamp of the LCD is touched
<u>-6-3</u> ,	Warning lamp pops up on	\cdot The pop-up warning lamp moves to the original position,
	the center of the LCD and	lights up or blinks and the buzzer stops when;
	the buzzer sounds	- the buzzer stop switch
		- the knob of the jog dial module is pushed
		- the lamp of the LCD is touched
		* Refer to page 5-78 for details.
	Warning lamp pops up on	\cdot The pop-up warning lamp moves to the original position,
	the center of the LCD and	lights up and the buzzer stops after 2 seconds elapses.
	the buzzer sounds	
	Warning lamp pops up on	\cdot The pop-up warning lamp moves to the original position,
	the center of the LCD and	blinks and the buzzer stops after 2 seconds elapses.
	the buzzer sounds	,
	Warning lamp pops up on	· Cluster displays this pop-up when it has communication
ERROR	the center of the LCD and	error with MCU.
	the buzzer sounds	\cdot If communication with MCU become normal state, it will
		disappear automatically.
	Warning lamp pops up on	* Refer to page 5-74 for details.
	the center of the LCD and	
	the buzzer sounds	
	Warning lamp lights up	* Refer to page 5-79 for details.
	and the buzzer sounds	

^{*} Refer to page 5-88 for the buzzer stop switch and the operator's manual page 3-77 for the jog dial module.

(1) Engine coolant temperature warning lamp

290F3CD61

- ① Engine coolant temperature warning is indicated in 2 steps.
 - 103°C over : The 🔄 lamp pops up and the buzzer sounds.
 - 107°C over: The /i\lamp pops up and the buzzer sounds.
- ② The pop-up ♠, ♠ lamps move to the original position and blinks when the buzzer stop switch when the buzzer will stop and \bigcirc , \bigcirc lamps will blink.
- 3 Check the cooling system when the lamps keep blinking.


(2) Hydraulic oil temperature warning lamp

290F3CD62

- ① Hydraulic oil temperature warning is indicated in 2 steps.
 - 100°C over : The | bull lamp pops up and the buzzer sounds.
 - 105°C over: The /i\lamp pops up and the buzzer sounds.
- ② The pop-up |∆||, 介 lamps move to the original position and blinks when the buzzer stop switch when the buzzer will stop
- 3 Check the hydraulic oil level and hydraulic cooling system.

(3) Fuel level warning lamp

- 290F3CD63
- ① This warning lamp pops up and the buzzer sounds when the fuel level is below 55 ℓ (14.5 U.S. gal).
- ② Fill the fuel immediately after the lamp blinks.

(4) Emergency warning lamp

290F3CD64

- ① This warning lamp pops up and the buzzer sounds when each of the below warnings occurs.
 - Engine coolant overheating (over 107°C)
 - Hydraulic oil overheating (over 105°C)
 - MCU input voltage abnormal
 - Cluster communication data error
 - Engine ECM communication data error
- * The pop-up warning lamp moves to the original position and blinks when the buzzer stop switch witch is pushed. The buzzer will stop.
- ② When this warning lamp blinks, machine must be checked and serviced immediately.

(5) Engine oil pressure warning lamp

290F3CD65

- ① This warning lamp pops up and the buzzer sounds when the engine oil pressure is low.
- ② If the lamp lights ON, shut OFF the engine immediately. Check oil level.

(6) Check engine warning lamp

290F3CD66

- ① This warning lamp pops up and the buzzer sounds when the communication between MCU and engine ECM is abnormal, or if the cluster received specific fault code from the engine ECM.
- ② Check the communication line between the two.

 If the communication line is OK, then check the fault codes on the cluster.

(7) Battery charging warning lamp

290F3CD67

- ① This warning lamp pops up and the buzzer sounds when the battery charging voltage is low.
- 2 Check the battery charging circuit when this lamp blinks.

(8) Air cleaner warning lamp

290F3CD68

- ① This warning lamp pops up and the buzzer sounds when the air cleaner is clogged.
- ② Check, clean or replace filter.

(9) Overload warning lamp (opt)

290F3CD69

- ① When the machine is overloaded, the overload warning lamp pops up and the buzzer sounds when the overload switch is ON. (if equipped)
- 2 Reduce the machine load.

(10) Engine stop warning lamp

- ① This warning lamp pops up and the buzzer sounds after 30 minutes of run time elapses, when the DEF/AdBlue® tank has reached it's minimum level. Stop engine immediately and check actual DEF/AdBlue® level.
- ② Fill the DEF/AdBlue® immediately.
- * Refer to page 5-78.
- ③ This lamp pops up and the buzzer sounds when the maual (stationary) exhuast system cleaning is not performed.
- * Refer to page 5-76.
- ** Please contact your HD Hyundai Construction Equipment service center or local dealer.
- * "Engine shutdown" cluster message pops up when the exhaust gas temperature reaches above 800° C.

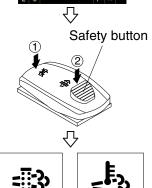
(11) Exhaust system cleaning warning lamp

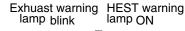
290F3CD70

① This warning lamp lights up or blinks when exhaust system cleaning is needed as seen in the table below.

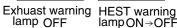
	Warnir	ng lamp		
Exhaust	HEST	Check engine	Stop engine	Description
= <u>:</u> :3>	<u>_</u>	(1)	STOP	
Off	Off	Off	Off	Normal operating mode
On (Amber)	Off	Off	Off	Manual (stationary) exhaust system cleaning is recommended.* Refer to page 5-77.
On (Amber)	Off	On (Red)	Off	 Manual exhaust system cleaning must be conducted immediately. Engine power will be reduced automatically if action is not taken. Refer to page 5-77.
On (Amber)	Off	On (Red)	On (Red)	 These lamps will be ON if manual exhaust system cleaning is not conducted for a certain period of time. Stop the engine immediately. Please contact HD Hyundai Construction Equipment service center or local dealer.
Blink (Red)	Off	Off	Off	 The exhaust system cleaning lamp will blink without HEST lamp while automatic exhaust system cleaning is being performed. Low idle speed will increase to 1300 rpm. The machine can be operated as normal operating mode. Fuel consumption may slightly increase.
Blink (Red)	On (Amber)	Off	Off	 The exhaust system cleaning lamp will blink with HEST lamp while manual exhaust system cleaning is being performed. The machine must remain stationary at low idle. * Refer to page 5-77.

(12) Exhaust system cleaning inhibit warning lamp


2609A3CD201


- 1 This warning lamp indicates the exhaust system cleaning switch is pushed to the inhibit position, therefore automatic and manual exhaust system cleaning can not occur.
- * Refer to the operator's manual page 3-46 for the exhaust system cleaning switch.

Manual exhaust system cleaning



140WA3CD202

- Manual exhaust system cleaning must be operated in a fireproof area.
- To stop a manual exhaust system cleaning before it has completed, set to the exhaust system cleaning switch to the inhibit position or turn OFF the engine.
- ① Stop and park the machine.

- 2 Pull the safety button and push the switch to position 2 to initiate the manual exhaust system cleaning.
- * Refer to the operator's manual page 3-47 for the exhaust system cleaning switch operation.
- * The engine speed may increase to 1300 rpm and exhaust system cleaning begins and it will take approximately 20~30 minutes.
- 3 The exhaust system cleaning warning lamp will blink and HEST warning lamp will light up during the exhaust system cleaning operation.
- ① The exhaust system cleaning and/or HEST warning lamp light will go off when the exhaust system cleaning is completed.

(13) HEST (High exhaust system temperature) warning lamp

2609A3CD211A

- ① This warning lamp indicates, when illuminated, that exhaust temperatures are high due to exhaust system cleaning.
- ② The lamp will also illuminate during a manual exhaust system cleaning.
- ③ When this lamp is illuminated, be sure the exhaust pipe outlet is not directed at any surface or material that can melt, burn, or explode.
- ▲ When this lamp is illuminated, the exhaust gas temperature could reach 800°C [1500°F], which is hot enough to ignite or melt common materials, and to burn people.
- ** The lamp does not signify the need for any kind of equipment or engine service; It merely alerts the equipment operator to high exhaust temperatures. It is common for the lamp to illuminate on and off during normal equipment operation as the engine completes exhaust system cleaning cycles.

(14) DEF/AdBlue® level warning lamp

290F3CD257A

- ① This warning lamp when ON or blinking, indicates that the DEF/AdBlue® level is low as per the table below.
- It is recommended that the DEF/AdBlue® tank be filled completely full of the DEF/AdBlue® in order to correct any fault conditions.

	Warnin	ig lamp		
Fail in SCR system	DEF/AdBlue® level	Check engine	Stop engine	Description
On	On	Off	Off	The DEF/AdBlue® level has fallen below the initial warning level (10%).
On	On	On	Off	 The DEF/AdBlue® level has fallen below the initial derate level (2.5%). The engine power will be limited automatically.
On	Blink	On	On	 This happens when 30 minutes has elapsed with empty conditions (0%) of the DEF/AdBlue® tank. The engine will enter the final derate level which may include low idle lock or engine shutdown with restart limitations. In order to remove the final derate, the DEF/AdBlue® tank must be filled to above 10% gauge reading.

(15) Water in fuel warning lamp

300A3CD24A

- ① This warning lamp lights up and the buzzer sounds when the water separator is full of water or malfunctioning.
- * When this lamp lights up, stop the machine and drain water from the separator.

(16) Seat belt reminder warning lamp

300A3CD25

- ① When operator does not fasten the operator's the seat belt, the seat belt reminder warning lamp pops up and the buzzer
- ② sounds.

 Fasten the seat belt.


(17) Coolant level warning lamp

760F3CD58

- ① This warning lamp indicates lack of coolant.
- 2 Check and refill coolant.

(18) Eninge oil filter warning lamp

300A3CD306

- ① This warning lamp pops up and the buzzer sounds when the filter of eninge oil is clogged.
- ② Check, clean or replace filter.

(19) Brake fail warning lamp

140WA3CD95

- ① This lamp blinks when the oil pressure of service brake drops below the normal range.
- ② Stop the engine and check for its cause.
- * Do not operate until any problems are corrected.

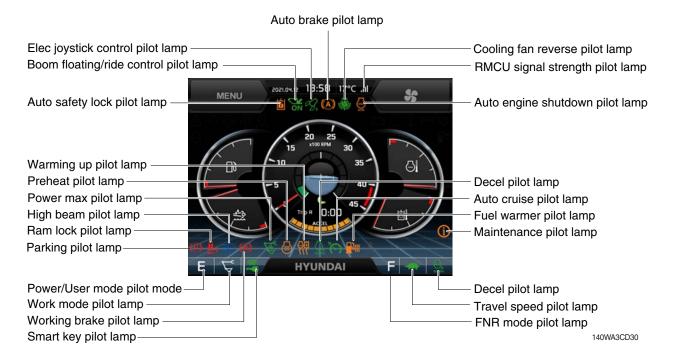
(20) Fail in SCR system warning lamp

300A3CD15

- ① This warning lamp indicates there are faults related to SCR system.
- ② The lamp lights up when each of the below warnings is happening.
 - a. Low DEF/AdBlue® level
 - b. Poor quality of DEF/AdBlue®
 - c. Tempering or malfunction in the aftertreatment system
- ③ Once the lamp lights up, the engine will derate soon.
- * Please contact your HD Hyundai Construction Equipment service center or local dealer.

Warning lamp			
= :3>	Time	Torque reduction	
On	Fault detected	cted -	
On	After 2 h 30 min	· Torque is reduced to 75% of the highest torque.	
Blink	After 3 h 45 min	· Torque is reduced to 50% of the highest torque.	
Blink rapidly	After 4 hours	· Torque is reduced to 0% (low idling) of the hightest torque within 2~10 min.	

- If a new fault ocuurs within 40 hours of operation since the first fault, the warning lamp will light up. After 3 hours of operation, the warning lamp will blink rapidly and torque will be reduced to 0% (low idling) within 2~10 minutes.
- Monce the fault has been remedied and the engine control unit has received an indication that it is working, torque returns to the normal level.

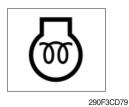

(21) T/M oil pressure warning lamp

140WA3CD96

- ① This lamp blinks when the oil pressure of the transmission drops
- ② Stop the engine and check the transmission system.

6) PILOT LAMPS

(1) Mode pilot lamps


No	Mode	Pilot lamp	Selected mode					
1	Power mode	P S	Heavy duty power work mode Standard power mode					
	Tono: mode	E	Economy power mode					
2	User mode	U	User preferable power mode					
3	Work tool mode	\tag{\tag{\tag{\tag{\tag{\tag{\tag{	General operation - IPC speed mode General operation - IPC balance mode General operation - IPC efficiency mode Breaker operation mode Crusher operation mode					
4	Travel mode	**************************************	Creep mode traveling Low speed traveling High speed traveling					
5	Auto idle mode	n/min	Auto idle					

(2) Power max pilot lamp

- ① The lamp will be ON when pushing power max switch on the LH RCV lever.
- ② The power max function operates for a max period of 8 seconds.
- * Refer to the operator's manual page 3-53 for power max function.

(3) Preheat pilot lamp

① Turning the start key switch to the ON position starts preheating in cold weather.

② Start the engine after this lamp goes OFF.

(4) Warming up pilot lamp

290F3CD80

- ① This lamp lights up when the coolant temperature is below 30°C (86°F).
- ② The automatic warming up is cancelled when the engine coolant temperature is above 30° C (86°F), or when 10 minutes have passed since starting the engine.

(5) Decel pilot lamp

300A3CD33

- ① Operating one touch decel switch on the RCV lever makes the lamp light up.
- ② Also, the lamp will light up and engine speed will be reduced automatically to save fuel when all levers and pedals are in the neutral position, and the auto idle function is selected.
- ③ If it follows the case below, decel goes off in the idle state.
 - Auto idle button off
 - Working/Travel
 - One touch decel button off
 - Safety knob unlock
- Refer to the operator's manual page 3-53.

(6) Fuel warmer pilot lamp

300A3CD34

- ① This lamp lights up when the coolant temperature is below 10° (50° F) or the hydraulic oil temperature is 20° (68° F).
- ② The automatic fuel warming is cancelled when the engine coolant temperature is above $60^{\circ}C$ ($140^{\circ}F$), and the hydraulic oil temperature is above $45^{\circ}C$ ($113^{\circ}F$) since the start switch was ON position.

(7) Maintenance pilot lamp

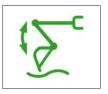
300A3CD35

- ① This lamp lights up when consumable parts are in need of replacement. It means that the change or replacement interval of parts is 30 hours from the required change interval.
- ② Check the message in maintenance information of main menu. Also, this lamp lights up for 3 minutes when the start switch is switched to the ON position.
- Refer to page 5-100.

(8) RMCU signal strength pilot lamp (mobile only)

① This lamp indicates RMCU signal strength as below.

· searching


· 📶 : Bad

: Normal

: Good

· III : Excellent

(9) Boom floating mode pilot lamp

140WA3CD639

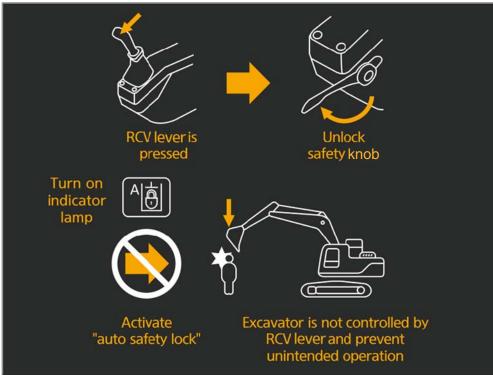
- ① This lamp lights ON when the boom floating is activated.
- Refer to the operator's manual page 3-48.

(10) Ride control pilot lamp (option)

140WA3CD638

① Manual ride control

This lamp lights ON when the manual ride control function is activated (ON, Always setting).


Refer to the operator's manual page 3-48.

(11) Auto safety lock pilot lamp

300A3CD37A

- ① Auto safety lock system prevents unintended operation of the machine in order to improve safety.
- ② Engine will only start if safety knob is locked.
- ③ If operator unlocks safety knob when RCV lever is pressed, machine is not controlled by RCV lever.
- A If operator unlocks safety knob while any control/function is being operated, the machine will move violently. This could cause serious injury, death or damage to property.

300A3CD38A

(12) Manual safety lock pilot lamp

- ① This lamp lights up when the safety knob is set to the LOCK position.
- Refer to the operator's manual page 3-56 for the safety knob.

(13) Auto engine shutdown pilot lamp

- ① This lamp lights up when the auto engine shutdown is activated.
- * Refer to page 5-95.

(14) Smart key pilot lamp (opt)

- ① This lamp lights up when the engine is started by the start button.
- ② This lamp is red when the a authentication fails, it will be green when it authentication is successful.
- Refer to the page 5-101.

(15) Elec joystick control pilot lamp

140WA3CD649

140WA3CD637

- ① This lamp lights up when the joystick steering is ready to operate.
- * Refer to the operator's manual page 3-59.

(16) Auto brake pilot lamp

140WA3CD33

- ① This lamp lights up in amber when the auto digging brake is ready to operate.
- ② This lamp lights up in green when the auto digging brake is operating.
- * Refer to the operator's manual page 3-49.

(17) Cooling fan reverse pilot lamp

140WA3CD647

- ① This lamp lights up when the cooling fan reverse function is activated.
- * Refer to page 5-96.

(18) FNR mode pilot lamp

140WA3CD631

- ① This lamp indicates the selection of the FNR switch on the RH RCV lever.
 - · Facilities : Machine moves forward
 - · Neutral position
 - R: Machine moves backward

(19) FNR mode pilot lamp (emergency)

140WA3CD634

- ① This lamp indicates the selection of the FNR switch on the switch board when when the FNR switch on the RH RCV lever is failed.
 - : Machine moves forward
 - · Neutral position
 - · R : Machine moves backward

(20) Ram lock pilot lamp

210WF3CD04

- ① This lamp lights up when the ram lock switch is set to the LOCK position.
- * Refer to the operator's manual page 3-52.

(21) Parking pilot lamp

210WF3CD05

- ① This lamp lights up when the parking switch is set to the parking position.
- Refer to the operator's manual page 3-52.

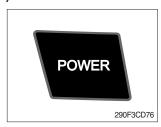
(22) High beam pilot lamp

210WF3CD06

- ① The lamp lights up when the head lamp switch is set to the high beam position.
- When passing other machines ahead, this lamp must be used for a few seconds to give other machines warning for a few seconds.

(23) Working brake pilot lamp

210WF3CD07


- ① This lamp lights up when the working brake switch is set to working position.
- * Refer to the operator's manual page 3-52.

7) SWITCHES

When some of the switches are selected, the pilot lamps are displayed on the LCD. Refer to page 5-81 for details.

(1) Power mode switch

- ① This switch is to select the machine power mode and when pressed, the power mode pilot lamp will be displayed on the section of the monitor.
 - · P : Heavy duty power work.
 - · S : Standard power work.
 - · E : Economy power work.
- ② The pilot lamp changes $E \rightarrow S \rightarrow P \rightarrow E$ in this order.

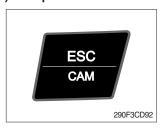
(2) Work mode switch

- ① This switch is to select the machine work mode, which shifts from general operation mode to optional attachment operation mode.
 - · S : General operation mode
 - · Breaker operation mode (if equipped)
 - · S: Crusher operation mode (if equipped)
 - · Not installed: Breaker or crusher is not installed.
- * Refer to the operator's manual page 2-7 for details.
- ② If you press this switch for a time (1 second), quick pop-up will appear. When you select an attachment from the popup, the operation mode will immediately switch to selected attachment.

(3) User mode switch

- ① This switch is used to select the user mode.
- ② Refer to page 5-93 for another set of the user mode.

(4) Travel speed switch (null)


- ① This switch is used to select the travel speed alternatively.
 - : Low speed : High speed
- * Do not change the setting of the travel speed switch while machine is moving. Machine stability may be adversely affected.
- ▲ Serious injury or death can result from sudden changes in machine stability.

(5) Auto idle/buzzer stop switch

- ① This switch is used to activate or cancel the auto idle function.
 - · Pilot lamp ON : Auto idle function is activated.
 - · Pilot lamp OFF: Auto idle function is cancelled.
- ② The buzzer sounds when the machine has a problem. In this case, push this switch and buzzer stops, but the warning lamp blinks until the problem is cleared.

(6) Escape/Camera switch

- ① This switch is used to return to the previous menu or parent menu.
- ② In the operation screen, pushing this switch will display the view of the camera on the machine (if equipped).

 Please refer to page 5-107 for the camera.
- ③ If the camera is not installed, this switch is used only ESC function.

(7) Work light switch

- ① This switch is used to operate the work light.
- ② The pilot lamp lights up when this switch is pressed.

(8) Head light switch

- ① This switch is used to operate the head light.
- ② The pilot lamp lights up when this switch is pressed.

(9) Cab light switch

- ① This switch turns on the cab light.
- ② The pilot lamp lights up when this switch is pressed.

(10) Beacon switch (opt)

- ① This switch activates the rotary light on the cab.
- ② The pilot lamp lights up when this switch is pressed.

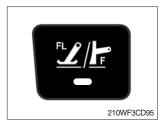
(11) Overload switch (opt)

- ① When this switch is activated, buzzer makes sound and overload warning lamp lights up in the event that the machine is or becomes in an overloaded situation.
- ② When the switch is inactivated, buzzer stops and warning lamp goes off.
- ▲ Overloading the machine could impact the machines stability which could result in tipover hazard. A tipover hazard could result in serious injury or death. Always activate the overload warning device before you handle or lift objects.

(12) Travel alarm switch

- ① This switch is to activate travel alarm function surrounding when the machine travels.
 - · ON : When the machine travels, the travel alarm function is activated.
 - · OFF : When the FNR switch is positioned on R, the travel alarm function is activated.

(13) Air conditioner quick touch switch


- ① This switch used to select air conditioner control mode.
- ※ Refer to page 5-109.

(14) Main menu quick touch switch

- ① This switch is to activate the main menu in the cluster.
- * Refer to page 5-92.

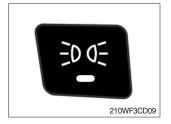
(15) Front left outrigger/Front dozer switch

- ① This switch is used to select the front left outrigger or front dozer blade operation.
- ② The pilot lamp lights up when this switch is pressed.
- Please check the installed equipment (outrigger or dozer) on your machine before selecting the switch.
- * Refer to the operator's manual page 3-56 for the dozer and outrigger lever.

(16) Front right outrigger switch

- ① This switch is used to select the front right outrigger operation if equipped.
- ② The pilot lamp lights up when this switch is pressed.
- Refer to the operator's manual page 3-56 for the dozer and outrigger lever.

(17) Rear left outrigger/Rear dozer switch


- ① This switch is used to select the rear left outrigger or rear dozer blade operation.
- ② The pilot lamp lights up when this switch is pressed.
- ** Please check the installed equipment (outrigger or dozer) on your machine before selecting the switch.
- Refer to the operator's manual page 3-56 for the dozer and outrigger lever.

(18) Rear right outrigger switch

- ① This switch is used to select the rear right outrigger operation if equipped.
- ② The pilot lamp lights up when this switch is pressed.
- Refer to operator's manual page 3-56 for the dozer and outrigger lever.

(19) Illumination switch

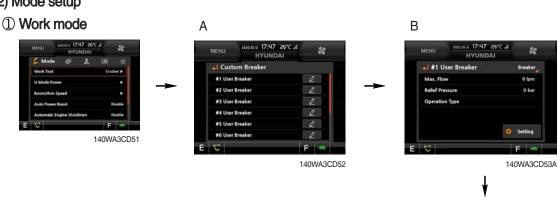
- ① This switch is used to operate on the clearance lamp and all panel lamps.
- ② The pilot lamp lights up when this switch is pressed.

(20) Rear work lamp switch

- ① This switch is used to operate the rear work lamp.
- ② The pilot lamp lights up when this switch is pressed.

8) MAIN MENU

- You can select or set the menu by the jog dial module or touch screen.
 On the operation screen, tap MENU to access the main menu screen.
 On the sub menu screen, you can tap the menu bar to access functions or applications.
- · Operation screen

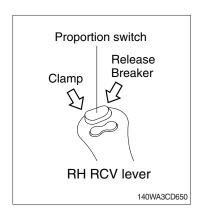

140WA3CD50

** Please refer to the jog dial module, the operator's manual page 3-77 for selection and change of menu and input value.

(1) Structure

No	Main menu	Sub menu	Description					
1	Mode 290F3CD103	Work mode U mode power Boom/Arm speed (null) Auto power boost IPC mode (null) Auto engine shutdown Initial mode Emergency mode	Breaker, Crusher, Not installed User mode only Boom speed, Arm speed Enable, Disable Speed mode, Balance mode, Efficiency mode One time, Always, Disable Key on initial mode / initial work mode, Accel initial mode / step Switch function					
2	Monitoring 290F3CD104	Active fault Logged fault Delete logged fault Monitoring	MCU, Engine ECM, FATC, AAVM (option) MCU, Engine ECM, FATC, AAVM (option) All logged fault delete, Initialization canceled Machine information, Switch status, Output status					
3	Management 290F3CD105	Fuel rate information Maintenance information Machine security Machine information Contact Clinometer Update	General record, Hourly, Daily, Mode record Replacement, Change interval oils and filters ESL mode setting, Password change Model, MCU, Monitor, jog dial module, switch controller, RMCU, Relay drive unit, FATC, AAVM (option) A/S phone number, A/S phone number change Clinometer setting Cluster, ETC device					
4	Display 290F3CD106	Display item Clock Brightness Unit setup Language selection Screen type	Engine speed, Tripmeter A, Tripmeter B, Tripmeter C Clock Manual, Auto Temperature, Pressure, Flow, Distance, Date format Korean, English, Chinese, ETC A type, B type					
5	Utilities 290F3CD107	Tripmeter Camera Exterior aural warning Auto idle time setting	3 kinds (A, B, C) Camera setting, Auto mode (travel) Enable, disable 3~30 sec					

(2) Mode setup


- · Select installed optional attachment
 - A: It can set the user's attachment. It is available in setting #1~#10.
 - B: Max flow Set the maximum flow for the attachment. Relief pressure - Set the relief pressure. Operation type - Set the operation type for attachment.

■ Operation type

Operation type is used to set the operation of the proportion switch on the RCV lever if equipped proportional function.

- Push : Switch actuation will be deactivated when the proportion switch is released.
- Detent : Switch actuation will remain even if the proportion switch is released. To deactivate, move the switch in the same direction again or to the opposite direction.
- Proportion: Switch actuation is proportional to the movement of the proportion switch.

② U mode power

- · Engine speed, idle speed, power shift (pump power) and pump flow can be modulated and memorized separately in U-mode.
- · U-mode can be activated by user mode switch.

User mode level position (■)	Unit	1	2	3	4	5	6	7	8	9	10
Engine speed	rpm	1400	1450	1500	1550	1600	1650	1700	1750	1800	1900
Idle speed	rpm	750	800	850	900	950	1000	1050	1100	1150	1200
Power shift (pf EPPR)	mA	600	555	511	466	422	377	333	288	244	200
Pump flow (delta EPPR)	mA	600	555	511	466	422	377	333	288	244	200

3 Boom/Arm speed (null)

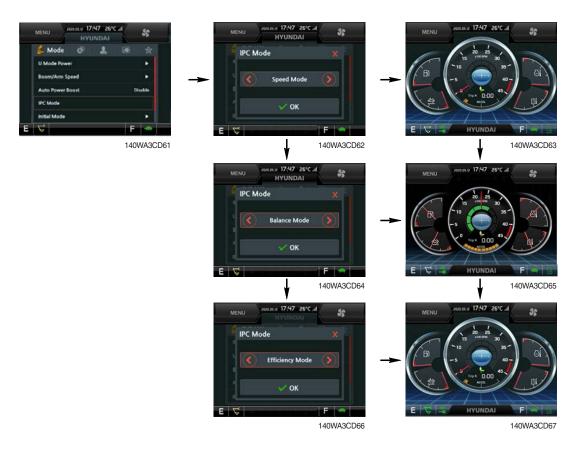
Boom speed

Boom priority function can be activated or cancelled
 Enable - Boom up speed is automatically adjusted as working conditions by the MCU.
 Disable - Normal operation

· Arm speed

- Arm regeneration function can be activated or cancelled.
 - Enable Arm in speed is up.
 - Disable Normal operation.

4 Auto power boost



· The power boost function can be activated or cancelled.

Enable - The digging power is automatically increased as working conditions by the MCU. It is operated max 8 seconds, then goes off for a period or 1 second and then activates again for 8 seconds and continues this cycle.

Disable - Not operated.

⑤ IPC mode (null)

- · The IPC mode can be selected by this menu.
 - Speed mode
 - Balance mode (default)
 - Efficiency mode
- * Please update the cluster programs if this mode is not displayed in the mode setup menu. Refer to the page 3-36.

6 Automatic engine shutdown

- · The automatic engine shutdown function can be set by this menu.
 - One time
 - Always
 - Disable
 - Wait time setting: Max 40 minutes, min 2 minutes

7 Initial mode

140WA3CD72

- · Key on initial mode
 - Selected the power mode is activated when the engine is started.
- · Key on initial work mode
 - Not installed
 - Last setting
 - Work mode
- · Accel initial mode
 - Last setting value
 - User setting value
- · Accel initial step
 - 0~9 step

® Emergency mode

140WA3CD

- · This mode can be used when the switches are abnormal on the cluster.
- · The cluster switches can be selected by touching each icon.

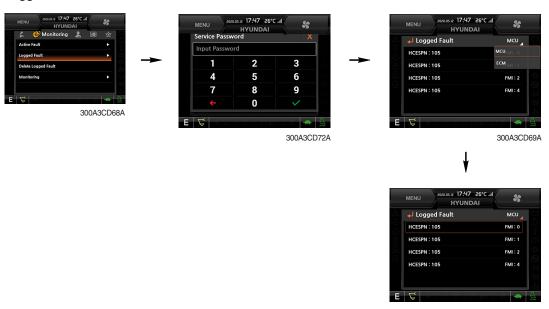
9 Cooling fan reverse mode

· Manual: Rotate the fan with reverse direction while pressing the button "Excute".

 $\cdot\,$ Automatic : Rotate the fan with reverse direction by preset cycle.

Interval : 30 minutes ~ 5 hoursTime : 30 seconds ~ 5 minutes

Default : interval (60 minutes), time (120 seconds)


(3) Monitoring

① Active fault

· The active faults of the MCU, ECM, FATC, AAVM (option) can be checked by this menu.

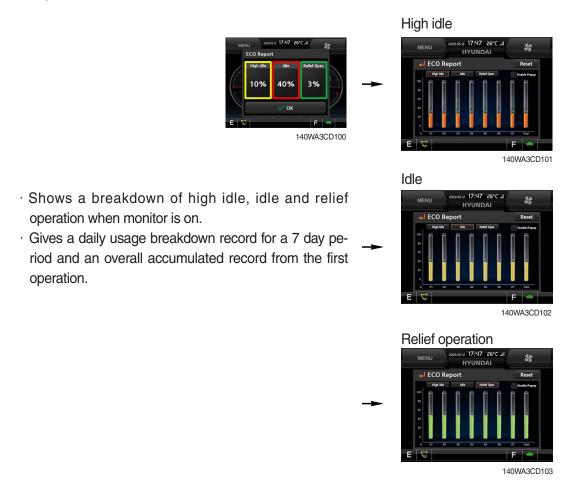
② Logged fault

· The logged faults of the MCU, ECM, FATC, AAVM (option) can be checked by this menu.

3 Delete logged fault

· The logged faults of the MCU, ECM, FATC, AAVM (option) can be deleted by this menu.

4 Monitoring



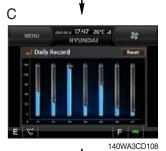
- The machine status such as the engine rpm, oil temperature, voltage and pressure etc. can be checked by this menu (Analog input).
- The switch status or output status can be confirmed by this menu (Digital input & Digital output).
- . The activated switch or output pilot lamps
 will light up.

(4) Management

① ECO report

This reports the machine's inefficient operation status in order to improve operator's improper working habit.

② Fuel rate information



140WA3CD109

· General record (A)

- Average fuel rate (left) (from "Reset" to now)
 Fuel consumption divided by engine run time (service meter time).
- A days fuel used (right)
 Fuel consumption from 24:00 (or "Reset" time) to now (MCU real time).

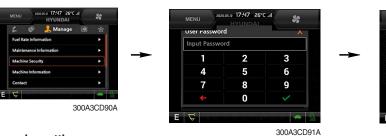
· Hourly record (B)

- Hourly fuel rates for past 12 hours (service meter time).
- No record during key-off time.
- One step shift to the right for every one hour.
- Automatic deletion of data from 12 hours and earlier.
- "Reset" deletes all hourly records.

· Daily record (C)

- Daily fuel consumption for past seven days (MCU real time).
- No record during key-off time.
- One step shift to the right at 24:00 for every day.
- Automatically deletes data from 7 days and earlier.
- All daily records deletion by "Reset".

· Mode record (D)


- Average fuel rate for each power mode/accel dial (at least 7) from "Reset" till present.
- No record during idle.
- All records can be deleted by "Reset".

3 Maintenance information

- · Alarm lamp () is ON when oil or filter needs to be changed or replaced.
- · Replacement: The elapsed time will be reset to zero (0).
- · Change interval: The change intervals can be changed in hour increments of 50.
- * Refer to section, Maintenance chart for further information of maintenance interval.

4 Machine security

· ESL mode setting

- ESL: Engine Starting Limit
- ESL mode is desingned to be a theft deterrent or will prevent the unauthorized operation of the machine.
- When you Enable the ESL mode, the password will be required when the starting switch is turned to the on position.
- Machine security

Disable: ESL function is disabled and password is not required to start engine.

Enable (always): The password is required whenever the operator starts engine.

- Interval: The password is required when the operator starts engine first. But the operator can restart the engine within the interval time without inputting the password. The interval time can be set to a maximum 4 hours.
 - ※ Default password : 00000 +
 ✓
 - ※ Password length: (5~10 digits) +

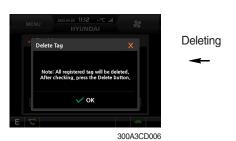
 ✓
- Smart key (option) : Refer to next page.

Password change

- The password is 5~10 digits.

* Before first use, please set user password and owner password in advance for machine security.

- Smart key


- Smart key is registered when equipped with optional smart key. If smart key is not inside of the cabin, authentication process fails and the password is needed.
- · Tag management menu is activated when the Smart key menu is Enabled.

You can register and delete the tags.

- Tag management

- · When registering a tag : Only the tag you want to register must be in the cabin.
- · When deleting a tag : All registered tags are deleted.

Registering

300A3CD005

300A3CD003

· Engine Starting Condition

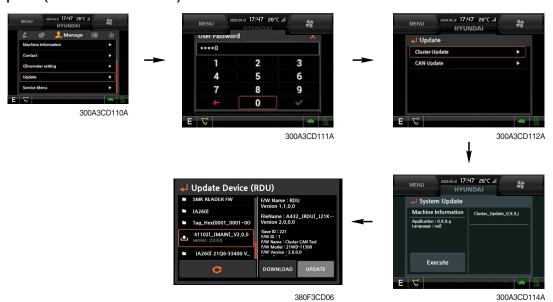
Case	ESL Mode	Smart Key	Condition		
1	Disable Disable		With registered tag: Engine can be started without password input.Without registered tag: Engine can be started without password input.		
2	Disable Enable		If Smart Key is enabled, ESL Mode is automatically enabled. This Case 2 work the same as the Case 4.		
3	Enable Disable		With registered tag: Engine can be started with password input.Without registered tag: Engine can be started with password input.		
4	4 Enable Enable				With registered tag: Engine can be started without password input.Without registered tag: Engine can be started with password input.

⑤ Machine Information

 This can confirm the identification of the model information (ECU), MCU, monitor, jog dial module, switch controller, RMCU, relay driver unit, FATC (air conditioner controller), AAVM (opt).

6 Contact (A/S phone number)

Enter the new A/S phone number


Clinometer

· When the machine is on the flatland, if you touch "initialization" on cluster, the values of X, Y will reset to "O".

· You can confirm tilt of machine in cluster's operating screen.

Update (cluster & ETC devices)

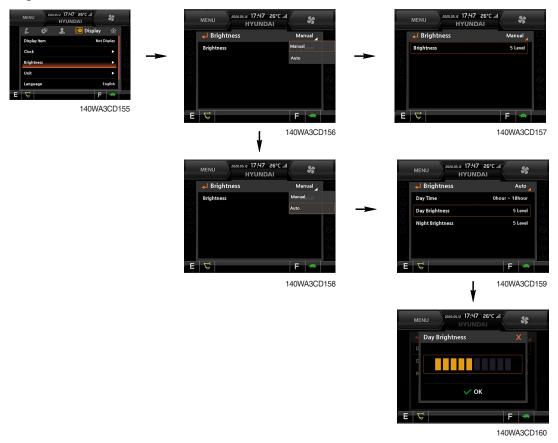
- · ETC devices and cluster can be updated through CAN 2 network.
- · Insert USB memory stick which includes program files, start download.

The owner of machine can restrict operator access to set functions.

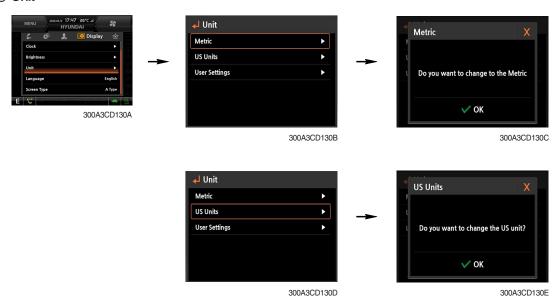
- · Owner can set the status of the function.
 - Enable
 - Disable
- · In the menu, owner can set the list of functions in which they would like to lock or leave unlocked.
- · Owner password (default password : 11111)
 - Owner can manage and change the password.
 - Necessary to input the password to access function menu.

(5) Display

① Display item


- \cdot The center display type of the LCD can be selected by this menu.
- · The engine speed or the tripmeter menu (A,B,C) is displayed on the center display.

2 Clock


- 140WA3CD15
- · The first row of boxes indicate Year/Month/Day.
- · The second row shows the current time. (0:00~23:59)

③ Brightness

· If "Auto" is chosen, brightness for day and night can be set accordingly. Also by using the bar in lower side, users can define which an operation interval belongs to day and night. (in bar figure, white area represents night time while orange shows day time)

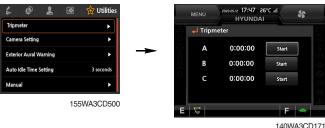
4 Unit

· Temperature : $^{\circ}C \leftrightarrow ^{\circ}F$

· Pressure : bar \leftrightarrow MPa \leftrightarrow kgf/cm²

 $\begin{array}{lll} \cdot & \text{Volume} & : \ell \longleftrightarrow \text{gal} \\ \cdot & \text{Flow} & : \text{lpm} \longleftrightarrow \text{gpm} \\ \cdot & \text{Distance} & : \text{km} \longleftrightarrow \text{mile} \end{array}$

· Date format : $yy/mm/dd \leftrightarrow mm/dd/yy \leftrightarrow dd-mm-yy$


5 Language

· User can select preferable language and all displays are changed to the selected language.

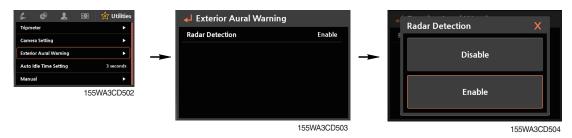
(6) Utilities

① Tripmeter

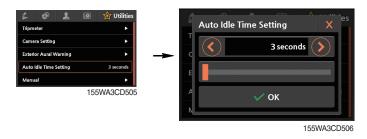
- · A maximum of 3 types of tripmeters can be used at the same time.
- Each tripmeter can be turned on by choosing "Start". It can be turned off by choosing "Stop".
- · If the tripmeter icon is activated in the operation screen, it can be controlled directly in this screen.

2 Camera setting

- · If the rear camera is not installed on the machine, set disable.
- · If the rear camera is installed on the machine, set enable.



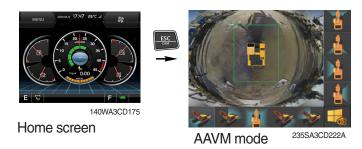
- Auto mode (travel) : Enable The cluster will automatically show camera view while machine is traveling.
- · In the operation screen, rear camera screen shows up when ESC/CAM switch is pushed.


- * The monitor's screen can be set by the camera monitor in case the camera option is rear camera only/mirror view/AAVM etc.
- * The monitor's screen can't be set by the camera monitor in case the camera option is CIC etc. Set the monitor's detail screen by the main cluster.

③ Exterior aural warning (option)

- · This menu is activated when the radar/siren amplifier is equipped optionally.
- · The siren amplifier will sounds aural warning when the radar detection menu is set to the Enable.

4 Auto idle time setting



- · The auto idle time is can be set by this menu.
- · Time: 3~30 seconds

- (5) **AAVM** (Advanced Around View Monitoring, option)
- · The AAVM switchs of the cluster consist of ESC/CAM and AUTO IDLE/Buzzer stop.

- Escape switch
- · Activates AAVM mode from the beginning if AAVM is installed.
- · While in the AAVM mode, select the ESC switch to return to the home screen.

- Buzzer stop switch
- · AAVM mode detects surrounding pedestrians or objects and the warning buzzer sounds.
- · User can turn OFF the warning sound by pressing the buzzer stop switch.

220A3CD246

- · When a worker/pedestrian reaches the green line, which is an external danger area equipped on the cluster, warning buzzer sounds and it displays a green rectangular box recognizing the worker/pedestrian.
 - Stop work immediately. Stop the buzzer by pressing the buzzer stop switch. Then resume work after you confirm that the area is safe and clear of workers/ objects.

- When a worker/pedestrian reaches the red line, which is an internal danger area equipped on the cluster, warning buzzer sounds and it displays a red rectangular box recognizing the worker/pedestrian. Stop work immediately. Stop the buzzer by pressing the buzzer stop switch. Then resume work after you confirm that the area is safe and clear of workers/ objects.
- ▲ Failure to comply may result in serious injury or death.
- In AAVM mode, a touch screen of the LCD is available only. The multimodal dial of the jog dial module is not available.

6 Mirror / RH view camera UI setting (opt)

· The mirror / RH view camera mode can be set by the main cluster.

Escape switch
140WA3CD174K

- Escape switch
- · Activate mirror / RH mode from the beginning if the option is installed.
- · While in that mode, select the ESC switch to return to the home screen.

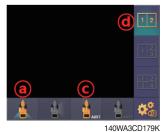
Home screen

Cam image control (CIC) mode

- Cam image control (CIC) mode
- * Type A / Type B are divided by equipment camera option.
- Type A. RH view option.
- · Touch (a) (rear), (b) (RH) button on screen to set single-view camera mode.
- · Touch d (2CH split-view) button to set split-view camera mode.
- Type B. mirror view option.
- Touch (a) (rear), (c) (mirror) button on screen to set single-view camera mode.
- Touch (a) (2CH split-view) button to set split-view camera mode.
- * (rear), (c) (mirror) camera image is inverted for a mirror effect.

a (Rear)

(RH)


© (Mirror)

d (2CH split-view)

Type A. RH view opt

Type B. mirror view opt

- Split-view camera order setting
- · Touch @ (camera setting) button to set split-view camera order.

Camera setting

Type A. RH view option

Type B. mirror view option

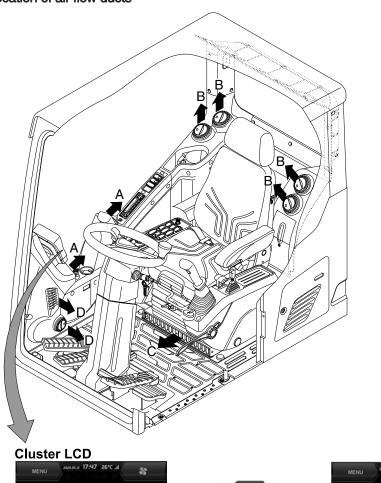
· You can change split-view camera order on display order menu.

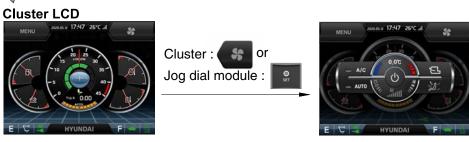
Type A (RH view) default setting 1st rear / 2nd right

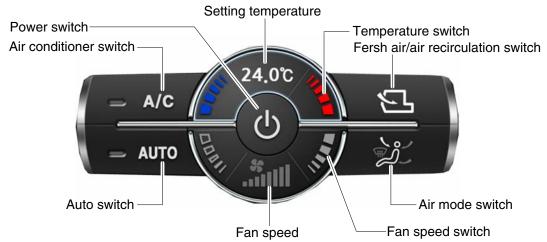
Type B (mirror view) default setting 1st rear / 2nd Aux1

- With 2nd camera monitor option.
- * You can set camera view on maun cluster.

Set camera view on main cluster






9) AIR CONDITIONER AND HEATER

Full auto air conditioner and heater system automatically keeps the optimum condition in accordance with operator's temperature configuration, sensing ambient and cabin inside temperature.

· Location of air flow ducts

140WA3CD201

* Jog dial module : Refer to the operator's manual page 3-77.

(1) Power switch

- This switch turns the system ON and OFF.
 Just before powering OFF, set values are stored.
- ② Default setting values

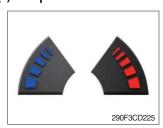
Function	Air conditioner	In/outlet	LCD	Temperature	Mode
Value	OFF	Inlet	OFF	Previous sw OFF	Previous sw OFF

(2) Air conditioner switch

- ① This switch turns the compressor ON/OFF.
- ※ Air conditioner operates to remove vapor and drains water through a drain hose. Water can be sprayed into the cab in case that the drain cock at the ending point of drain hose has a problem.

In this case, exchange the drain cock.

(3) Auto switch


① Auto air conditioner and heater system automatically keeps the optimum condition in accordance with operator's temperature configuration sensing ambient and cabin inside temperature.

(4) Setting temperature

① Displays the temperature setting.

(5) Temperature switch

- ① Setting temperature indication
 - · Lo (17°C), 17.5~31.5°C, Hi (32°C)
- 2 Max cool and max warm beeps 5 times.
- The max cool or the max warm position operates per the following table.

Temperature Compressor		Fan speed In/outlet		Mode
Max cool	ON	Hi (8 step)	Recirculation	Face
Max warm	OFF	Hi (7 step)	Fresh	Def/Foot

- ④ Temperature unit can be changed between celsius (°C) and fahrenheit (°F)
 - a. Default status (°C)
 - b. The temperature unit can be changed (${}^{\circ}C \leftrightarrow {}^{\circ}F$) by pressing temperature switchs (Up/Down) simultaneously for more than 5 seconds.

(6) Fan speed switch

- ① Fan speed is controlled automatically by set temperature.
- 2 This switch controls fan speed manually.
 - · There are 8 up/down steps to control fan speed.
 - · The maximum step or the minimum step beeps 5 times.

(7) Fan speed

① Steps 1 through 8 to display the amount of air being circulated.

(8) Fresh air/air recirculation switch

- ① It is possible to change the air-inlet method.
- a. Fresh air (ᠫ)
 Inhaling air from the outside.
- b. Air recirculation (巨)
 It recycles the heated or cooled air to increase the energy efficiency.
- * Change air occasionally when using recirculation for a long periods of time.
- * Check condition of fresh air filter and recirculation filter periodically to maintain good efficiency of the system.

(9) Air mode switch

① Operating this switch, it beeps and displays symbol of each mode in the following order. (Face → Face/Rear → Face/Rear/Foot → Foot → Def/Foot)

Mode switch		Face	Face/Rear	Face/Rear/Foot	Foot	Def/Foot
		رڅ	ريم	کی ۔	ھ۔	
Outlet	Α	•	•	•		
	В		•	•		
	С			•	•	•
	D					•

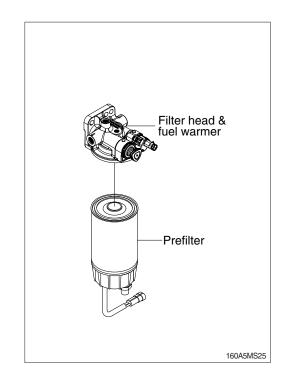
When operating defroste, FRESH AIR/AIR RECIRCULATION switch turns to FRESH AIR mode and air conditioner switch turns ON.

(10) Self Diagnosis Function

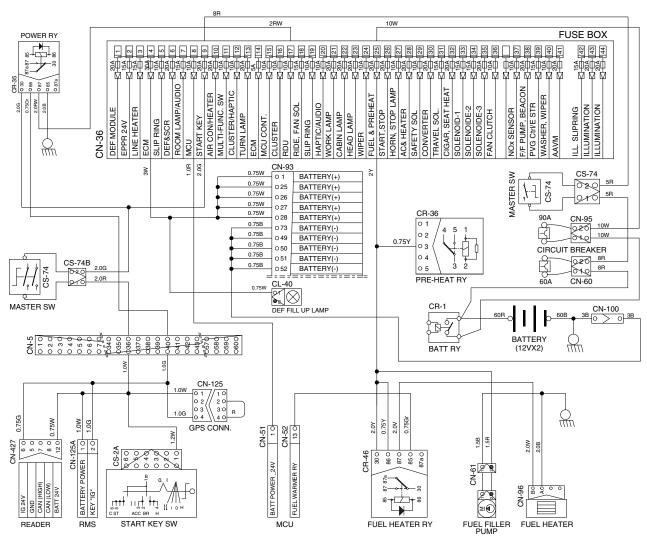
- ① Diagnostic methods : Diagnostic information window, select
- ② Diagnostic indication (Displays fault)

Fault code	Description	Fail safe function	
F01	Ambient temperature sensor open	00°C alternate value control	
F02	Ambient temperature sensor short	20°C alternate value control	
F03	Cab inside temperature sensor open	OF°C alternate value control	
F04	Cab inside temperature sensor short	25°C alternate value control	
F05	Evaporate temperature sensor open	0°C alternate value control	
F06	Evaporate temperature sensor short	0°C alternate value control	
F07	Null	-	
F08	Null	-	
F09	Mode 1 actuator open/short	The alternate value is face	
F10	Mode 1 actuator drive circuit malfunction	If not, the alternate value is Def/Foot	
F11	Intake actuator open/short	The alternate value is air recirculation	
F12	Intake actuator drive circuit malfunction	The alternate fresh air	
F13	Temperature actuator open/short	If opening amount is 0 %, the alternate value is 0 %	
F14	Temperature actuator drive circuit malfunction	If not, the alternate value is 100 %	
F15	Null	-	
F16	Null	-	

GROUP 17 FUEL WARMER SYSTEM


1. SPECIFICATION

1) Operating voltage: 24±4 V


2) Power: 350±50 W 3) Current: 15 A

2. OPERATION

- 1) The current of fuel warmer system is automatically controlled without thermostat according to fuel temperature.
- 2) At the first state, the 15 A current flows to the fuel warmer and engine may be started in 1~2 minutes.
- 3) If the fuel starts to flow, ceramic-disk in the fuel warmer heater senses the fuel temperature to reduce the current as low as 1.5 A. So, fuel is protected from overheating by this mechanism.

3. ELECTRIC CIRCUIT

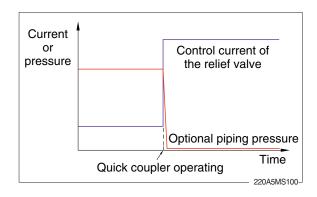
140WA5MS26

GROUP 18 1 or 2-WAY OPTIONAL PIPING PRESSURE REMOVAL SYSTEM

■ Machine serial no.: #0161~

1. OUTLINE

This system can be removed the residual pressure of the optional attachment hydraulic piping when the quick coupler is operated by the switch of the RCV lever and then the oil quick function of the optional attachment is performed.


Oil quick function

In a convention work, the optional attachments such as breaker or grab are installed on the machine and needed to connect hydraulic piping additionally.

But currently, the hydraulic piping connection is not needed by the work man. The attachment is installed on the machine and the hydraulic pipings are connected by a coupler that is built in the quick coupler automatically and the attachment can be ready to operate immediately. This is called the oil quick function.

2. OPERATING PRINCIPLE

This is operated by controlling the setting pressure of the electric type relief valve when you operate the quick coupler with the switch of the RCV lever.

3. SETTING METHOD

- 1) Optional piping pressure removal is set to Disable in the factory.
- 2) Optional piping pressure removal is set to Enable then the oil quick function is operated. Also, the caution letter is display on the lower side of the cluster.
- 3) The setting condition is saved even if shut the engine off.

220A5MS104

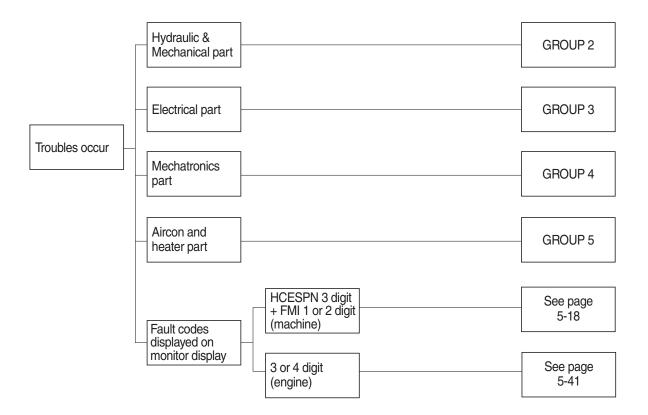
4. CAUTION

- 1) When the oil quick function is used, the hydraulic drift and etc can be occurred as the modified equipment specification.
- 2) The status of the cluster must be changed by a manager that is well-acquainted with the function and the operator must be well-informed of the oil quick function and safety work.

SECTION 6 TROUBLESHOOTING

Group	1	Before Troubleshooting	6-1
Group	2	Hydraulic and Mechanical System	6-4
Group	3	Electrical System	6-25
Group	4	Mechatronics System ·····	6-41
Group	5	Air conditioner and Heater System	6-72

SECTION 6 TROUBLESHOOTING

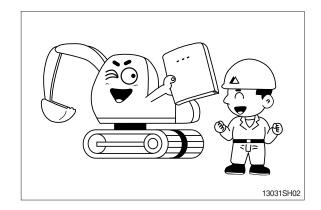

GROUP 1 BEFORE TROUBLESHOOTING

1. INTRODUCTION

When a trouble is occurred in the machine, this section will help an service man to repair the machine with easy.

The trouble of machine is parted Hydraulic & Mechanical system, Electrical system and Mechatronics system. At each system part, an service man can check the machine according to the troubleshooting process diagram.

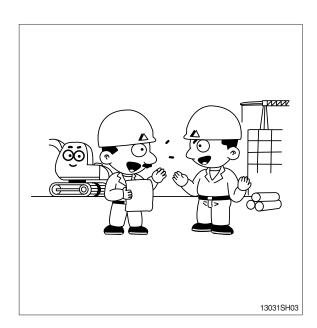
* Before carring out troubleshooting procedure, check monitoring menu in the cluster.


2. DIAGNOSING PROCEDURE

To carry out troubleshooting efficiently, the following steps must be observed.

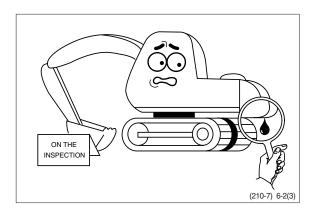
STEP 1. Study the machine system

Study and know how the machine is operating, how the system is composing, what kinds of function are installed in the machine and what are specifications of the system components by the machine service manual.


Especially, deepen the knowledge for the related parts of the trouble.

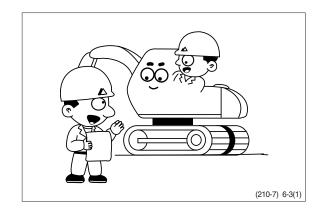
STEP 2. Ask the operator

Before inspecting, get the full story of malfunctions from a witness --- the operator.

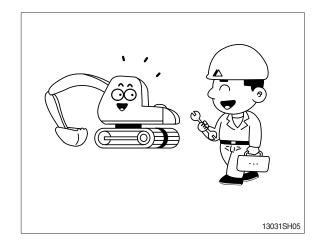

- 1) How the machine is used and when it is serviced?
- 2) When the trouble was noticed and what work the machine was doing at that time?
- 3) What is the phenomenon of the trouble? Was the trouble getting worse, or did it come out suddenly for the first time?
- 4) Did the machine have any troubles previously? If so, which parts were repaired before.

STEP 3. Inspect the machine

Before starting troubleshooting, check the machine for the daily maintenance points as shown in the operator's manual.

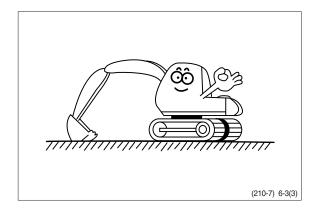

And also check the electrical system including batteries, as the troubles in the electrical system such as low battery voltage, loose connections and blown out fuses will result in malfunction of the controllers causing total operational failures of the machine.

STEP 4. Inspect the trouble actually on the machine


In case that some trouble cannot be confirmed, obtain the details of the malfunction from the operator.

Also, check if there are any in complete connections of the wire harnesses are or not.

STEP 5. Perform troubleshooting


According to where the trouble parts are located, hydraulic & mechanical system part or electrical system part or mechatronics system part, perform troubleshooting the machine refer to the each system part's troubleshooting process diagram.

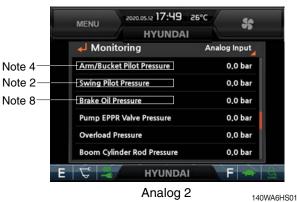
STEP 6. Trace a cause

Before reaching a conclusion, check the most suspectible causes again. Try to trace what the real cause of the trouble is.

Make a plan of the appropriate repairing procedure to avoid consequential malfunctions.

GROUP 2 HYDRAULIC AND MECHANICAL SYSTEM

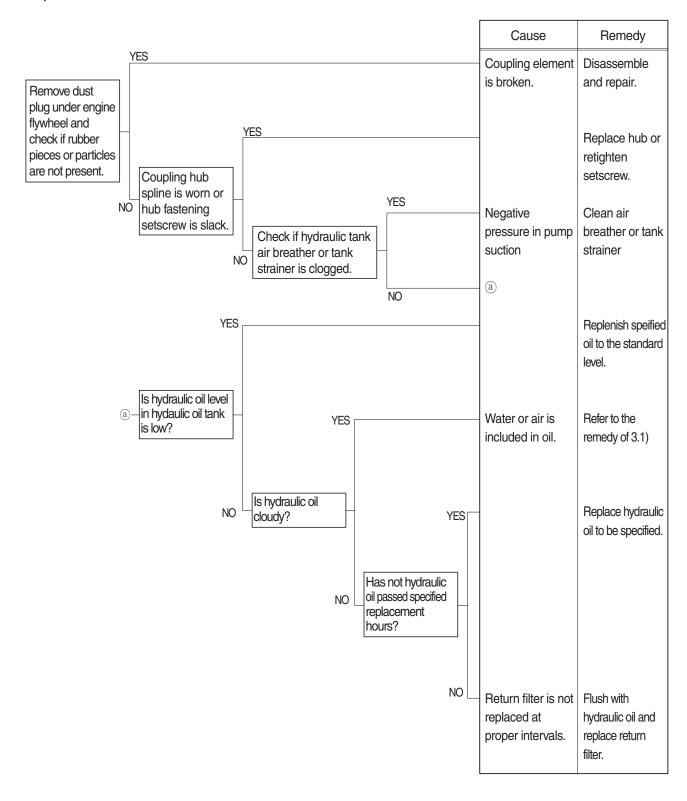
1. INTRODUCTION


1) MACHINE IN GENERAL

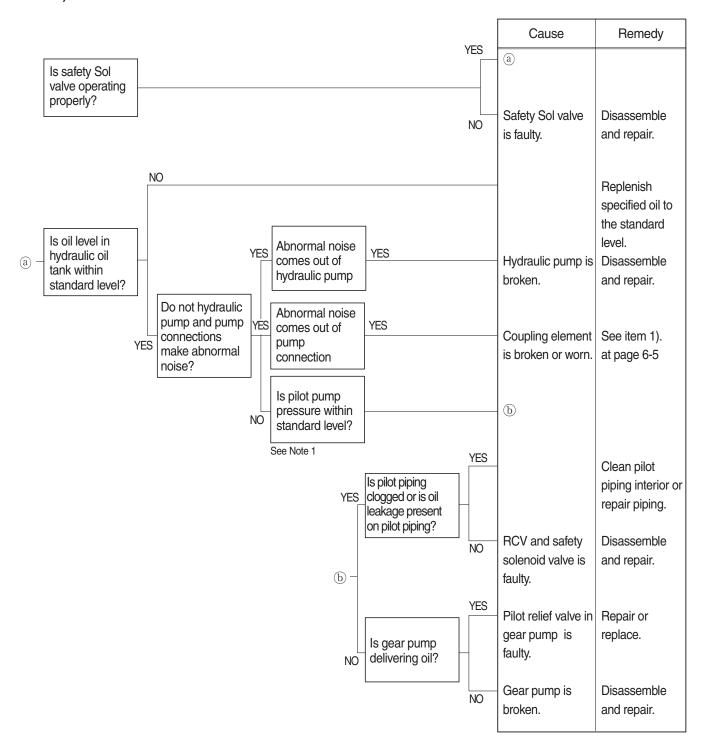
- (1) If even a minor fault is left intact and operation is continued, a fatal failure may be caused, entailing a large sum of expenses and long hours of restoration.
 - Therefore when even a small trouble occurs, do not rely on your intuition and experience, but look for the cause based on the troubleshooting principle and perform maintenance and adjustment to prevent major failure from occurring. Keep in mind that a fault results from a combination of different causes.
- (2) The following lists up commonly occurring faults and possible causes with this machine. For the troubleshooting of the engine, refer to the coming troubleshooting and repair.
- (3) When carrying out troubleshooting, do not hurry to disassemble the components. It will become impossible to find the cause of the problem.
- (4) Ask user or operator the following.
- ① Was there any strange thing about machine before failure occurred?
- ② Under what conditions did the failure occur?
- 3 Have any repairs been carried out before the failure?
- (5) Check before troubleshooting.
- ① Check oil and fuel level.
- ② Check for any external leakage of oil from components.
- 3 Check for loose or damage of wiring and connections.

2) MACHINE STATUS MONITORING ON THE CLUSTER

(1) The machine status such as the engine rpm, oil temperature, voltage and pressure etc. can be checked by this menu.

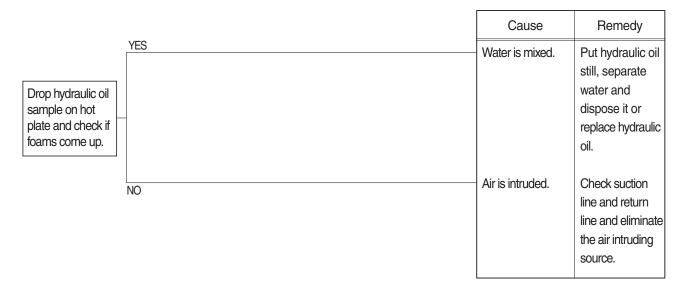


(2) Specification

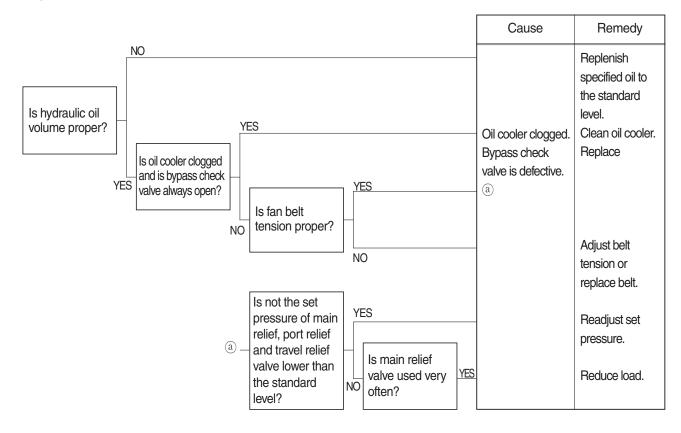

No.	Description	Specification
Note 1	Work pilot pressure	40 ⁺² bar
Note 2	Swing pilot pressure	0~40 bar
Note 3	Boom up pilot pressure	0~40 bar
Note 4	Arm/bucket pilot pressure	0~40 bar
Note 5	Pump 1 regulator pressure	0~50 bar
Note 6	Pump 2 regulator pressure	0~50 bar
Note 7	Pump 1 pressure	350 bar
Note 8	Brake oil pressure	60±3 bar

2. DRIVE SYSTEM

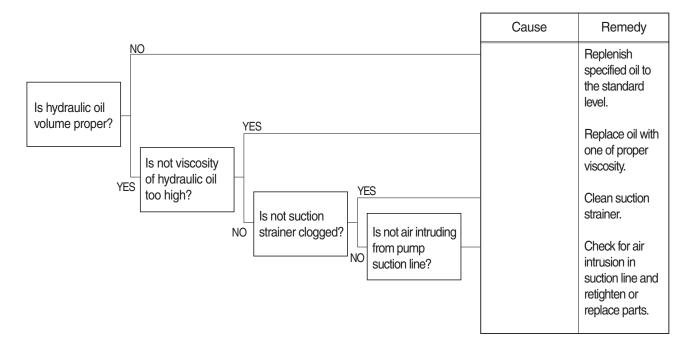
1) UNUSUAL NOISE COMES OUT OF PUMP CONNECTION

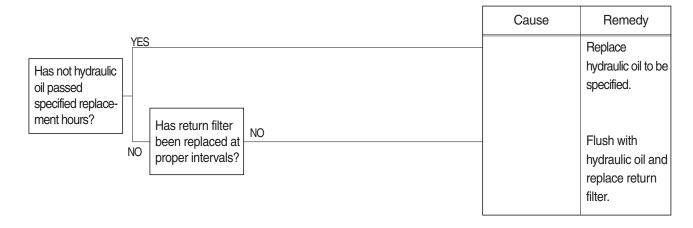


2) ENGINE STARTS BUT MACHINE DOES NOT OPERATE AT ALL

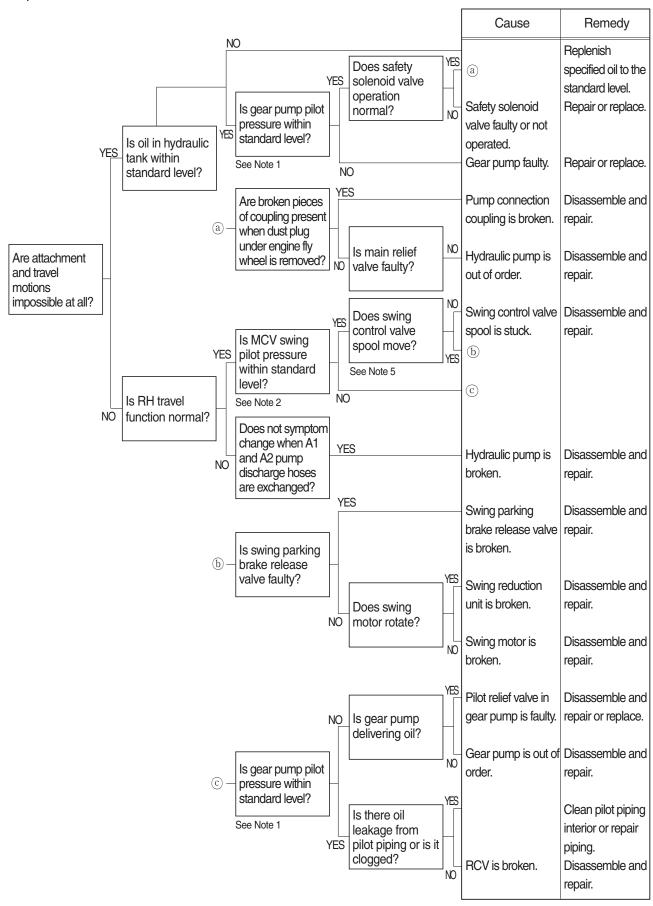


3. HYDRAULIC SYSTEM

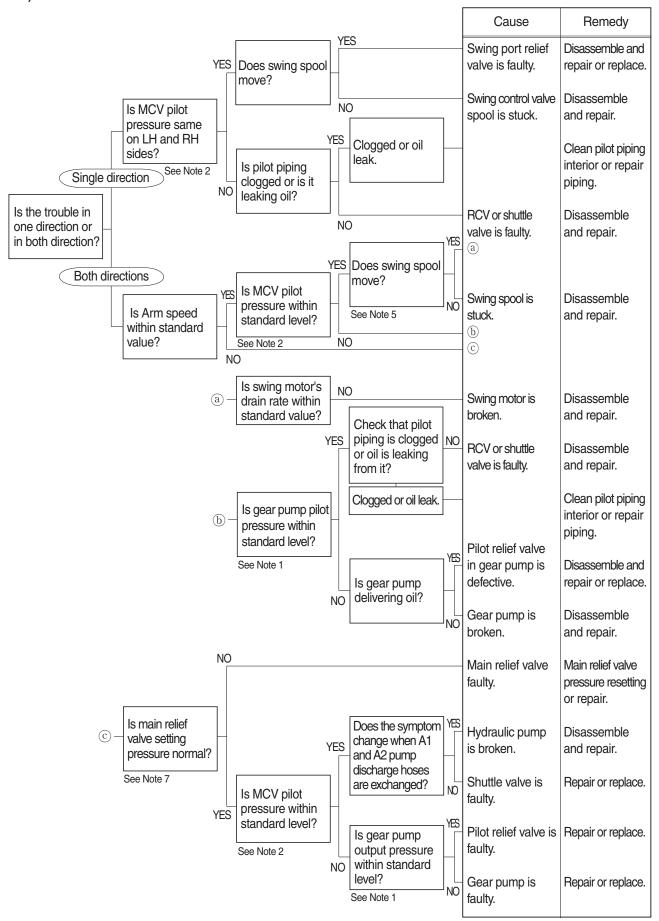

1) HYDRAULIC OIL IS CLOUDY


2) HYDRAULIC OIL TEMPERATURE HAS RISEN ABNORMALLY

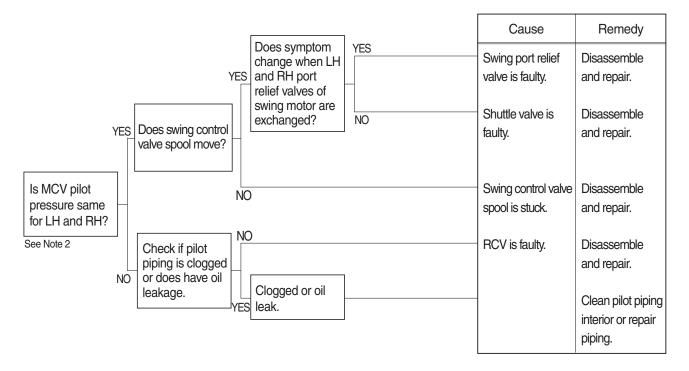
3) CAVITATION OCCURS WITH PUMP

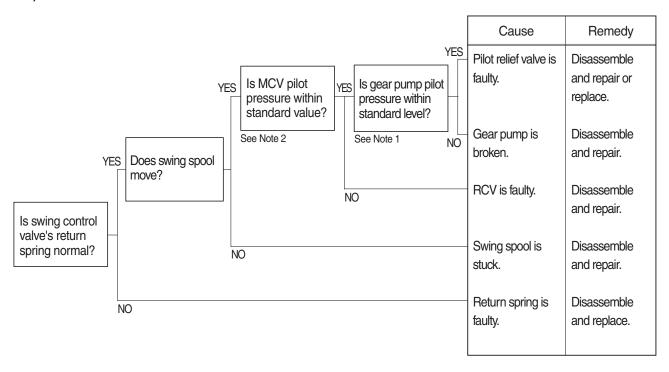


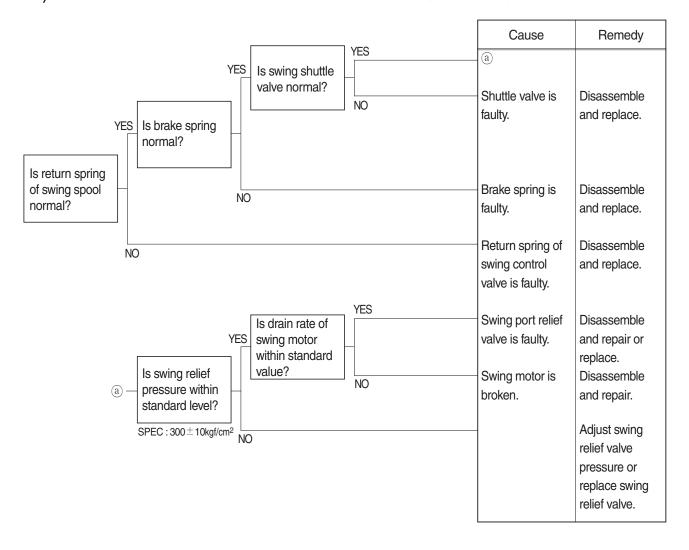
4) HYDRAULIC OIL IS CONTAMINATED

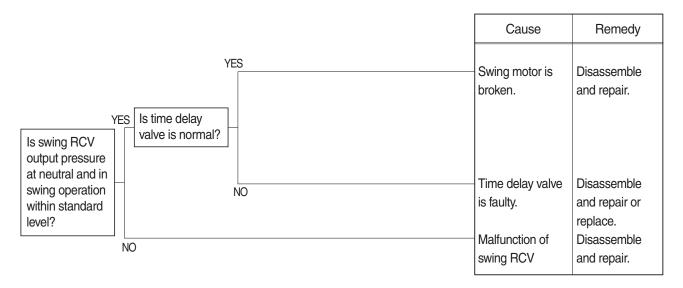


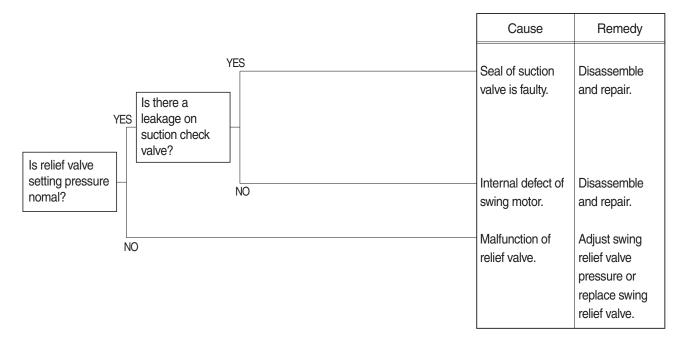
4. SWING SYSTEM


1) BOTH LH AND RH SWING ACTIONS ARE IMPOSSIBLE

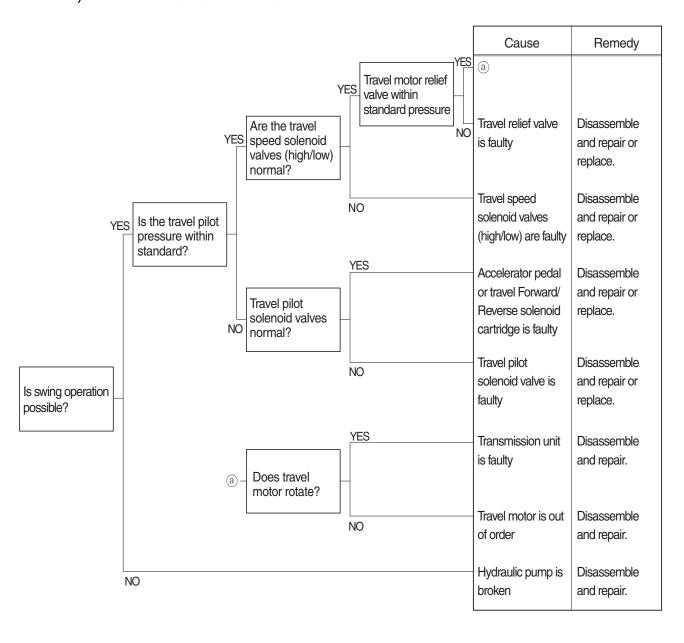

2) SWING SPEED IS LOW


3) SWING MOTION IS IMPOSSIBLE IN ONE DIRECTION

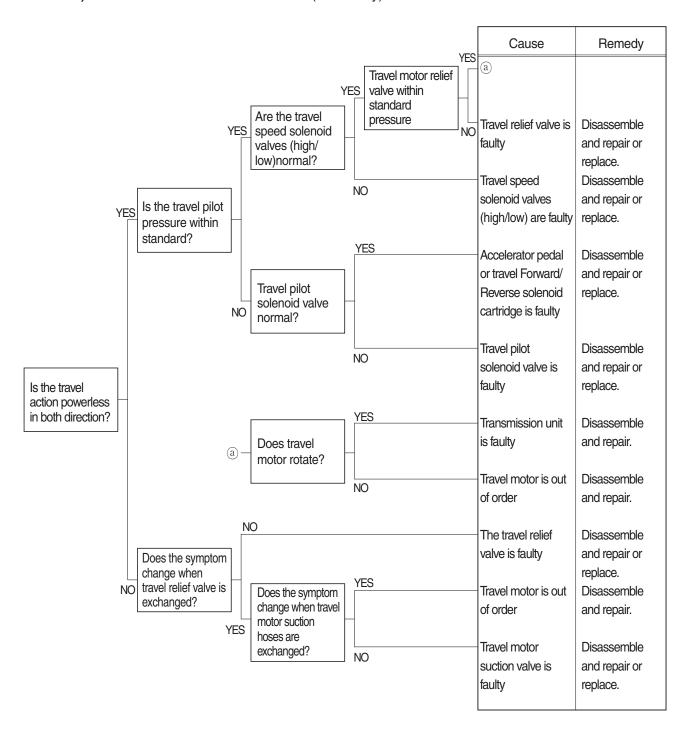

4) MACHINE SWINGS BUT DOES NOT STOP


5) THE SWING UNIT DRIFTS WHEN THE MACHINE IS AT REST ON A SLOPE

6) LARGE SHOCK OCCURS WHEN STOP SWINGING

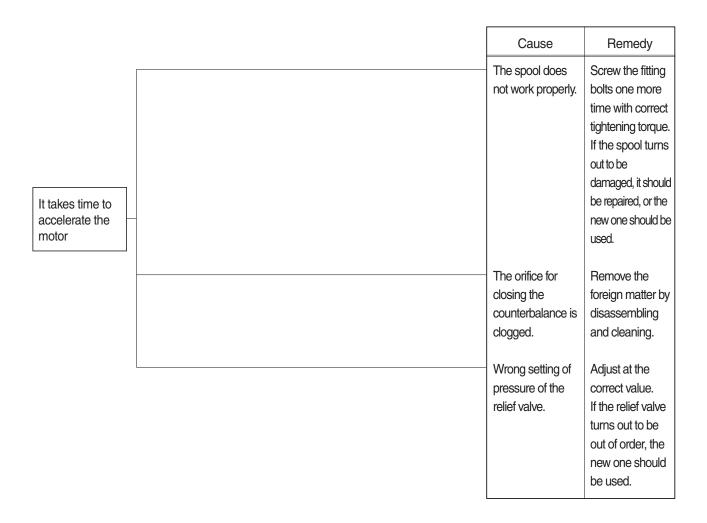


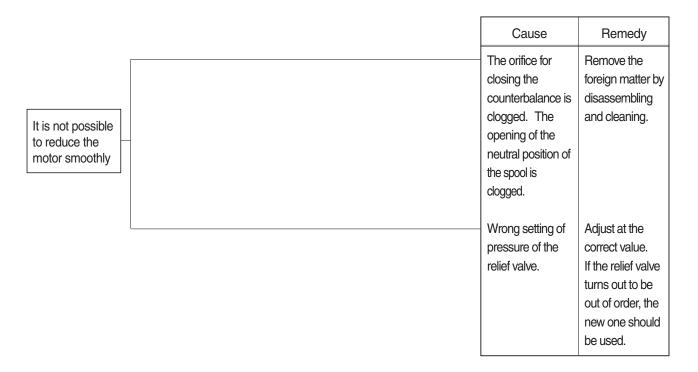
7) LARGE SOUND OCCURS WHEN STOP SWINGING



5. TRAVEL SYSTEM

1) TRAVEL DOES NOT FUNCTION

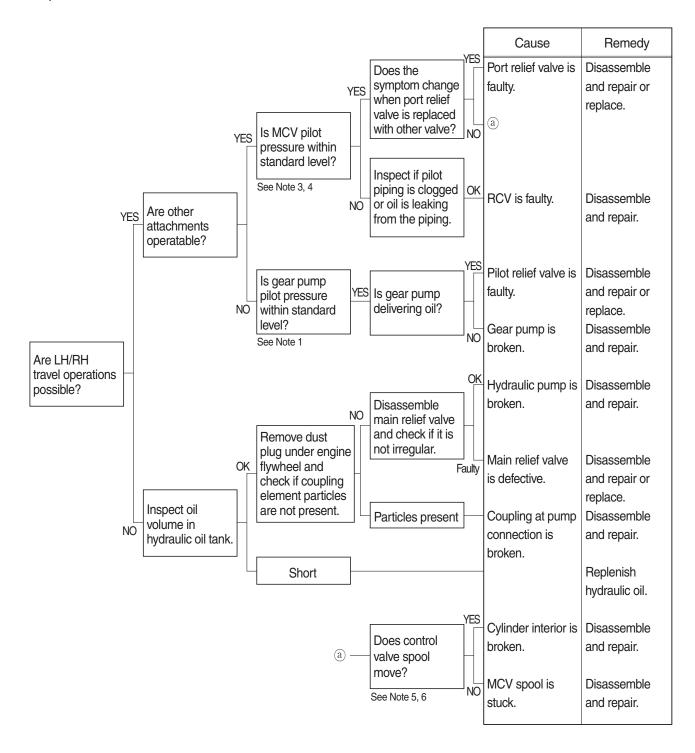

2) TRAVEL ACTION IS POWERLESS (travel only)


3) THE HYDRAULIC MOTOR DOSE NOT GET STARTED

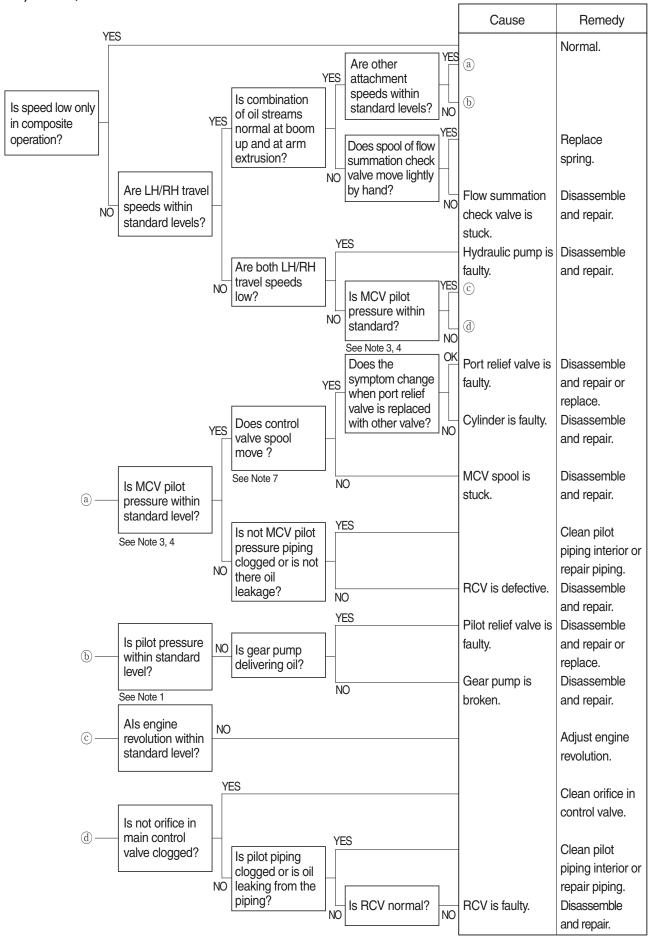
	Cause	Remedy
The hydraulic motor does not get started	The spool does work properly. (The spool keeps fully open)	Screw the fitting bolts one more time with correct tightening torque. If the spool turns out to be damaged, it should be repaired or the new one should be used
	The anti-avitation check valve does not work properly. (The check valve is kept open.)	Ditto

4) IT TAKES TIME TO ACCELERATE THE MOTOR

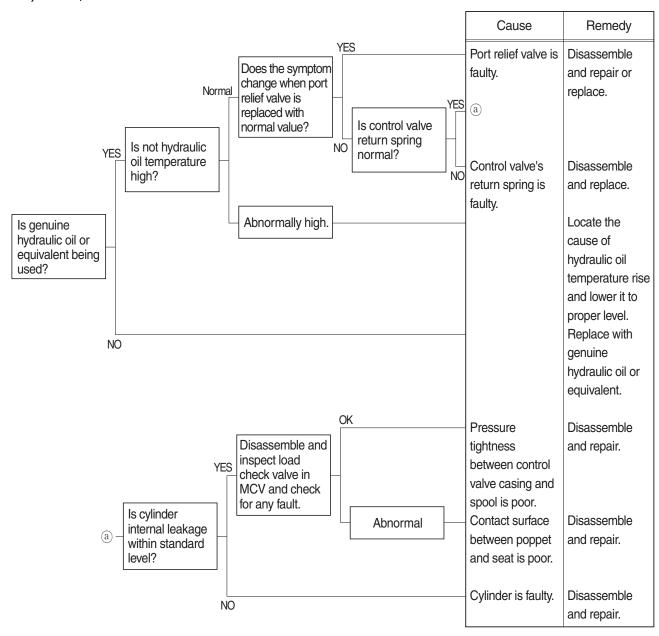
5) IT IS NOT POSSIBLE TO REDUCE THE MOTOR SMOOTHLY

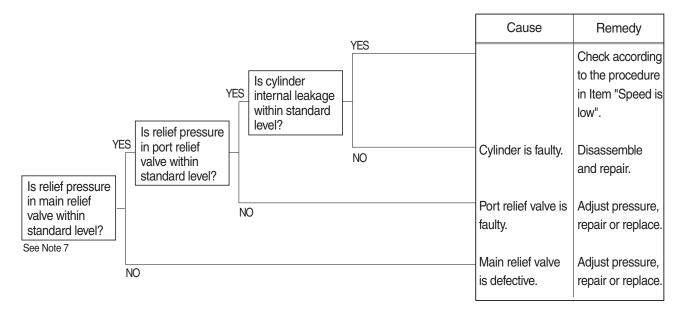


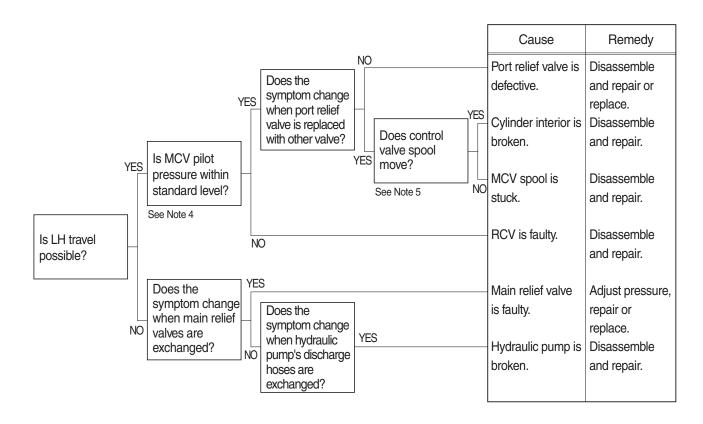
6) EXTRAORDINARY NOISE IS HEARD WHEN SUDDENLY REDUCING THE SPEED FROM THE HIGH-SPEED MODE

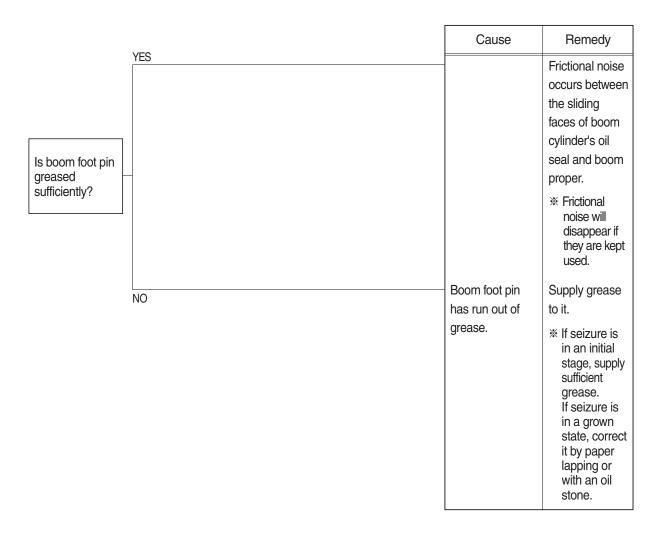

It takes time to	Cause	Remedy
accelerate the	The anti-cavitation	Screw the fitting
motor	valve does not not	bolts one more
	work properly.	time with correct
		tightening torque.
		If the valve turns
		out to be
		damaged, is
		should be
		repaired.

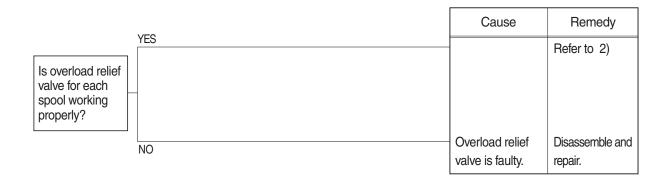
6. ATTACHMENT SYSTEM


1) BOOM OR ARM ACTION IS IMPOSSIBLE AT ALL

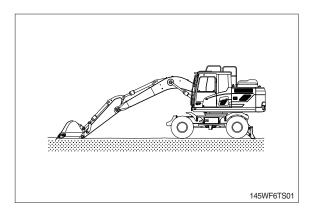

2) BOOM, ARM OR BUCKET SPEED IS LOW


3) BOOM, ARM OR BUCKET CYLINDER EXTENDS OR CONTRACTS ITSELF AND ATTACHMENT FALLS

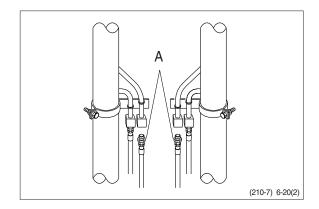

4) BOOM, ARM OR BUCKET POWER IS WEAK


5) ONLY BUCKET OPERATION IS TOTALLY IMPOSSIBLE

6) BOOM MAKES A SQUEAKING NOISE WHEN BOOM IS OPERATED

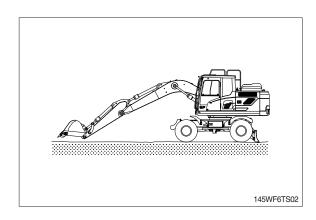


7) TIME LAG OF MACHINE WORKING IS LARGE.



**** HOW TO CHECK INTERNAL BOOM CYLINDER LEAKAGE**

1. Lower the bucket teeth to the ground with bucket cylinder fully retracted and arm cylinder rod retracted almost in full.

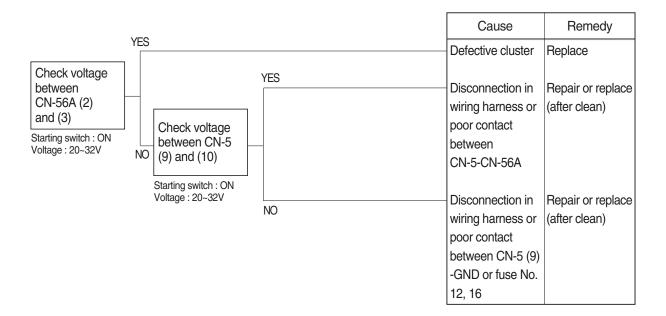

2. Disconnect hose (A) from rod side of boom cylinder and drain oil from cylinders and hose. (put cups on piping and hose ends)

3. Raise bucket OFF the ground by retracting the arm cylinder rod.

If oil leaks from piping side and boom cylinder rod is retracted there is an internal leak in the cylinder.

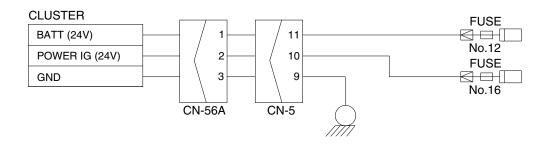
If no oil leaks from piping side and boom cylinder rod is retracted, there is an internal leak in the control valve.

7. FRONT AXLE AND REAR AXLE

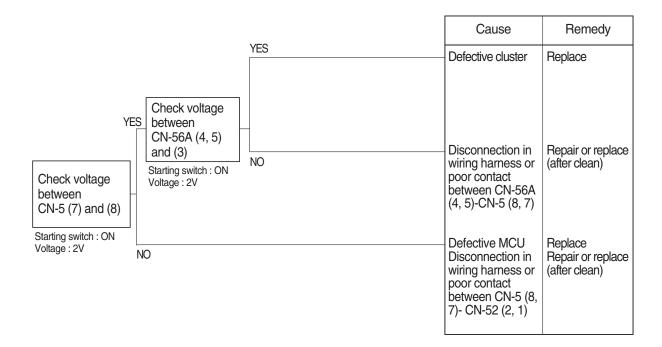

Problem	Cause	Correction
Insufficient braking	1. Incorrect adjustment	Inspect disc thickness and if discs are usable readjust brakes to the specifications in the manual.
	2. Brake discs worn out	Inspect disc thickness and replace if necessary.
	3. Incorrect brake fluid	Replace all seals in axle and master cylinder that have made contact with the incorrect fluid and all brake hoses. If incorrect fluid leaked into axle oil, seals and O-rings in axle must be replaced.
	4. Loss of brake fluid	Inspect for and repair any leaks in outside circuit or master cylinder. If caused by incorrect brake fluid see correction No.3. If leak is to the outside replace the O-rings between the center and intermediate housings. If leak is to the inside replace above O-rings and brake piston O-rings.
	5. Overheated axle causing brake fluid to vaporize. (Brake return when axle cools)	See "overheating" problem.
Soft brake pedal	6. Air in brake circuit	Bleed air in brake circuit.
Ineffective safety brake	7. Incorrect adjustment	See correction No.1.
	8. Brake disc worn out	See correction No.2.
Overheating	9. Oil level wrong	Drain, flush and refill oil to proper level.
	10. Too small of a brake gap	Readjust brakes to the specifications.
	11. Park brake dragging	Unlock the brake and adjust the correct gap.
	12. Incorrect brake fluid in system	See correction No.3.
	13. No free-pedal at master cylinder	Readjust brake pedal.
	14. Restriction in brake lines	Inspect for and replace damage lines.
	15. Restriction in return line of brake servo system	Inspect for and replace damaged return line. Inspect for and remove any filter, tee'd in line or any other source of back pressure from the return line.
	16. Incorrect lubricant	Change the retaining rings of the brake circuit and brake pump.
Diff-lock inoperative	17. If manual control, loose or misadjusted linkage	Inspect and correct linkage and readjust.
	18. If hydraulic control, problems in the hydraulic or electrical circuits of the machine.	Refer to the hydraulic or electrical section in this manual.
	19. If hydraulic control problems in actuating cylinder(noteable through loss of hydraulic oil or increase of the oil level in axle)	Rebuilt cylinder.
	20. If with limit slip differential, worn discs	Replace discs.

Problem	Cause	Correction
Oil coming out of breather	21. Leak in internal brake system	See correction No.2 and No.3.
	22. Leak in diff-lock actuating cylinder	See correction No.19.
Nospin indexing noise when driving straight * With nospin, fatigue	23. Unequal tire pressure left and right	Inflate tires to the recommended pressure in this manual, or until the rolling radius is equal.
damage can occur on the side with the larger tire.	24. Different style, size or brand of tires between left and right hand side	Change tires to make the rolling radius equal. Vary the tire pressure within the specifications until the rolling radius is equal.
Noise during coast and under power the same	25. Wheel bearings damaged	Replace and adjust
Noise under power greater	26. Low oil level	Refill oil to proper level
than during coast	27. Incorrect lubricant	See correction No.16.
	28. Ring and pinion worn	Inspect through top cover. Replace and adjust.
	29. Worn ring and pinion bearings	Replace and adjust
	30. Worn planetary gears or bearings	Replace.
Noise during coast greater than under power	31. Loose pinion nut	Inspect ring, pinion and pinion bearings. If undamaged, retighten nut.
	32. Only pinion bearing damaged	See correction No.29.
Noise during turn (Without nospin)	33. Worn spider and/or side gears	Replace.
A stick slip noise when going from forward to	34. Worn or damaged cardan shaft	Inspect and replace.
reverse	35. Loose wheel	Inspect for wheel and wheel stud damage. Replace if needed and retorque lugnuts.
	36. Articulation box joint and achsel shaft damaged	Inspect and replace.
	37. Spider pins loose in diff-carrier	Inspect through top cover. Replace.
	38. Damaged or missing spider and/or side gear washers	See correction No.33.

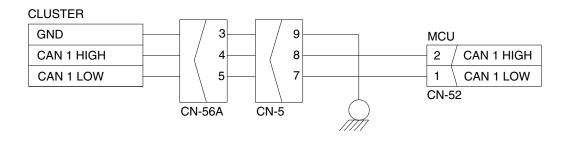
GROUP 3 ELECTRICAL SYSTEM


1. WHEN STARTING SWITCH IS TURNED ON, MONITOR PANEL DISPLAY DOES NOT APPEAR

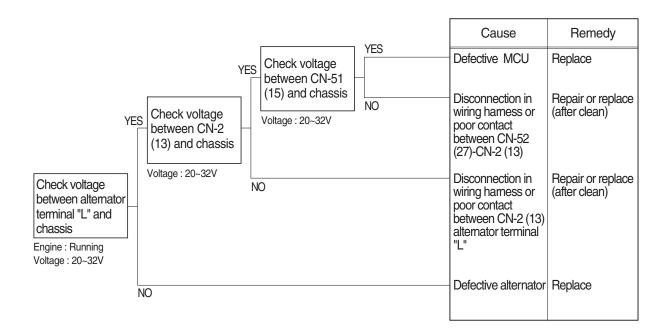
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 12, 16.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check voltage

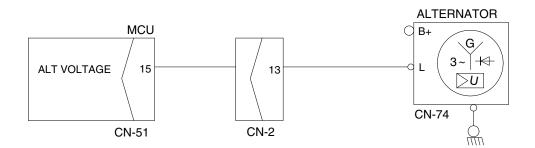
YES	20~32V
NO	0V


2. COMMUNICATION ERROR FLASHES ON THE CLUSTER (HCESPN 840, FMI 2)

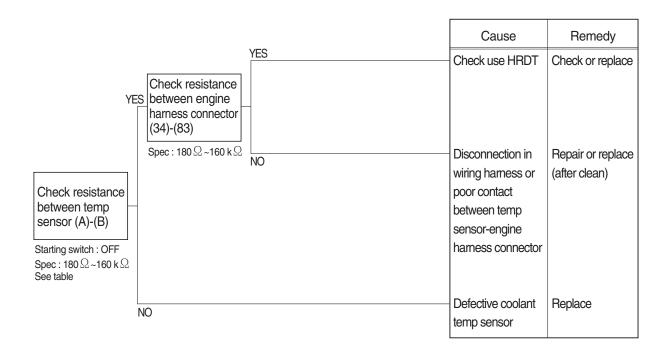
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check voltage

YES	2V
NO	0V

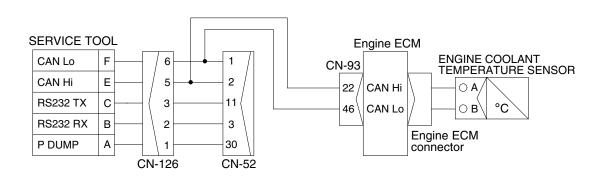

3. - BATTERY CHARGING WARNING LAMP LIGHTS UP (Starting switch : ON)

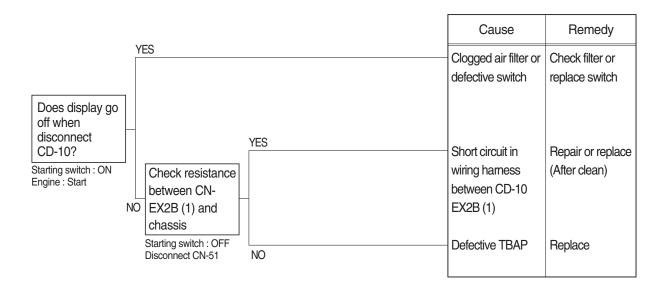
- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check voltage

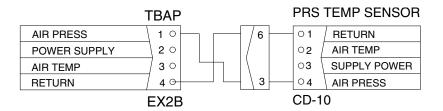
YES	20~32V
NO	0V

4. WHEN COOLANT OVERHEAT WARNING LAMP LIGHTS UP (engine is started)

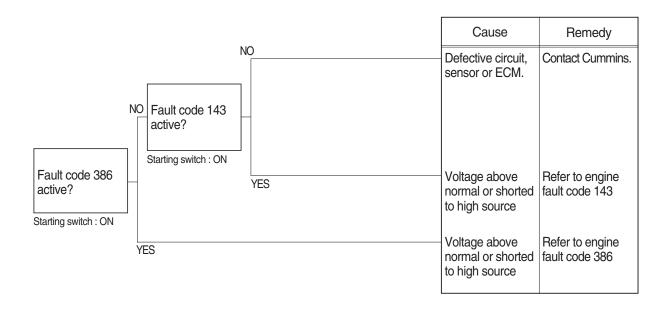

- · Before disconnecting the connector, always turn the starting switch OFF.
- Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

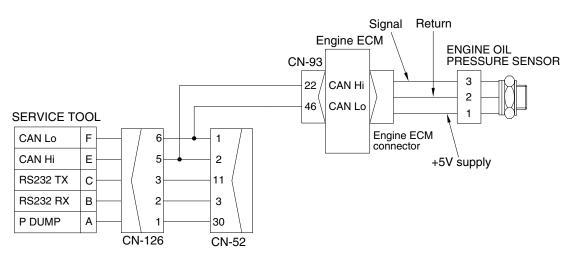

Check Table

Temperature (°C)	0	25	50	80	95
Resistance ($k\Omega$)	30~37	9.3~10.7	3.2~3.8	1.0~1.3	0.7~0.8

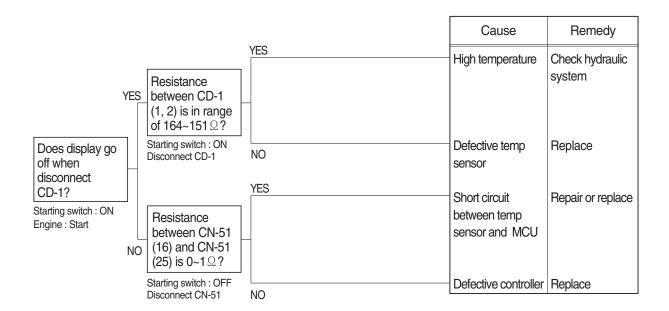

5. WHEN AIR CLEANER WARNING LAMP LIGHTS UP (engine is started)

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

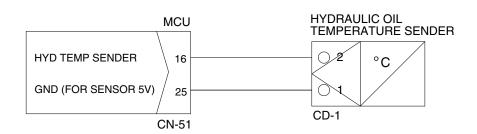

Check resistance


YES	MAX 1Ω
NO	MIN 1MΩ

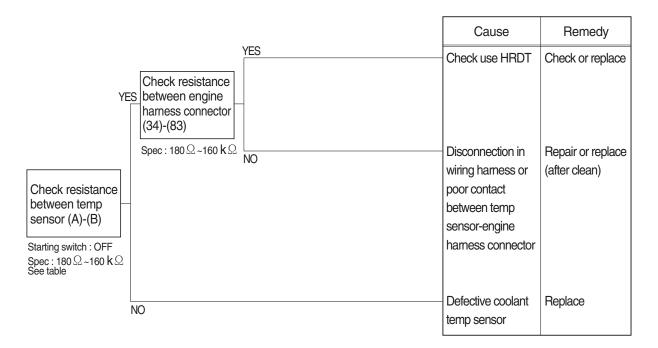
6. WHEN ENGINE OIL PRESSURE WARNING LAMP LIGHTS UP (engine is started)


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

7. WHEN HYDRAULIC OIL TEMPERATURE WARNING LAMP LIGHTS UP (engine is started)

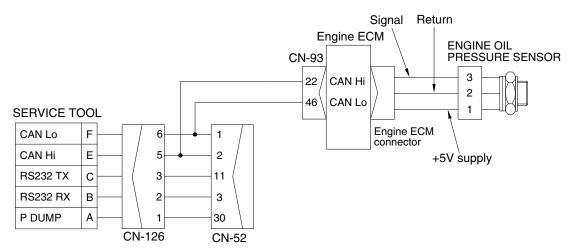

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

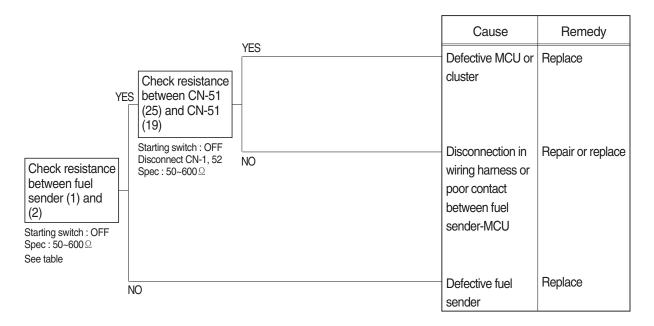
b


Check Table

Temperature (°C)	~ -30	~ -10	~ 0	~ 40	~ 70	~ 80	~ 90	~ 100	105~
Resistance (k Ω)	22.22	8.16	5.18	1.06	0.39	0.322	0.243	0.185	0.164
	~31.78	~10.74	~ 6.6	~1.28	~0.476	~0.298	~0.219	~0.167	0.151

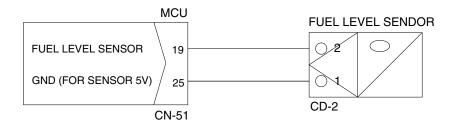
8. WHEN COOLANT TEMPERATURE GAUGE DOES NOT OPERATE (HCESPN 304, FMI 3 or 4)

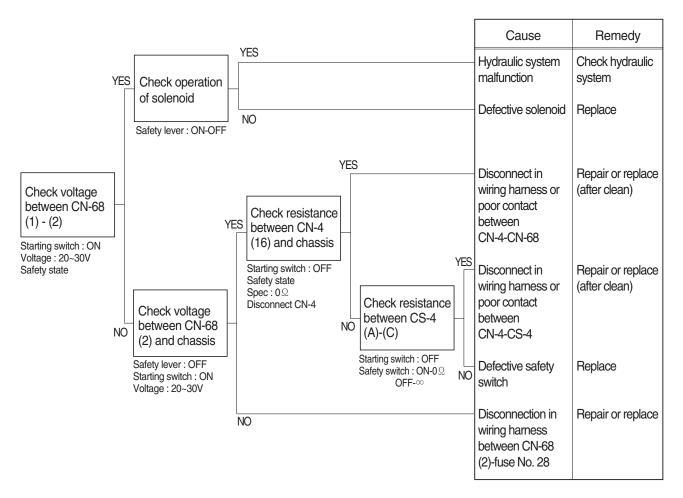

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

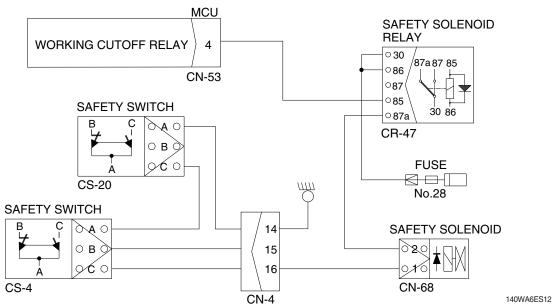

Check Table

Temperature (°C)	0	25	50	80	95
Resistance ($k\Omega$)	30~37	9.3~10.7	3.2~3.8	1.0~1.3	0.7~0.8

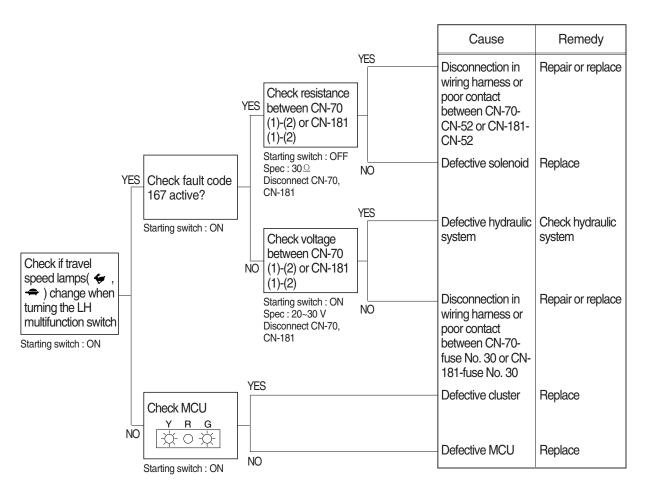
9. WHEN FUEL GAUGE DOES NOT OPERATE (HCESPN 301, FMI 3 or 4)

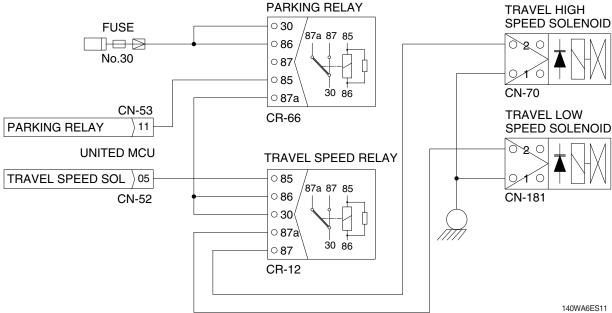

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.


Check Table

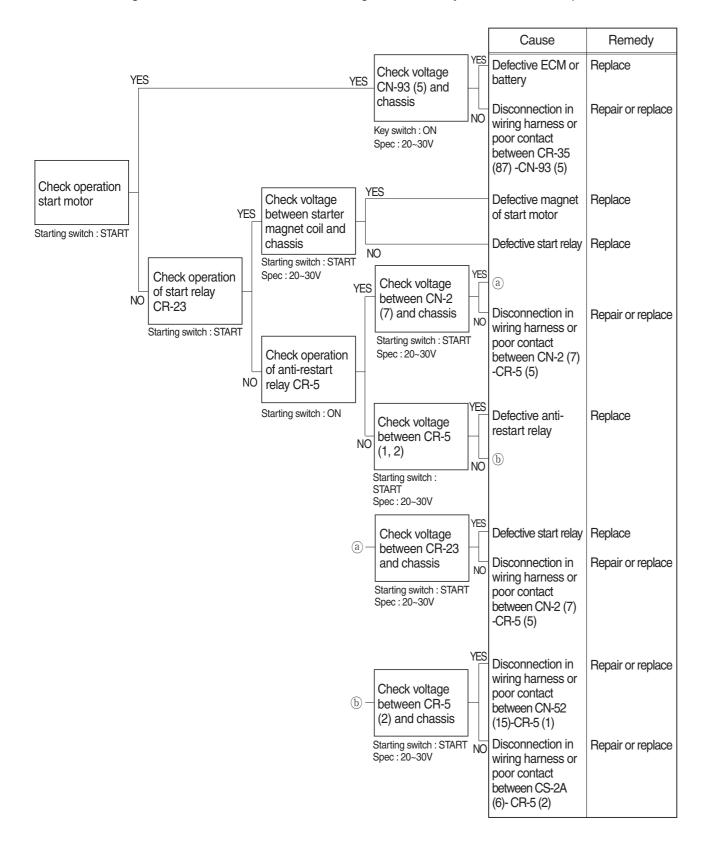

Range	Resistance (Ω)	Range	Resistance (Ω)
Full	50	5/12	400
11/12	100	4/12	450
10/12	150	3/12	500
9/12	200	2/12	550
8/12	250	1/12	600
7/12	300	Empty warning	700
6/12	350	-	-

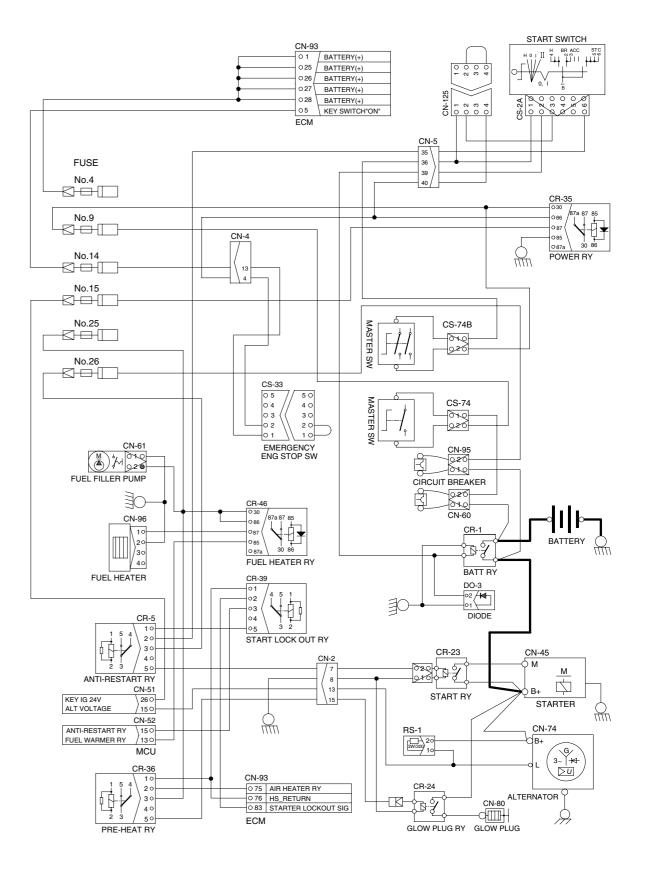
10. WHEN SAFETY SOLENOID DOES NOT OPERATE


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 28.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

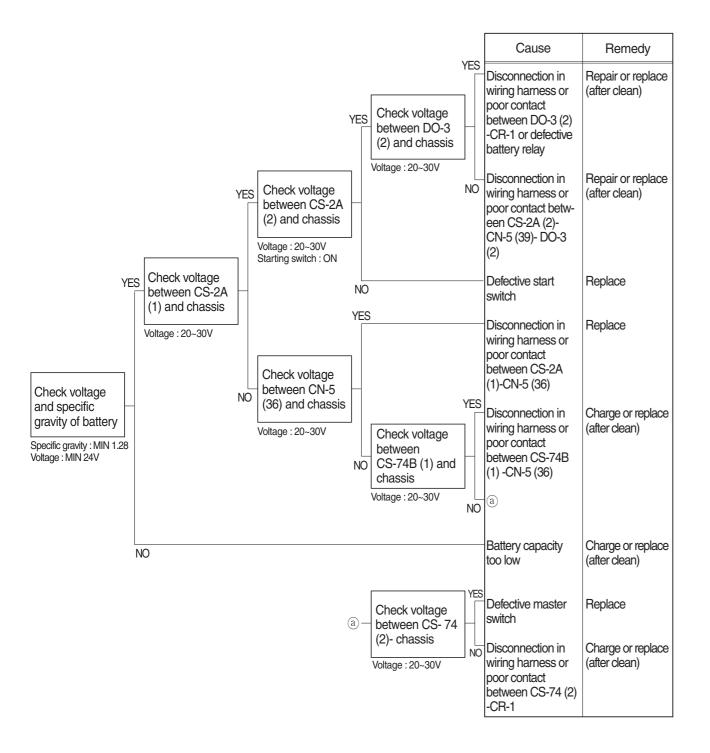


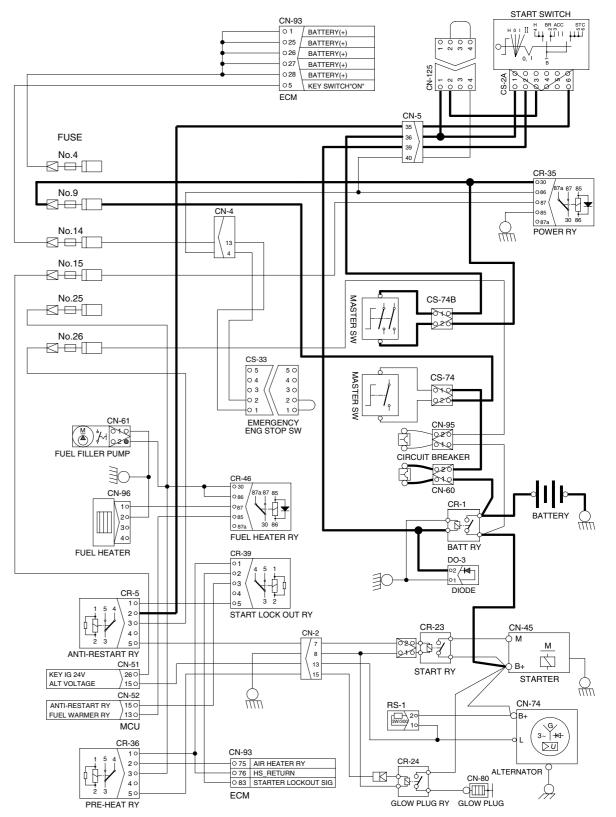
11. WHEN TRAVEL SPEED 1, 2 DOES NOT OPERATE (HCESPN 167, FMI 4 or 6)


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 30.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

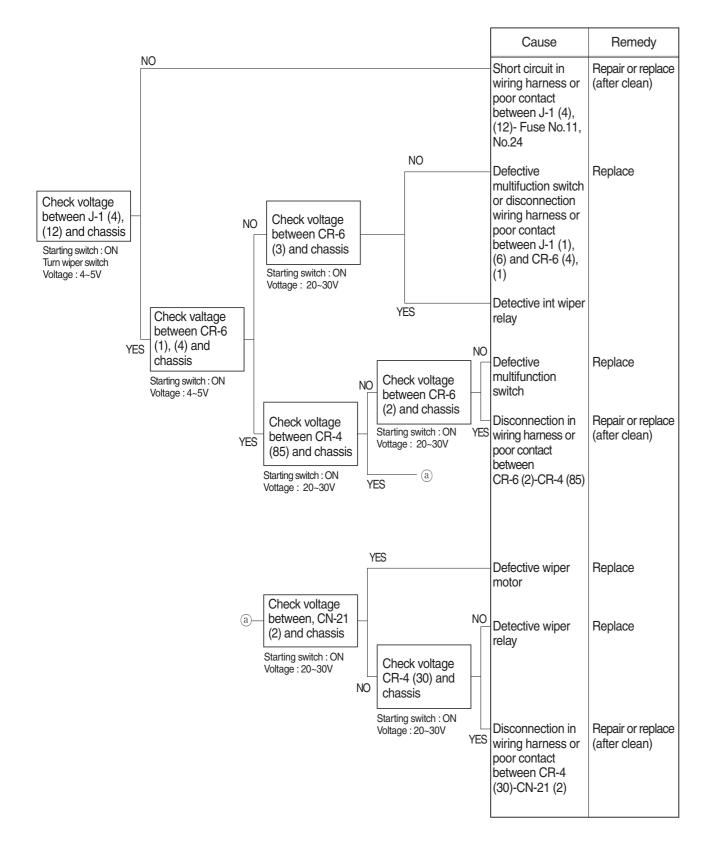


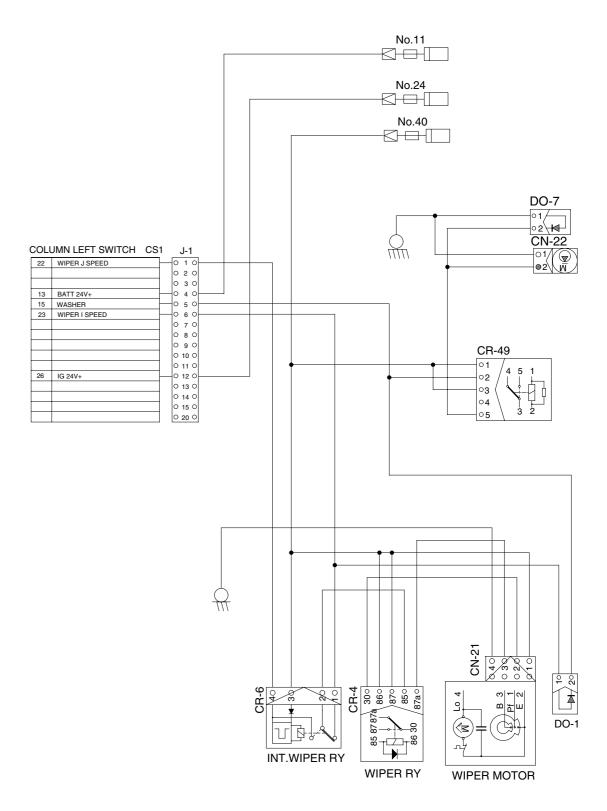
12. WHEN ENGINE DOES NOT START (| lights up condition)


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 4, 9, 14, 15, 25, 26.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

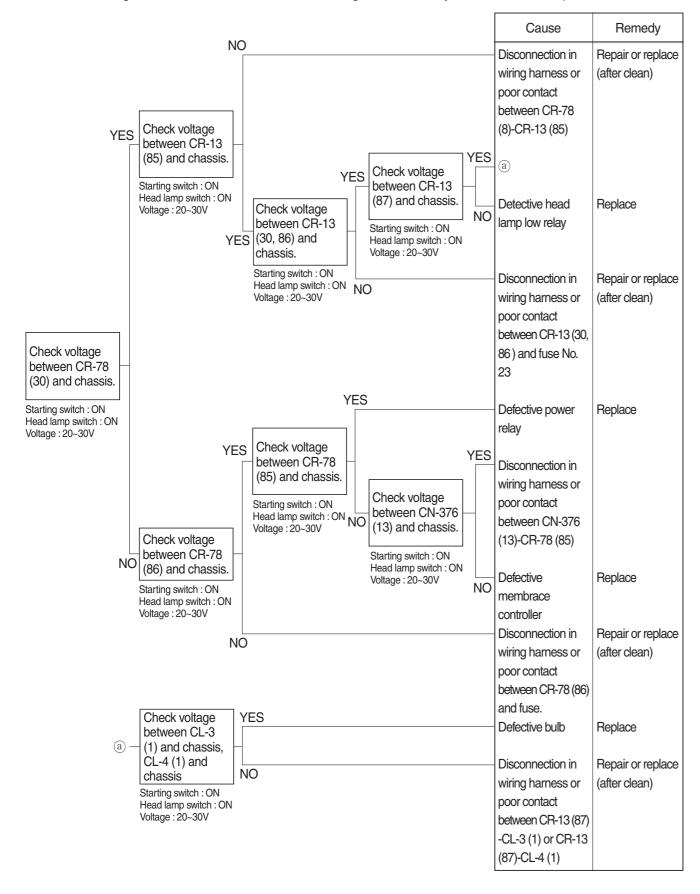


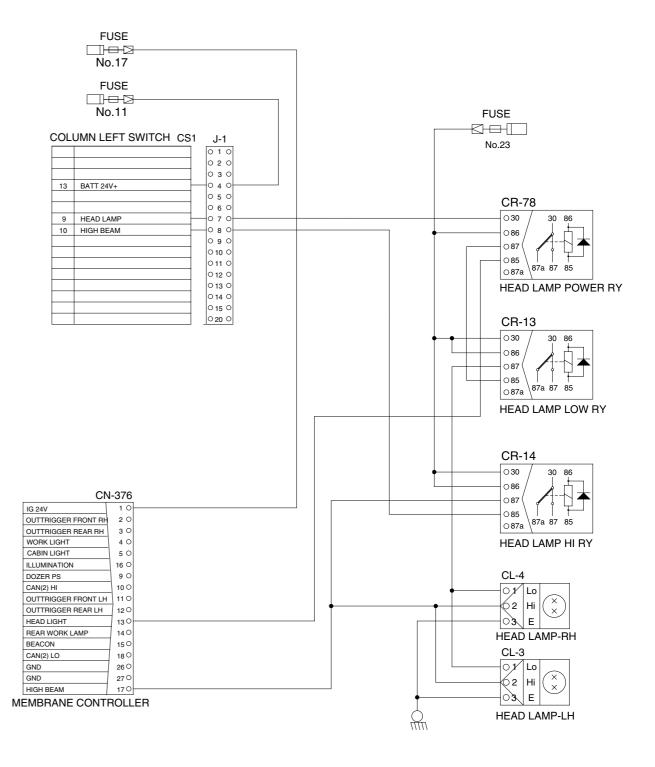
13. WHEN STARTING SWITCH ON DOES NOT OPERATE


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted, master switch ON and check open circuit of circuit breaker (CN-60, CN-95).
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

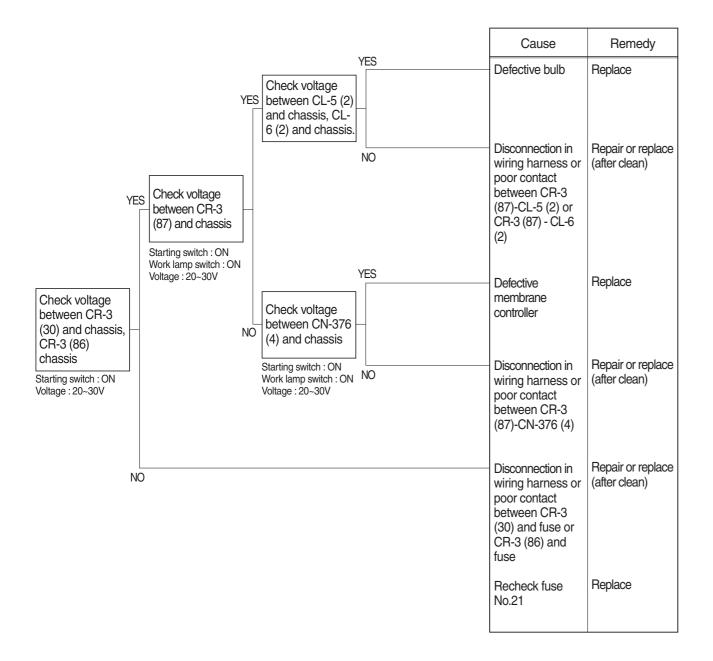


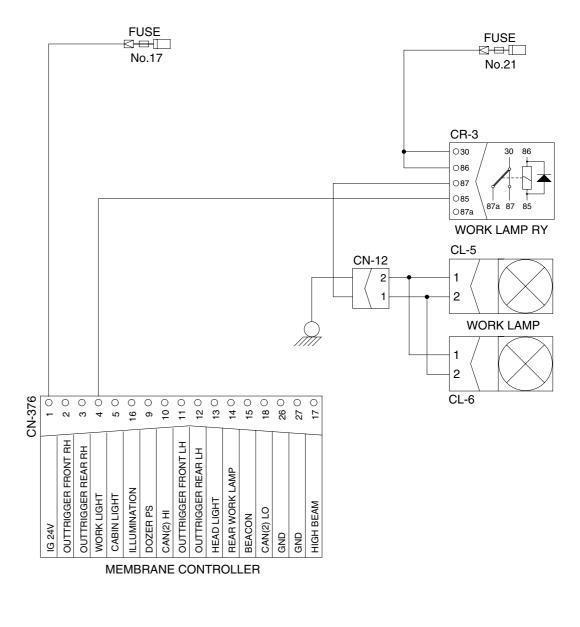
14. WHEN STARTING SWITCH IS TURNED ON, WIPER MOTOR DOES NOT OPERATE


- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and the fuse No. 11, 24 and 40 is not blown out.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



15. WHEN STARTING SWITCH IS TURNED ON, HEAD LAMP DOES NOT LIGHTS UP

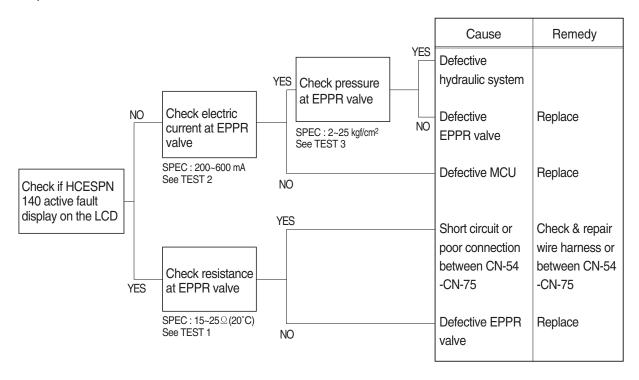

- · Before disconnecting the connector, always turn the starting switch OFF.
- Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 11, 17, 23.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.



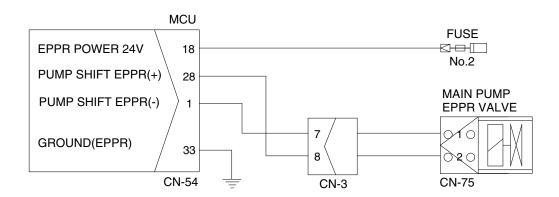
16. WHEN STARTING SWITCH IS TURNED ON, WORK LAMP DOES NOT LIGHTS UP

- · Before disconnecting the connector, always turn the starting switch OFF.
- · Before carrying out below procedure, check all the related connectors are properly inserted and short of fuse No. 17, 21.
- · After checking, insert the disconnected connectors again immediately unless otherwise specified.

140WA6ES18

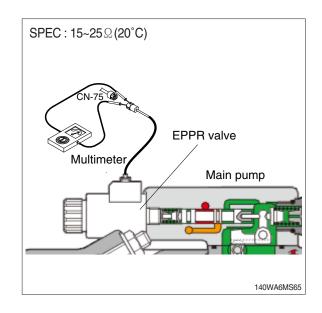

6-40

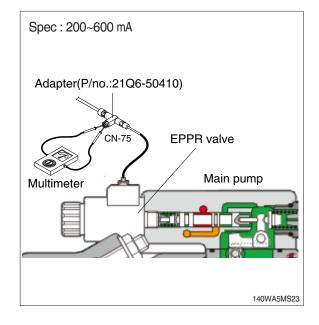
GROUP 4 MECHATRONICS SYSTEM


1. ALL ACTUATORS SPEED ARE SLOW

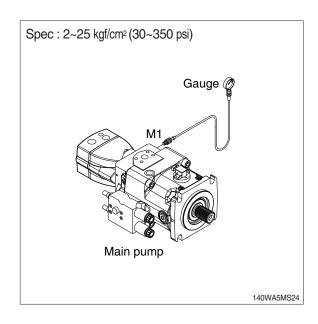
- * Boom, Arm, Bucket, Swing and travel speed are slow, but engine speed is good.
- lpha Spec : P-mode 1500 \pm 50 rpm S -mode 1400 \pm 50 rpm E-mode 1300 \pm 50 rpm
- * Before carrying out below procedure, check all the related connectors are properly inserted and fault code on the cluster.

1) INSPECTION PROCEDURE

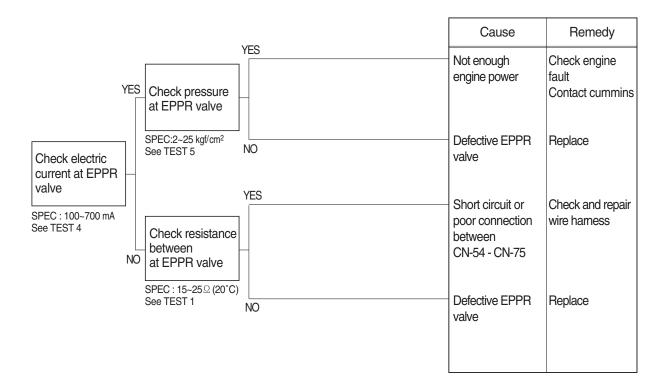

Wiring diagram

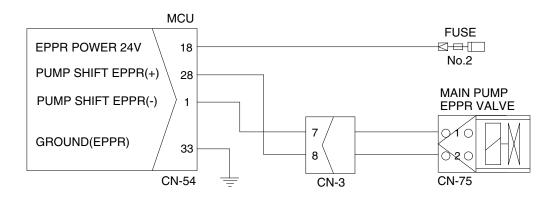

140WA6MS01

2) TEST PROCEDURE


- (1) **Test 1**: Check resistance at connector CN-75.
- ① Starting switch OFF.
- ② Disconnect connector CN-75 from EPPR valve at main hydraulic pump.
- ③ Check resistance between 2 lines as figure.

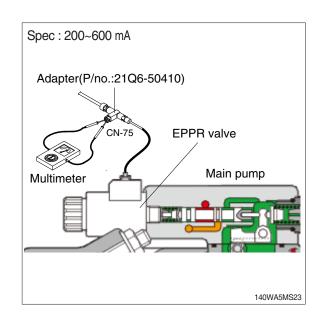
- (2) **Test 2**: Check electric current at EPPR valve.
- ① Disconnect connector CN-75 from EPPR valve.
- ② Insert the adapter to CN-75 and install multimeter as figure.
- ③ Start engine.
- 4 Set S-mode and cancel auto decel mode.
- (5) Position the multimodal dial at 10.
- ⑥ If tachometer show approx 1400±50 rpm disconnect one wire harness from EPPR valve.
- ⑦ Check electric current at bucket circuit relief position.


- (3) Test 3: Check pressure at EPPR valve.
 - ① Remove plug and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
 - ② Start engine.
 - 3 Set S-mode and cancel auto decel mode.
 - 4 Position the multimodal dial at 10.
 - ⑤ If tachometer show approx 1400±50 rpm check pressure at relief position of bucket circuit by operating bucket control lever.
 - 6 If pressure is not correct, adjust it.
 - 7 After adjust, test the machine.

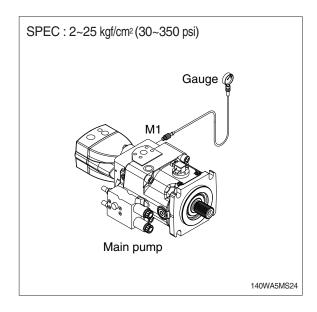

2. ENGINE STALL

* Before carrying out below procedure, check all the related connectors are properly inserted.

1) INSPECTION PROCEDURE

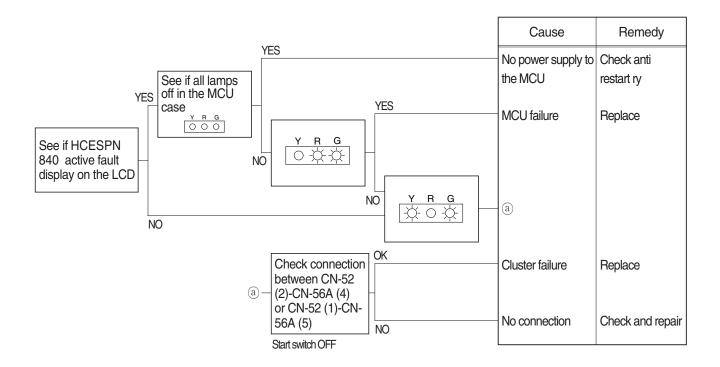

Wiring diagram

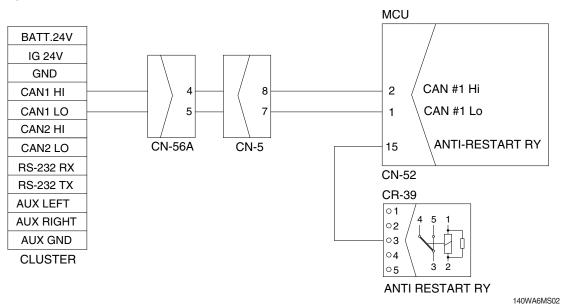
140WA6MS01


2) TEST PROCEDURE

- (1) **Test 4**: Check electric current at EPPR valve.
 - ① Disconnect connector CN-75 from EPPR valve.
 - ② Insert the adapter to CN-75 and install multimeter as figure.
 - ③ Start engine.
 - Set S-mode and cancel auto decel mode.
 - 5 Position the multimodal dial at 10.
 - ⑥ If rpm show approx 1400±50 rpm disconnect one wire harness from EPPR valve.
 - Theck electric current at bucket circuit relief position.

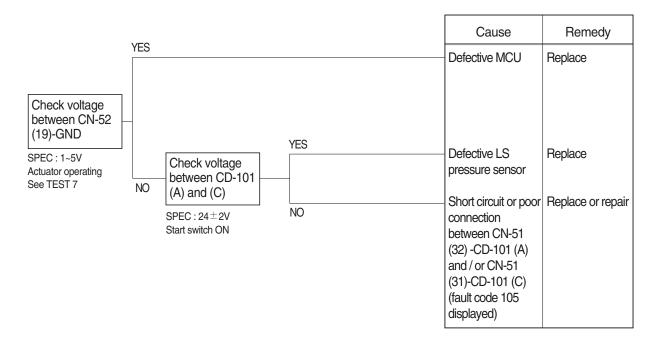
(2) Test 5: Check pressure at EPPR valve.

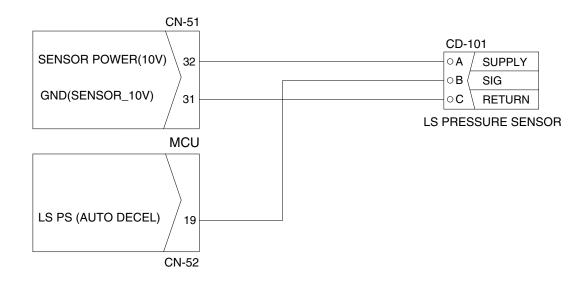

- ① Remove plug and connect pressure gauge as figure.
 - · Gauge capacity: 0 to 50 kgf/cm² (0 to 725 psi)
- ② Start engine.
- ③ Set S-mode and cancel auto decel mode.
- 4) Position the multimodal dial at 10.
- ⑤ If rpm show approx 1400±50 rpm check pressure at relief position of bucket circuit by operating bucket control lever.
- 6 If pressure is not correct, adjust it.
- ? After adjust, test the machine.


3. MALFUNCTION OF CLUSTER OR MODE SELECTION SYSTEM

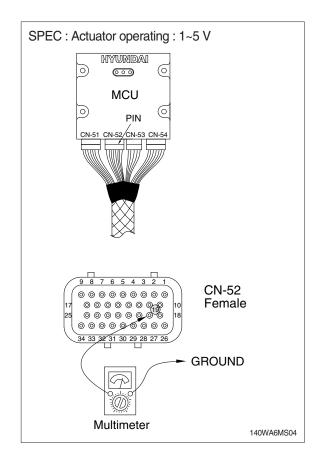
* Before carrying out below procedure, check all the related connectors are properly inserted.

1) INSPECTION PROCEDURE

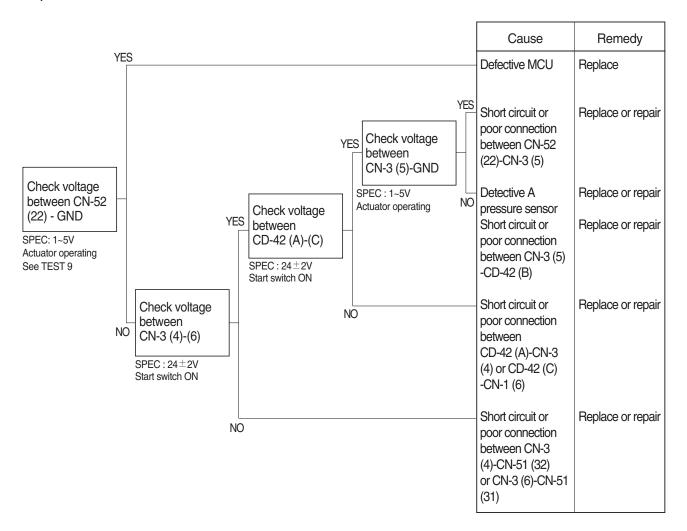

Wiring diagram

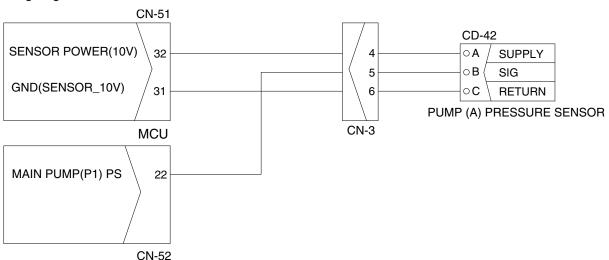

4. AUTO DECEL SYSTEM DOES NOT WORK

- Fault code: HCESPN 105, FMI 0~4 (work pressure sensor)
 HCESPN 108, FMI 0~4 (travel oil pressure sensor)
- * Before carrying out below procedure, check all the related connectors are properly inserted.

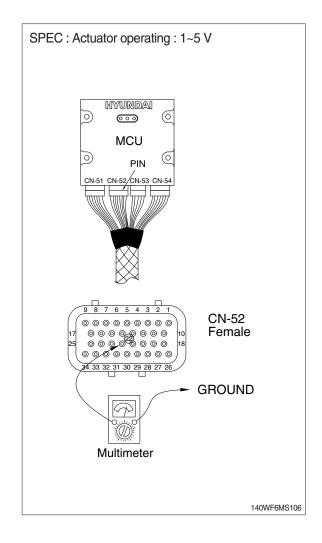

1) INSPECTION PROCEDURE

Wiring diagram

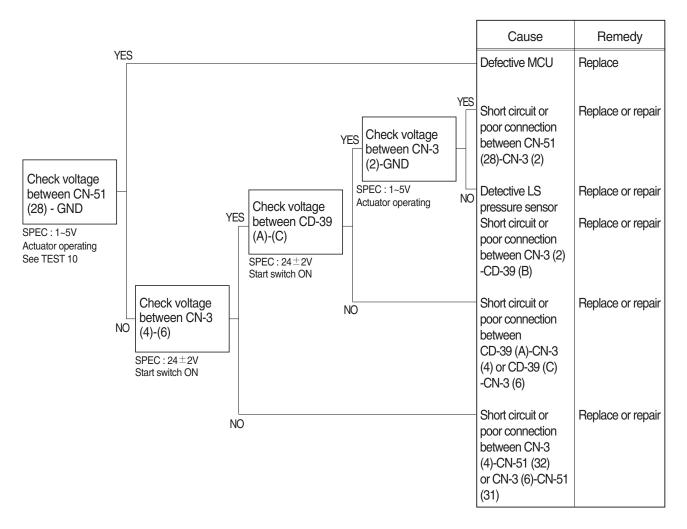

- (1) Test 7: Check voltage at CN-52 (19) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (19) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

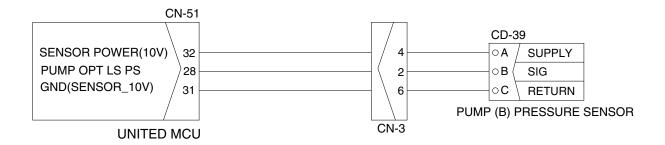

5. MALFUNCTION OF PUMP (A) PRESSURE SENSOR

- · Fault code: HCESPN 120, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

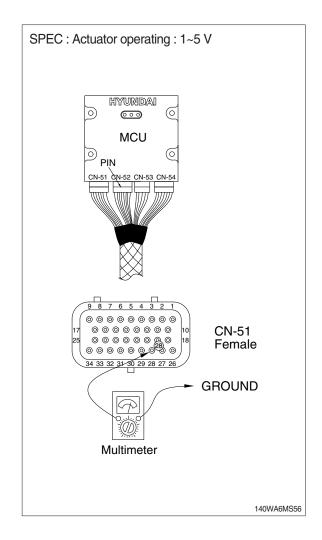

1) INSPECTION PROCEDURE

Wiring diagram

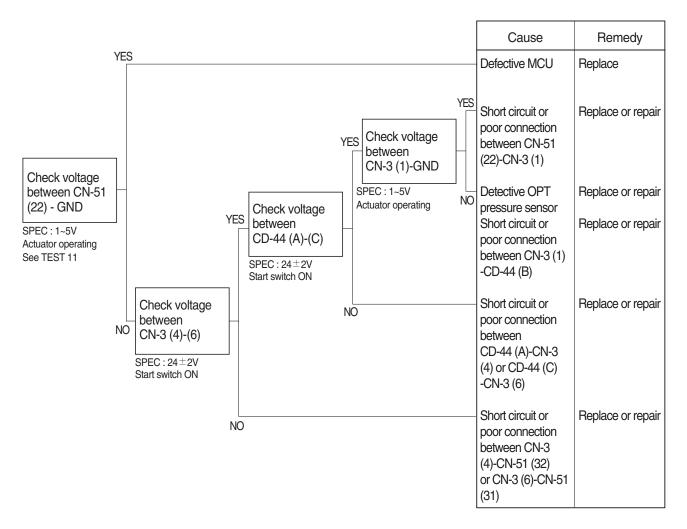

- (1) Test 9: Check voltage at CN-52 (22) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (22) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

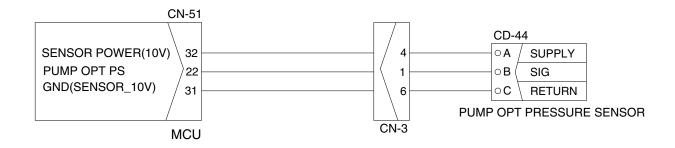

6. MALFUNCTION OF PUMP (B) PRESSURE SENSOR

- · Fault code: HCESPN 121, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

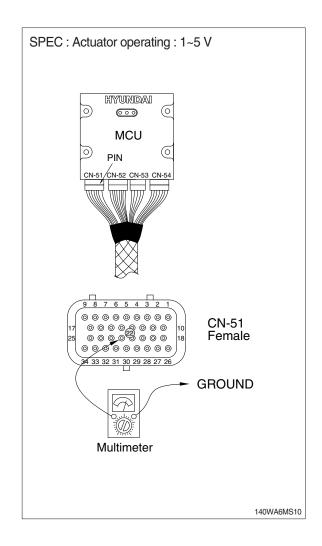

1) INSPECTION PROCEDURE

Wiring diagram

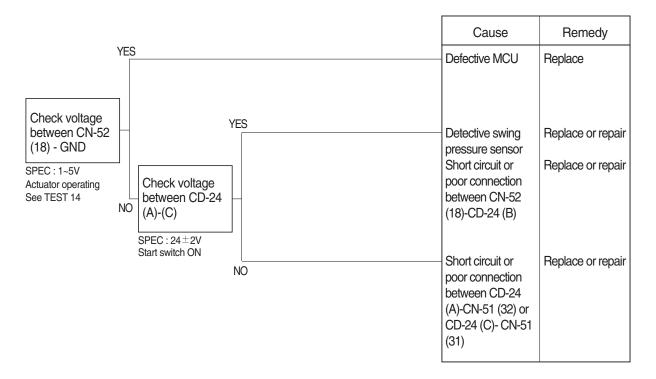

- (1) Test 10: Check voltage at CN-51 (28) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (28) of CN-51.
- ③ Starting switch ON.
- ④ Check voltage as figure.

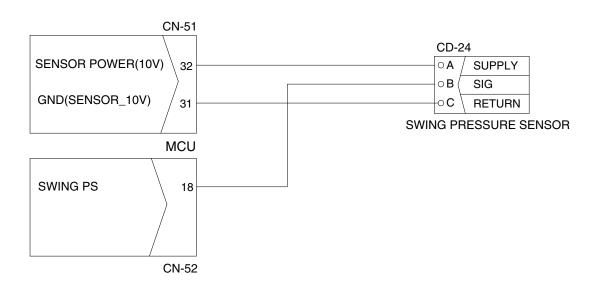

7. MALFUNCTION OF PUMP OPT PRESSURE SENSOR

- · Fault code: HCESPN 125, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

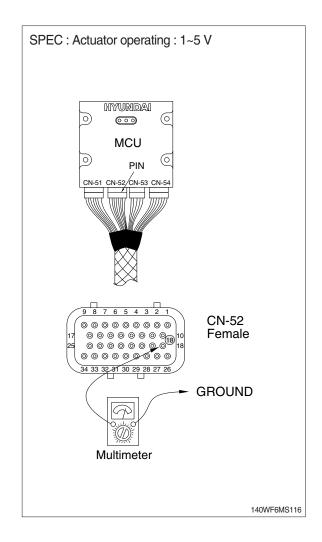

1) INSPECTION PROCEDURE

Wiring diagram

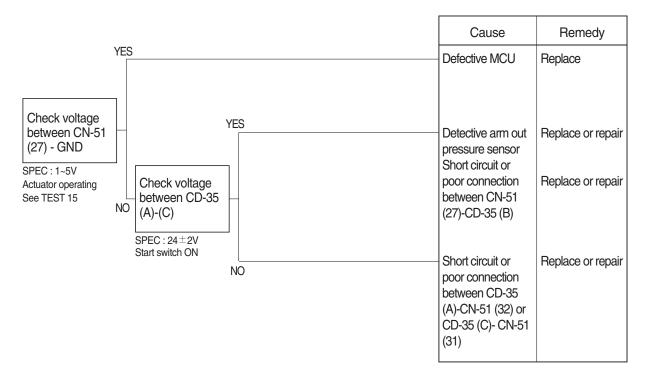

- (1) Test 11: Check voltage at CN-51 (22) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (22) of CN-51.
- ③ Starting switch ON.
- ④ Check voltage as figure.

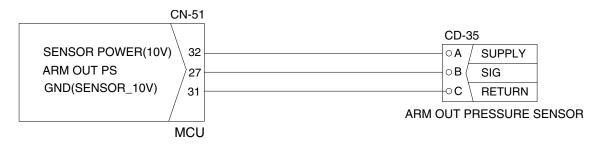

8. MALFUNCTION OF SWING PRESSURE SENSOR

- · Fault code: HCESPN 135, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

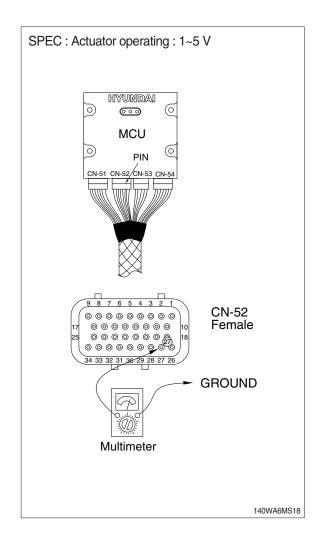

1) INSPECTION PROCEDURE

Wiring diagram

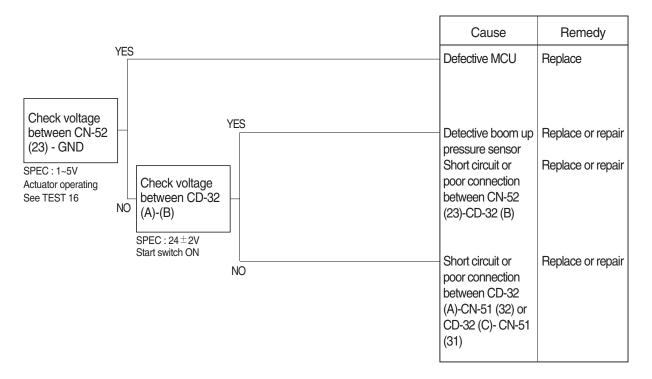

- (1) Test 14: Check voltage at CN-52 (18) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (18) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

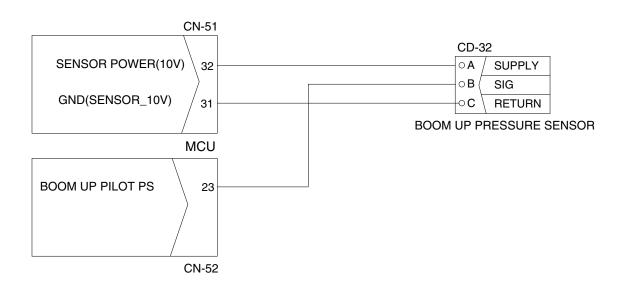

9. MALFUNCTION OF ARM OUT PRESSURE SENSOR

- · Fault code: HCESPN 133, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

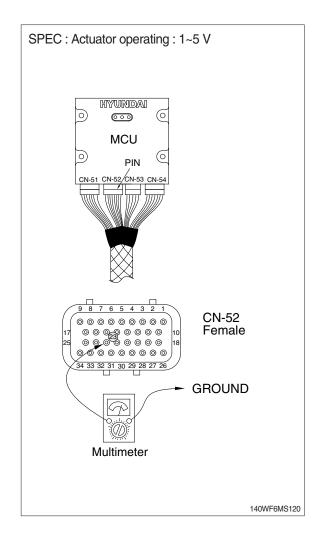

1) INSPECTION PROCEDURE

Wiring diagram

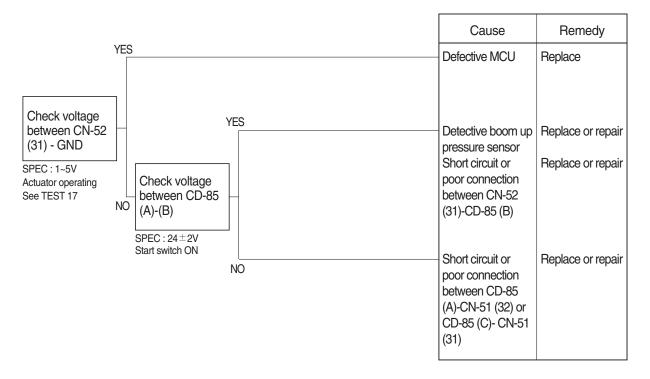

- (1) Test 15: Check voltage at CN-51 (27) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (27) of CN-51.
- ③ Starting switch ON.
- ④ Check voltage as figure.

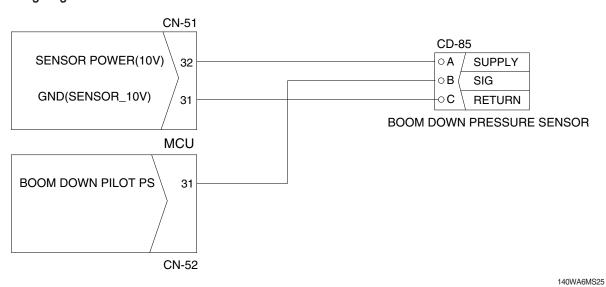

10. MALFUNCTION OF BOOM UP PRESSURE SENSOR

- · Fault code: HCESPN 127, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

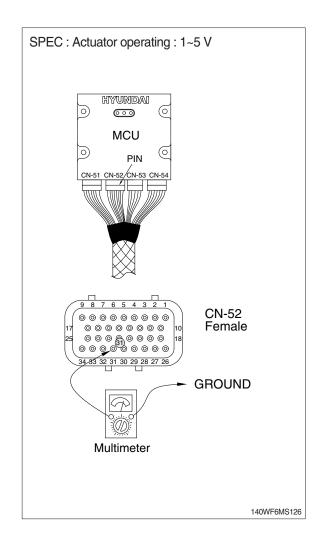

1) INSPECTION PROCEDURE

Wiring diagram


- (1) Test 16: Check voltage at CN-52 (23) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (23) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

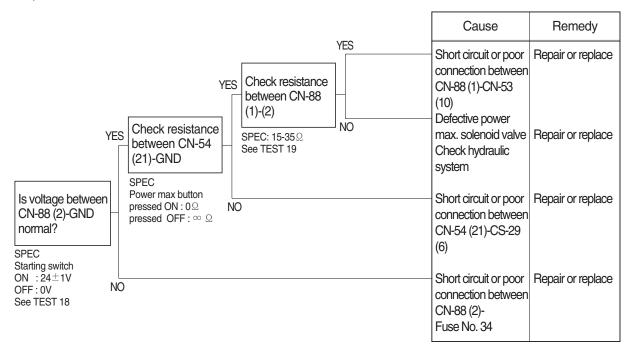

11. MALFUNCTION OF BOOM DOWN PRESSURE SENSOR

- · Fault code: HCESPN 128, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

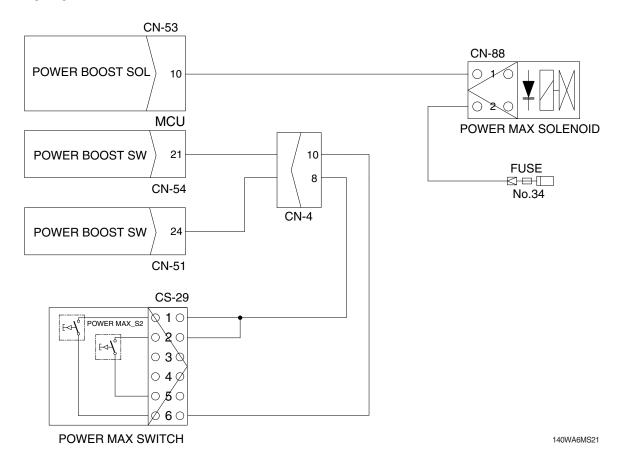

1) INSPECTION PROCEDURE

Wiring diagram

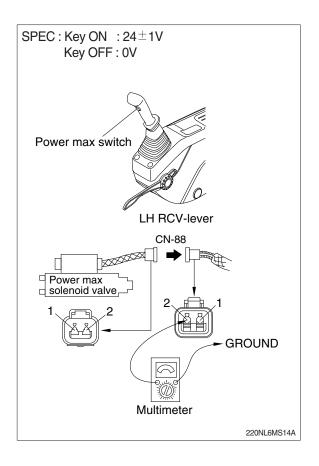
- (1) Test 17: Check voltage at CN-52 (31) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (31) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

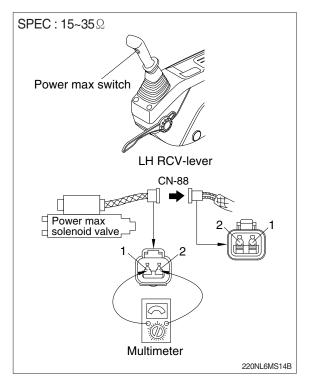


12. MALFUNCTION OF POWER MAX

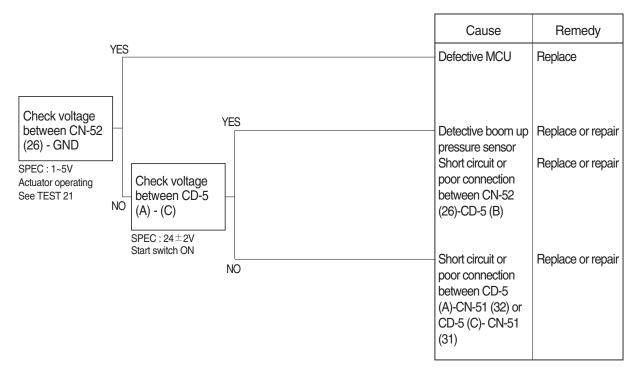

· Fault code: HCESPN 166, FMI 4 or 6

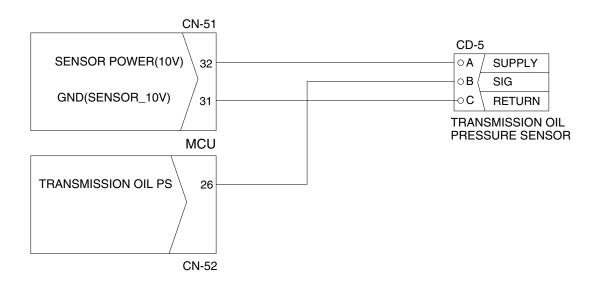
* Before carrying out below procedure, check all the related connectors are properly inserted.


1) INSPECTION PROCEDURE

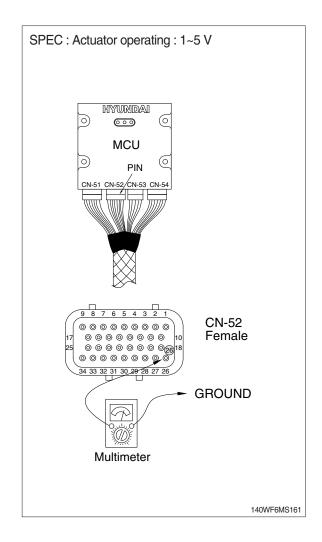

Wiring diagram

- (1) **Test 18**: Check voltage between connector CN-88 (2) GND.
- ① Disconnect connector CN-88 from power max solenoid valve.
- ② Start switch ON.
- ③ Check voltage as figure.

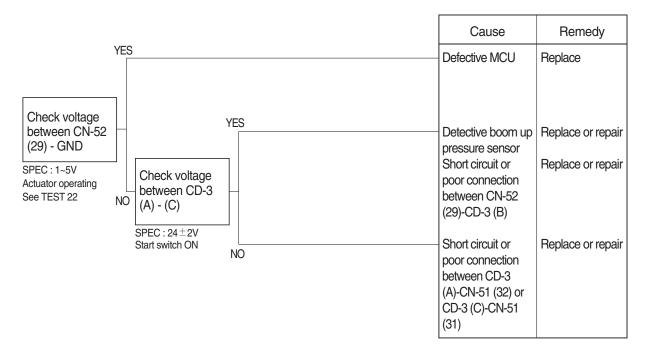

- (2) Test 19: Check resistance of the solenoid valve between CN-88 (1)-(2).
- ① Starting key OFF.
- ② Disconnect connector CN-88 from power max solenoid valve.
- ③ Check resistance as figure.

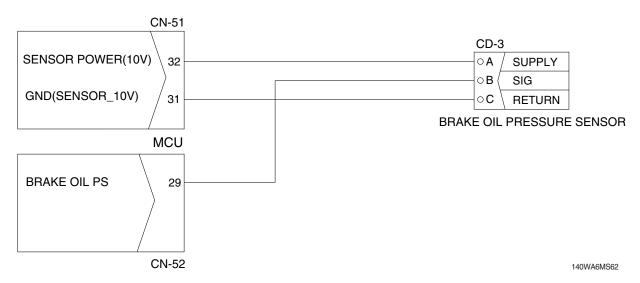

13. MALFUNCTION OF TRANSMISSION OIL PRESSURE SENSOR

- · Fault code: HCESPN 501, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

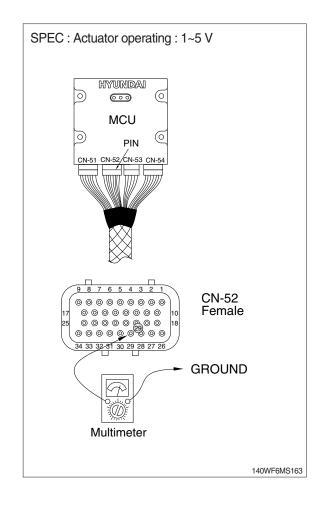

1) INSPECTION PROCEDURE

Wiring diagram

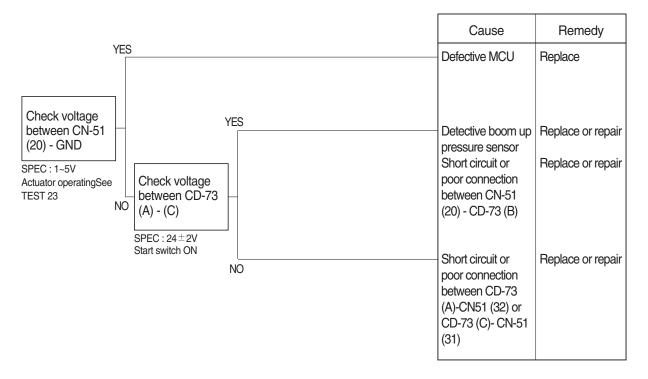

- (1) Test 21: Check voltage at CN-52 (26) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (26) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

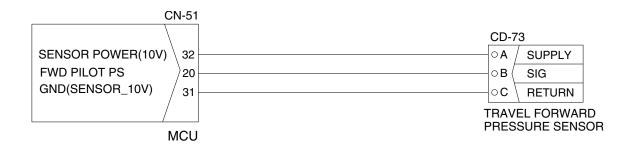

14. MALFUNCTION OF BRAKE OIL PRESSURE SENSOR

- · Fault code: HCESPN 503, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

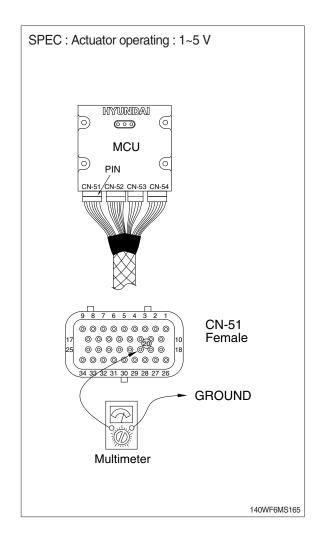

1) INSPECTION PROCEDURE

Wiring diagram


- (1) Test 22: Check voltage at CN-52 (29) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (29) of CN-52.
- ③ Starting switch ON.
- ④ Check voltage as figure.

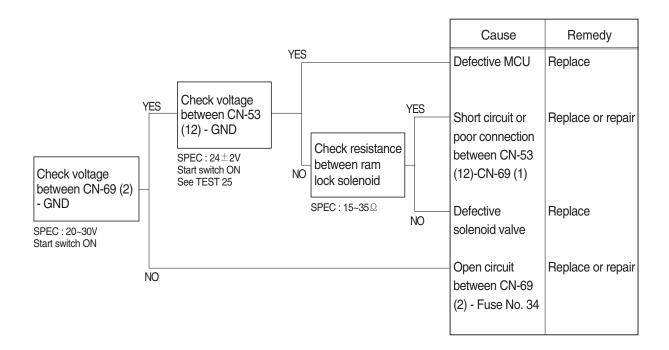

15. MALFUNCTION OF TRAVEL FORWARD PRESSURE SENSOR

- · Fault code: HCESPN 530, FMI 0~4
- * Before carrying out below procedure, check all the related connectors are properly inserted.

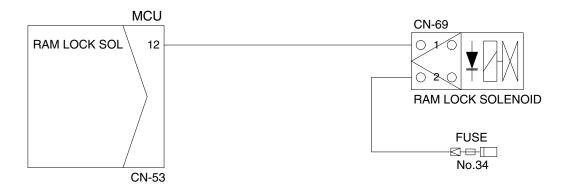

1) INSPECTION PROCEDURE

Wiring diagram

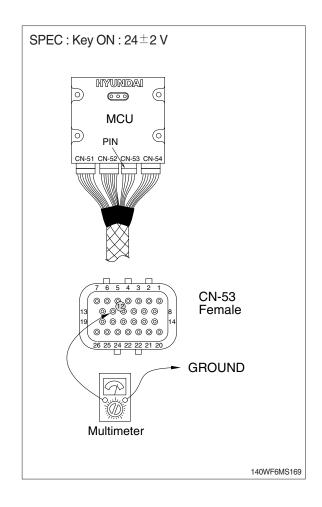
- (1) Test 23: Check voltage at CN-51 (20) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (20) of CN-51.
- ③ Starting switch ON.
- ④ Check voltage as figure.



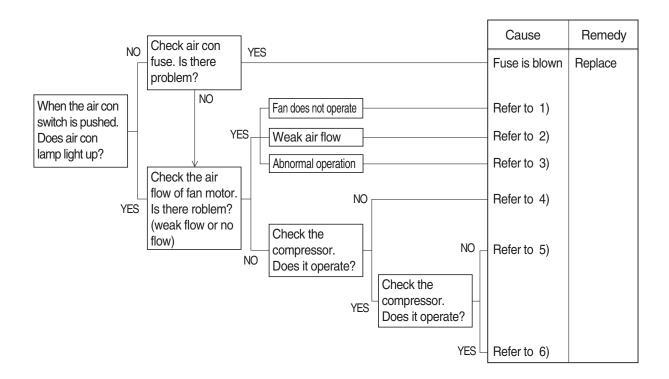
16. MALFUNCTION OF RAM LOCK SOLENOID


· Fault code: HCESPN 525, FMI 4 or 6

* Before carrying out below procedure, check all the related connectors are properly inserted.


1) INSPECTION PROCEDURE

Wiring diagram



- (1) Test 25: Check voltage at 53 (12) and ground.
- ① Prepare 1 piece of thin sharp pin, steel or copper.
- ② Insert prepared pin to rear side of connectors: One pin to (12) of CN-53.
- ③ Starting switch ON.
- ④ Check voltage as figure.

GROUP 5 AIR CONDITIONER & HEATER SYSTEM

1. AIR CONDITIONER DOES NOT OPERATE

1) FAN DOES NOT OPERATE

Cause	Check Remedy		
Fuse is blown or abnormal relay operation	* Fuse * Does relay normally operate?	Replace	
Harness short or poor contact	Check any harness short or abnormal contact of connnector	Repair shortage	
Fan motor failure	Supply 24V to 2 lead wire from motor and check the operation	Replace	
Resistor is broken	Check current flow of resistor with tester	Replace	
Fan switch failure	Push fan switch by turn and check the operation	Replace	

2) WEAK AIR FLOW FROM FAN MOTOR

Cause	Check	Remedy
Clogged evaporator or obstacles around air inlet	Check if evaporator is contaminated	Clean
Leakage of air flow	Check HVAC case assembly	Adjust
Duct sensor failure	Check if evaporator is frozen	Replace

3) ABNORMAL OPERATION OF FAN MOTOR

Cause	Check	Remedy
Abnormal operation of each step of control	4 step only operate	Replace resistor
	1 or 2 step does not operate	Replace control
	3 or 4 step does not operate	Replace relay

4) COMPRESSOR DOES NOT ROTATE OR HARDLY ROTATE

Cause	Check	Remedy
Loose belt	Belt shaking is severe	Adjust tension
Failure of compressor itself	Belt slip Repair or Replace	
Low voltage of battery	Slip when rotate	Charge battery
Fieldcoil short	Slip when rotate	Replace magnetic clutch
Oily clutch face	Contamination around clutch	Replace magnetic clutch, clean
Fieldcoil is broken	Magnetic clutch does not operate or "∞" resistance	Replace compressor
Leakage of refrigerant or oil inside	Check if wet with oil	Replace compressor Charge refrigerant

5) COMPRESSOR OPERATE NORMALLY AND AIR FLOW IS NORMAL

Cause	Check	Remedy	
Shortage of refrigerant	Shortage of refrigerant When air con operate during 5~10 min small temperature difference between high and low pressure pipes.		
Overcharge of refrigerant	*Magnetic clutch on/off rapidly *High pressure over specification *Lukewarm air from nozzle	Recharge refrigerant following specification	
	Shortage of refrigerant	Make up refrigerant	
Lower pressure than normal condition at low side	Clogged receive dryer	Replace receive dryer	
	Clogged expansion valve	Replace expansion valve	
	Clogged or crushed pipe	Replace pipe or clean	
	Failure of duct sensor	Replace duct sensor	

6) COMPRESSOR OPERATE NORMALLY AND AIR FLOW IS NORMAL

Cause	Check	Remedy
Lower pressure than	Failure of duct sensor Magnetic clutch off before air temperature sufficiently down	Replace duct sensor or adjust location
normal condition at low side	Defective compressor gasket When compressor off, high and low pressure balance immediatly	Repair compressor or Replace
Higher pressure than	Failure of condensing Contamination on condenser or insufficient air flow from fan	Clean the condenser Repair fan
normal condition at high side	Overcharge of refrigerant	Adjust refrigerant
	Entrained air	Vacuum and recharge
Lower pressure than normal condition at high side	normal condition at Shortage of refrigerant	

SECTION 7 MAINTENANCE STANDARD

Group	1 Operational Performance Test ······	· 7-1
Group	2 Major Components	· 7 -1 9
Group	3 Work Equipment ·····	· 7 - 25

SECTION 7 MAINTENANCE STANDARD

GROUP 1 OPERATIONAL PERFORMANCE TEST

1. PURPOSE

Performance tests are used to check:

1) OPERATIONAL PERFORMANCE OF A NEW MACHINE

Whenever a new machine is delivered in parts and reassembled at a customer's site, it must be tested to confirm that the operational performance of the machine meets HD Hyundai Construction Equipment spec.

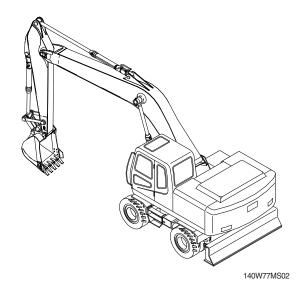

2) OPERATIONAL PERFORMANCE OF A WORKING MACHINE

With the passage of time, the machine's operational performance deteriorates, so that the machine needs to be serviced periodically to restore it to its original performance level.

Before servicing the machine, conduct performance tests to check the extent of deterioration, and to decide what kind of service needs to be done (by referring to the "Service Limits" in this manual).

3) OPERATIONAL PERFORMANCE OF A REPAIRED MACHINE

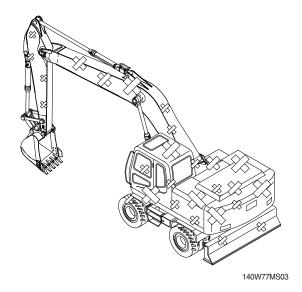
After the machine is repaired or serviced, it must be tested to confirm that its operational performance was restored by the repair and/ or service work done.



14W77MS01

2. TERMINOLOGY

1) STANDARD


Specifications applied to the brand-new machine, components and parts.

2) SERVICE LIMIT

The lowest acceptable performance level. When the performance level of the machine falls below this level, the machine must be removed from work and repaired.

Necessary parts and components must be replaced.

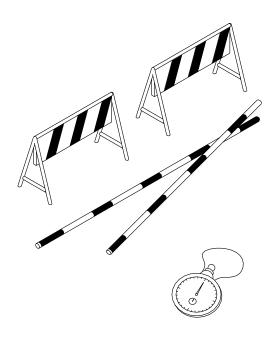
3. OPERATION FOR PERFORMANCE TESTS

1) Observe the following rules in order to carry out performance tests accurately and safely.

(1) The machine

Repair any defects and damage found, such as oil or water leaks, loose bolts, cracks and so on, before starting to test.

(2) Test area


- ① Select a hard, flat surface.
- ② Secure enough space to allow the machine to run straight more than 20m, and to make a full swing with the front attachment extended.
- ③ If required, rope off the test area and provide signboards to keep unauthorized personnel away.

(3) Precautions

- ① Before starting to test, agree upon the signals to be employed for communication among coworkers. Once the test is started, be sure to communicate with each other using these signals, and to follow them without fail.
- ② Operate the machine carefully and always give first priority to safety.
- ③ While testing, always take care to avoid accidents due to landslides or contact with high voltage power lines. Always confirm that there is sufficient space for full swings.
- 4 Avoid polluting the machine and the ground with leaking oil. Use oil pans to catch escaping oil. Pay special attention to this when removing hydraulic pipings.

(4) Make precise measurements

- Accurately calibrate test instruments in advance to obtain correct data.
- ② Carry out tests under the exact test conditions prescribed for each test item.
- ③ Repeat the same test and confirm that the test data obtained can be procured repeatedly. Use mean values of measurements if necessary.

(290-7TIER) 7-3

2) ENGINE SPEED

- (1) Measure the engine speed at each power mode
- ** The engine speed at each power mode must meet standard RPM; if not, all other operational performance data will be unreliable. It is essential to perform this test first.

(2) Preparation

- ① Warm up the machine, until the engine coolant temperature reaches 50°C or more, and the hydraulic oil is 50±5°C.
- ② Set the accel dial at 10 (Max) position.
- ③ Measure the engine RPM.

(3) Measurement

- ① Start the engine. The engine will run at start idle speed. Measure engine speed with a engine rpm display.
- ② Measure and record the engine speed at each mode (P, S, E).
- ③ Select the P-mode.
- 4 Lightly operate the bucket control lever a few times, then return the control lever to neutral; The engine will automatically enter the auto-idle speed after 4 seconds.
- Measure and record the auto deceleration speed.

(4) Evaluation

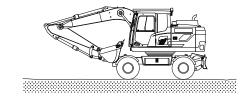
The measured speeds should meet the following specifications.

Unit:rpm

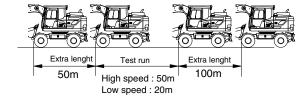
Model	Engine speed	Standard	Remarks
	Ota d'alla	1000±50	Safety knob : Lock position
	Start idle	1100±50	Safety knob : Unlock position
HW140A	P mode	1500±50	
HW140A	S mode	1400±50	
	E mode	1300±50	
	Auto decel	1100±50	
	One touch decel	1100±50	

^{**} Auto decel, one touch decel and low idle speed may increase to 1300 rpm while automatic exhaust system cleaning is being performed.

3) TRAVEL SPEED


(1) Measure the time require for the excavator to travel a 50m at high speed and a 20m at low speed test run.

(2) Preparation


- Prepare a flat and solid test track 50m in length, with extra length of 150m for machine acceleration.
- ② Set the traveling position as figure.

(3) Measurement

- ① Measure both the low and high speeds of the machine.
- ② Before starting either the low or high speed tests, adjust the RH multifunction switch to the speed to be tested, then select the following switch position.
 - · Power mode switch : P mode
- Start traveling the machine in the extra length with the two speed switch at high or low speed.
- Measure the time required to travel 50 m
 at high speed or 20 m at low speed.
- S After measuring the Forward travel speed, turn the upperstructure 180° and measure the Reverse travel speed.
- ⑥ Repeat steps ④ and ⑤ three times in each direction and calculate the average values.

140WA7MS04

140WA7MS05

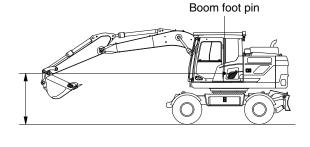
(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds

Model	Travel speed	Standard	Maximum allowable	Remarks
HW140A	Low speed	7.1	8.9	Seconds / 20 m
HVV 140A	High speed	4.6	5.7	Seconds / 50 m

4) SWING SPEED


(1) Measure the time required to swing three complete turns.

(2) Preparation

- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- ③ With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Select the following switch positions.
- · Power mode switch: P mode
- ② Operate swing control lever fully.
- ③ Swing 1 turn and measure time taken to swing next 3 revolutions.
- ④ Repeat steps ② and ③ three time and calculate the average values.

140WA7MS06

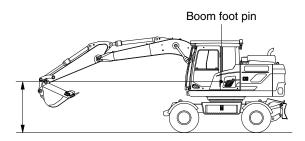
(4) Evaluation

The time required for 3 swings should meet the following specifications.

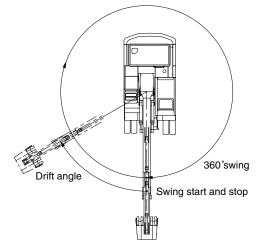
Unit: Seconds / 3 revolutions

Model	Power mode switch	Standard	Maximum allowable
HW140A	P mode	15.6±1.5	19.5

5) SWING FUNCTION DRIFT CHECK


(1) Measure the swing drift on the bearing outer circumference when stopping after a 360° full speed swing.

(2) Preparation


- ① Check the lubrication of the swing gear and swing bearing.
- ② Place the machine on flat, solid ground with ample space for swinging. Do not conduct this test on slopes.
- ③ With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin. The bucket must be empty.
- Make two chalk marks: one on the swing bearing and one directly below it on the track frame.
- (5) Swing the upperstructure 360°.
- 6 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Conduct this test in the M mode.
- ② Select the following switch positions.
- · Power mode switch : P mode
- ③ Operate the swing control lever fully and return it to the neutral position when the mark on the upperstructure aligns with that on track frame after swinging 360°.
- Measure the distance between the two marks.
- S Align the marks again, swing 360°, then test the opposite direction.
- ⑥ Repeat steps ④ and ⑤ three times each and calculate the average values.

140WA7MS06

20W77MS04

(4) Evaluation

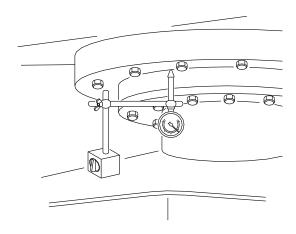
The measured drift angle should be within the following specifications.

Unit : Degree

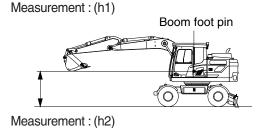
Model	Power mode switch	Standard	Maximum allowable	Remarks
HW140A	P mode	90 below	157.5	

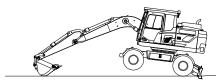
6) SWING BEARING PLAY

(1) Measure the swing bearing play using a dial gauge to check the wear of bearing races and balls.


(2) Preparation

- ① Check swing bearing mounting cap screws for loosening.
- ② Check the lubrication of the swing bearing. Confirm that bearing rotation is smooth and without noise.
- ③ Install a dial gauge on the track frame as shown, using a magnetic base.
- ④ Position the upperstructure so that the boom aligns with the tracks facing towards the front idlers.
- ⑤ Position the dial gauge so that its needle point comes into contact with the bottom face of the bearing outer race.
- 6 Bucket should be empty.


(3) Measurement


- ① With the arm rolled out and bucket rolled in, hold the bottom face of the bucket to the same height of the boom foot pin.

 Record the dial gauge reading (h1).
- ② Lower the bucket to the ground and use it to raise the front idler 50cm. Record the dial gauge reading (h2).
- ③ Calculate bearing play (H) from this data (h1 and h2) as follows.
 H=h2-h1

7-10(1) 140-7

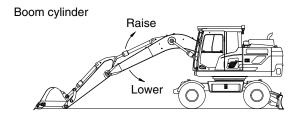
(4) Evaluation

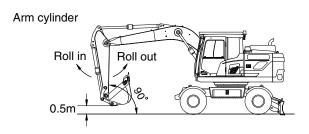
The measured drift should be within the following specifications.

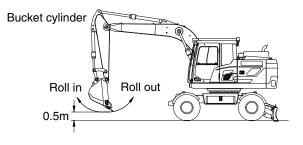
ш	lnıt.	٠	mn	۰
u	יוווני		11111	

Model	Standard	Maximum allowable	Remarks
HW140A	0.5 ~ 1.5	3.0	

7) HYDRAULIC CYLINDER CYCLE TIME


(1) Measure the cycle time of the boom, standard arm, and standard bucket cylinders.


(2) Preparation


- ① To measure the cycle time of the boom cylinders:
 - With the arm rolled out and the empty bucket rolled out, lower the bucket to the ground, as shown.
- ② To measure the cycle time of the arm cylinder.
 - With the empty bucket rolled in, position the arm so that it is vertical to the ground. Lower the boom until the bucket is 0.5 m above the ground.
- ③ To measure the cycle time of the bucket cylinder.
 - The empty bucket should be positioned at midstroke between roll-in and roll-out, so that the sideplate edges are vertical to the ground.
- 4 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Select the following switch positions.
- · Power mode switch : P mode
- ② To measure cylinder cycle times.
- Boom cylinders.
 - Measure the time it takes to raise the boom, and the time it takes to lower the boom. To do so, position the boom at one stroke end then move the control lever to the other stroke end as quickly as possible. Arm cylinder.
- Measure the time it takes to roll in the arm, and the time it takes to roll out the arm. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

140WA7MS09

- Bucket cylinder.

Measure the time it takes to roll in the bucket, and the time it takes to roll out the bucket. To do so, position the bucket at one stroke end, then move the control lever to the other stroke end as quickly as possible.

- Repeat each measurement 3 times and calculate the average values.

(4) Evaluation

The average measured time should meet the following specifications.

Unit: Seconds

Model	Function	Standard	Maximum allowable	Remarks
	Boom raise	3.4±0.4	4.3	
	Boom lower	2.7±0.4	3.6	
HW140A	Arm in	2.7±0.3	3.4	
HW 140A	Arm out	2.9±0.3	3.6	
	Bucket load	3.7±0.4	4.6	
	Bucket dump	2.3±0.3	2.9	

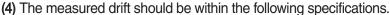
8) DIG FUNCTION DRIFT CHECK

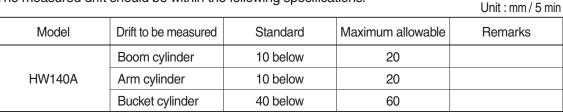
(1) Measure dig function drift, which can be caused by oil leakage in the control valve and boom, standard arm, and standard bucket cylinders, with the loaded bucket. When testing the dig function drift just after cylinder replacement, slowly operate each cylinder to its stroke end to purge air.

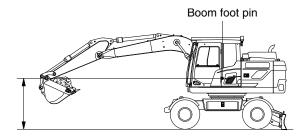
(2) Preparation

- Load bucket fully. Instead of loading the bucket, weight(W) of the following specification can be used.
 - · W=M3×1.5

Where:


M³ = Bucket heaped capacity (m³)


1.5 = Soil specific gravity


- ② Position the arm cylinder with the rod 20 to 30mm extended from the fully retracted position.
- ③ Position the bucket cylinder with the rod 20 to 30mm retracted from the fully extended position.
- With the arm rolled out and bucket rolled in, hold the bucket so that the height of the bucket pin is the same as the boom foot pin.
- (5) Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

- ① Stop the engine.
- ② Five minutes after the engine has been stopped, measure the changes in the positions of the boom, arm and bucket cylinders.
- ③ Repeat step ② three times and calculate the average values.

140WA7MS10

9) CONTROL LEVER OPERATING FORCE

(1) Use a spring scale to measure the maximum resistance of each control lever at the middle of the grip.

(2) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

(3) Measurement

- ① Start the engine.
- ② Select the following switch positions.
 - · Power mode switch: P mode
- ③ Operate each boom, arm, bucket and swing lever at full stroke and measure the maximum operating force for each.
- ① Lower the bucket to the ground to raise one track off the ground. Operate the travel lever at full stroke and measure the maximum operating force required. When finished, lower the track and then jack-up the other track.
- ⑤ Repeat steps ③ and ④ three times and calculate the average values.

(4) Evaluation

The measured operating force should be within the following specifications.

Unit: kgf

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	1.3 or below	1.7	
HW140A	Arm lever	1.3 or below	1.7	
	Bucket lever	1.3 or below	1.7	
	Swing lever	1.3 or below	1.7	

10) CONTROL LEVER STROKE

- (1) Measure each lever stroke at the lever top using a ruler.
- When the lever has play, take a half of this value and add it to the measured stroke.

(2) Preparation

Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(3) Measurement

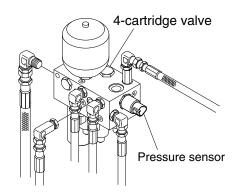
- ① Stop the engine.
- ② Measure each lever stroke at the lever top from neutral to the stroke end using a ruler.
- ③ Repeat step ② three times and calculate the average values.

(4) Evaluation

The measured drift should be within the following specifications.

Unit: mm

Model	Kind of lever	Standard	Maximum allowable	Remarks
	Boom lever	115±10	140	
HW140A	Arm lever	115±10	140	
HW 140A	Bucket lever	90±10	115	
	Swing lever	90±10	115	


11) PILOT PRIMARY PRESSURE

(1) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(2) Measurement

- ① Select the following switch positions.
 - · Power mode switch : P mode
 - · Auto decel switch : OFF
- ② Slowly operate the boom control lever of boom up functions at full stroke over relief and measure the primary pilot pressure by the monitoring menu of the cluster.

(3) Evaluation

The average measured pressure should meet the following specifications:

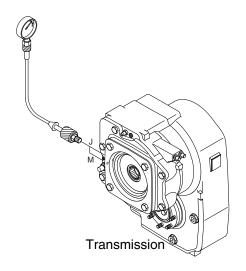
Unit: kgf/cm²

Model	Kind of lever	Standard	Maximum allowable	Remarks
HW140A	M mode	Over 32	50	

12) FOR TRAVEL SPEED SELECTING PRESSURE

(1) Preparation

- ① Stop the engine.
- ② Loosen the cap and relieve the pressure in the hydraulic tank by pushing the top of the air breather.
- ③ To measure the speed selecting pressure : Install a connector and pressure gauge assembly to transmission J, M port as shown the figure.
- ④ Start the engine and check for on leakage from the adapter.


- ① Lower the bucket and dozer blade to the ground to raise the tires off the ground.
- ② Select the following switch position.
 - · Parking switch : OFF
 - · Power mode switch : P mode
- ③ Operate the travel speed switch turns to the high or lower position and measure the port J or M pressure.
- 4 Repeat steps 3 three times and calculate the average values.

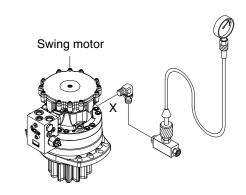
(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm2

Model	Travel anough mode	Standard A		Allowable limits		Domorko
iviodei	Travel speed mode	J port	M port	J port	M port	Remarks
LIVA/1.40A	Low Speed	-	33+2	-	30~35	
HW140A	High Speed	33+2	-	30~35	-	

14W97MS13


13) SWING PARKING BRAKE RELEASING PRESSURE

(1) Preparation

- ① Stop the engine.
- ② Loosen the cap and relieve the pressure in the hydraulic tank by pushing the top of the air breather.
- 3 The pressure release L wrench to bleed air.
- ④ Install a connector and pressure gauge assembly to swing motor X port, as shown.
- ⑤ Start the engine and check for oil leakage from the adapter.
- 6 Keep the hydraulic oil temperature at $50\pm5^{\circ}\text{C}$.

- ① Select the following switch positions.
 - · Power mode switch : P mode
- ② Operate the swing function or arm roll in function and measure the swing brake control pressure with the brake disengaged. Release the control lever to return to neutral and measure the control pressure when the brake is applied.
- ③ Repeat step ② three times and calculate the average values.

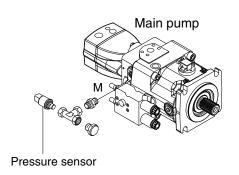
140WA7MS14

(3) Evaluation

The average measured pressure should be within the following specifications.

Unit: kgf/cm²

Model	Description	Standard	Allowable limits	Remarks
LDA/140A	Brake disengaged	40	Over 9	
HW140A	Brake applied	0	-	


14) MAIN PUMP DELIVERY PRESSURE

(1) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

(2) Measurement

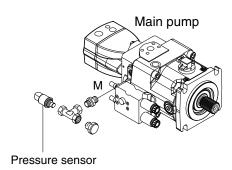
- ① Select the following switch positions.
 - · Power mode switch : P mode
- ② Measure the main pump delivery pressure in the P mode (high idle).

(3) Evaluation

The average measured pressure should meet the following specifications.

Unit: kgf/cm²

Model	Engine speed	Standard	Allowable limits	Remarks
HW140A	High idle	40 +2	-	


15) SYSTEM PRESSURE REGULATOR RELIEF SETTING

(1) Preparation

① Keep the hydraulic oil temperature at $50\pm5^{\circ}$ C.

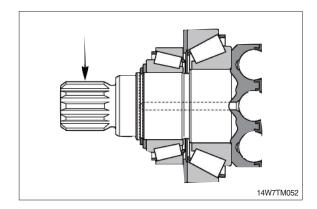
(2) Measurement

- ① Select the following switch positions.
- · Power mode switch : P mode
- ② Slowly operate each control lever of boom, arm and bucket functions at full stroke over relief and measure the pressure.
- ③ In the swing function, place bucket against an immovable object and measure the relief pressure.
- ④ In the travel function, lock lower structure with an immovable object and measure the relief pressure.

(3) Evaluation

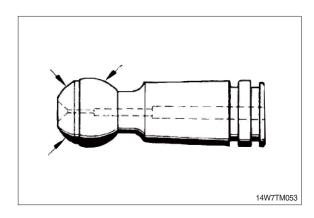
The average measured pressure should be within the following specifications.

Unit: kgf/cm²

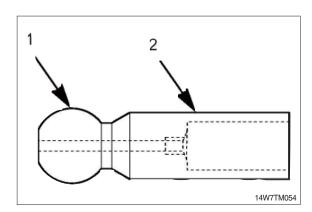

Model	Function to be tested	Standard	Port relief setting at 20 lpm
	Boom, Arm, Bucket	350 (380) ± 10	400±10
HW140A	Travel	380±10	-
	Swing	285±10	-

(): Power boost

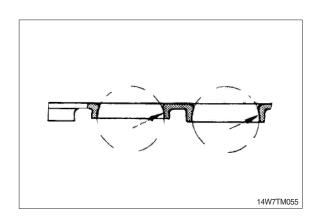
GROUP 2 MAJOR COMPONENT


1. TRAVEL MOTOR

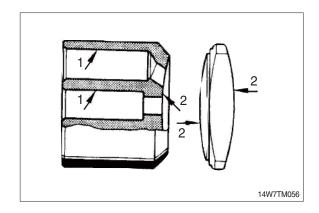
1) Free of corrosion, erosion or fretting; no damage to splines or keyways.


2) Pistons

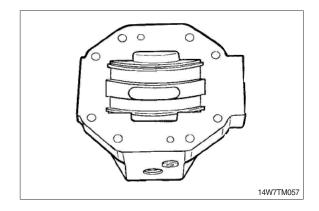
No scoring and no pittings.


3) Center pin

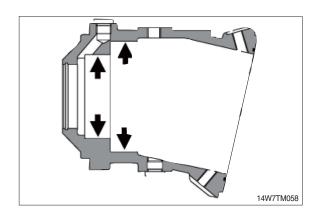
No scoring and no pittings.


4) Retaining plate

No scoring and no evidence of wear.


5) Cylinder block/control lens

- ① Bores free of scoring, no evidence of wear.
- ② Faces smooth and even, free of cracks and scoring.


6) Control housing

Sliding surface and side guides free of scoring and no wear.

7) Visual check

Bearing areas free of scoring and no evidence of wear.

2. RCV LEVER

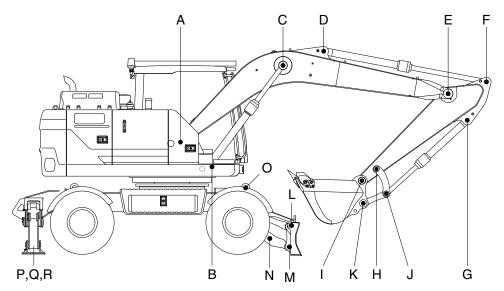
Maintenance check item	Criteria	Remark
Leakage	The valve is to be replaced when the leakage becomes more than 1000 cc/m at neutral handle position, or more than 2000 cc/m during operation.	
Spool	This is to be replaced when the sliding surface has worn more than 10 μ m, compared with the non-sliding surface.	
Push rod	This is to be replaced when the top end has worn more than 1 mm.	
Play at operating section	The pin, shaft, and joint of the operating section are to be replaced when their plays become more than 2 mm due to wears or so on.	' '
Operation stability	When abnormal noises, hunting, primary pressure drop, etc. are generated during operation, and these cannot be remedied, referring to section 6 troubleshooting, replace the related parts.	

Notes 1. It is desirable to replace seal materials, such as O-rings, every disassembling. However, they may be reused, after being confirmed to be free of damage.

3. ACCELERATOR PEDAL

Maintenance check item	Criteria	Remark
Leakage	The valve is to be replaced when the leakage effect to the system. For example, the primary pressure drop.	Conditions : Primary pressure : 40 kgf/cm² Oil viscosity : 23 cSt
Spool	This is to be replaced when the sliding surface has worn more than 10 μ m, compared with the non-sliding surface.	
Push rod	This is to be replaced when th top end has worn more than 1 mm.	
Play at operating section	The pin, shaft, and joint of the operating section are to be replaced when their plays become more than 2 mm due to wears or so on.	
Operation stability	When abnormal noises, hunting, primary pressure drop, etc. are generated during operation, and these cannot be remedied, referring to section 6 troubleshooting, replace the related parts.	

Notes 1. It is desirable to replace seal materials, such as O-rings, every disassembling. However, they may be reused, after being confirmed to be free of damage.


4. TURNING JOINT

	Part name	Maintenance standards	Remedy
Sliding surface with sealing sections		Plating worn or peeled due to seizure or contamination	Replace
	Sliding surface between body and stem other than	Worn abnormality or damaged more than 0.1 mm (0.0039 in) in depth due to seizure contamination	Replace
Body, Stem	sealing section	· Damaged more than 0.1 mm (0.0039 in) in depth	Smooth with oilstone
0.0	Sliding surface with	· Worn more than 0.5 mm (0.02 in) or abnormality	Replace
	thrust plate	· Worn less than 0.5 mm (0.02 in)	Smooth
		 Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in) 	Smooth
	Sliding surface with	Replace	
Cover	thrust plate	· Worn less than 0.5 mm (0.02 in)	Smooth
0010.		Damage due to seizure or contamination remediable within wear limit (0.5 mm) (0.02 in)	
	-	Extruded excessively from seal groove square ring Extrusion Square ring	Replace
Seal set	-	· Slipper ring 1.5 mm (0.059 in) narrower than seal groove, or narrower than back ring 1.5 mm (max) (0.059 in)	Replace
	-	• Worn more than 0.5 mm (0.02 in) ~ 1.5 mm (MAX) (0.059 in)	Replace

5. CYLINDER

Part name	Inspecting section	Inspection item	Remedy
Piston rod	· Neck of rod pin	· Presence of crack	· Replace
	· Weld on rod hub	· Presence of crack	· Replace
	Stepped part to which piston is attached	· Presence of crack	· Replace
	· Threads	· Presence of crack	· Recondition or replace
	· Plated surface	Plating is not worn off to base metal	· Replace or replate
		Rust is not present on plating	· Replace or replate
		Scratches are not present	· Recondition, replate or replace
	· Rod	· Wear of O.D.	· Recondition, replate or replace
Cylinder tube	· Bushing at mounting part	· Wear of I.D.	· Replace
	· Weld on bottom	· Presence of crack	· Replace
	· Weld on head	· Presence of crack	· Replace
	· Weld on hub	· Presence of crack	· Replace
	· Tube interior	· Presence of faults	· Replace if oil leak is seen
	· Bushing at mounting part	· Wear on inner surface	· Replace
Gland	· Bushing	· Flaw on inner surface	Replace if flaw is deeper than coating

GROUP 3 WORK EQUIPMENT

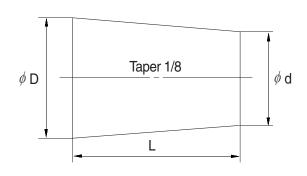
140WA7MS20

Unit:mm

			Pi	in	Bus	hing	Domodu
Mark	Measuring point (pin and bushing)	Normal value	Recomm. service limit	Limit of use	Recomm. service limit	Limit of use	Remedy & Remark
Α	Boom rear	80	79	78.5	80.5	81	Replace
В	Boom cylinder head	70	69	68.5	70.5	71	"
С	Boom cylinder rod	70	69	68.5	70.5	71	"
D	Arm cylinder head	70	69	68.5	70.5	71	"
Е	Boom front	70	69	68.5	70.5	71	"
F	Arm cylinder rod	70	69	68.5	70.5	71	"
G	Bucket cylinder head	70	69	68.5	70.5	71	"
Н	Arm link	65	64	63.5	65.5	66	"
I	Bucket and arm link	65	64	63.5	65.5	66	"
J	Bucket cylinder rod	70	69	68.5	70.5	71	"
K	Bucket link	65	64	63.5	65.5	66	"
L	Dozer link (B)	55	54	53.5	55.5	56	"
М	Dozer link (A)	55	54	53.5	55.5	56	"
N	Dozer cylinder rod	65	64	63.5	65.5	66	"
0	Dozer cylinder head	65	64	63.5	65.5	66	"
Р	Outrigger leg joint	70	69	68.5	70.5	71	"
Q	Outrigger foot joint	70	69	68.5	70.5	71	"
R	Outrigger cylinder pin	70	69	68.5	70.5	71	"

SECTION 8 DISASSEMBLY AND ASSEMBLY

Group	1	Precaution	8-1
Group	2	Tightening Torque ·····	8-4
Group	3	Pump Device ·····	8-7
Group	4	Main Control Valve	8-43
Group	5	Swing Device ····	8-49
Group	6	Travel Motor	8-53
Group	7	Transmission	8-80
Group	8	Steering Valve	8-177
Group	9	Front Axle ·····	8-202
Group	10	Rear Axle ·····	8-273
Group	11	RCV Lever	8-315
Group	12	Turning Joint	8-329
Group	13	Boom, Arm, Bucket, Dozer and Outrigger Cylinders	8-335
Group	14	Work Equipment ·····	8-359


SECTION 8 DISASSEMBLY AND ASSEMBLY

GROUP 1 PRECAUTIONS

1. REMOVAL WORK

- Lower the work equipment completely to the ground.
 If the coolant contains antifreeze, dispose of it correctly.
- 2) After disconnecting hoses or tubes, cover them or fit blind plugs to prevent dirt or dust from entering.
- 3) When draining oil, prepare a container of adequate size to catch the oil.
- 4) Confirm the match marks showing the installation position, and make match marks in the necessary places before removal to prevent any mistake when assembling.
- 5) To prevent any excessive force from being applied to the wiring, always hold the connectors when disconnecting the connectors.
- 6) Fit wires and hoses with tags to show their installation position to prevent any mistake when installing.
- 7) Check the number and thickness of the shims, and keep in a safe place.
- 8) When raising components, be sure to use lifting equipment of ample strength.
- 9) When using forcing screws to remove any components, tighten the forcing screws alternately.
- 10) Before removing any unit, clean the surrounding area and fit a cover to prevent any dust or dirt from entering after removal.
- 11) When removing hydraulic equipment, first release the remaining pressure inside the hydraulic tank and the hydraulic piping.
- 12) If the part is not under hydraulic pressure, the following corks can be used.

Nominal		Dimensions	
number	D	d	L
06	6	5	8
08	8	6.5	11
10	10	8.5	12
12	12	10	15
14	14	11.5	18
16	16	13.5	20
18	18	15	22
20	20	17	25
22	22	18.5	28
24	24	20	30
27	27	22.5	34

2. INSTALL WORK

- 1) Tighten all bolts and nuts (sleeve nuts) to the specified torque.
- 2) Install the hoses without twisting or interference.
- Replace all gaskets, O-rings, cotter pins, and lock plates with new parts.
- 4) Bend the cotter pin or lock plate securely.
- 5) When coating with adhesive, clean the part and remove all oil and grease, then coat the threaded portion with 2-3 drops of adhesive.
- 6) When coating with gasket sealant, clean the surface and remove all oil and grease, check that there is no dirt or damage, then coat uniformly with gasket sealant.
- 7) Clean all parts, and correct any damage, dents, burrs, or rust.
- 8) Coat rotating parts and sliding parts with engine oil.
- 9) When press fitting parts, coat the surface with antifriction compound (LM-P).
- 10) After installing snap rings, check that the snap ring is fitted securely in the ring groove (check that the snap ring moves in the direction of rotation).
- 11) When connecting wiring connectors, clean the connector to remove all oil, dirt, or water, then connect securely.
- 12) When using eyebolts, check that there is no deformation or deterioration, and screw them in fully.
- 13) When tightening split flanges, tighten uniformly in turn to prevent excessive tightening on one side.
- 14) When operating the hydraulic cylinders for the first time after repairing and reassembling the hydraulic cylinders, pumps, or other hydraulic equipment or piping, always bleed the air from the hydraulic cylinders as follows:
- (1) Start the engine and run at low idling.
- (2) Operate the control lever and actuate the hydraulic cylinder 4-5 times, stopping 100mm before the end of the stroke.
- (3) Next, operate the piston rod to the end of its stroke to relieve the circuit. (The air bleed valve is actuated to bleed the air.)
- (4) After completing this operation, raise the engine speed to the normal operating condition.
- If the hydraulic cylinder has been replaced, carry out this procedure before assembling the rod to the work equipment.
- « Carry out the same operation on machines that have been in storage for a long time after completion of repairs.

3. COMPLETING WORK

- 1) If the coolant has been drained, tighten the drain valve, and add water to the specified level. Run the engine to circulate the water through the system. Then check the water level again.
- 2) If the hydraulic equipment has been removed and installed again, add engine oil to the specified level. Run the engine to circulate the oil through the system. Then check the oil level again.
- 3) If the piping or hydraulic equipment, such as hydraulic cylinders, pumps, or motors, have been removed for repair, always bleed the air from the system after reassembling the parts.
- 4) Add the specified amount of grease (molybdenum disulphied grease) to the work equipment related parts.

GROUP 2 TIGHTENING TORQUE

1. MAJOR COMPONENTS

Na	No. Descriptions		Dalt size	Torque		
No.		Descriptions	Bolt size	kgf · m	lbf ⋅ ft	
1		Engine mounting bolt (bracket-frame, FR)	M16 × 2.0	29.7±3.0	215±21.7	
2		Engine mounting bolt (bracket-frame, RR)	M16 × 2.0	29.7±3.0	215±21.7	
3	Frains	Engine mounting bolt (engine-bracket)	M12 × 1.75	11.5±1.0	83.2±7.2	
4	Engine	Radiator mounting bolt, nut	M16 × 2.0	29.7±4.5	215±32.5	
5		Fuel tank mounting bolt	M20 × 2.5	57.9±5.8	419±42.0	
6		Coupling mounting socket bolt	M16 × 2.0	22.0±1.0	159±7.2	
7		Main pump housing mounting bolt	M10 × 1.5	6.5±0.7	47.0±5.1	
8		Main pump mounting socket bolt	M20 × 2.5	29.7±4.5	215±32.5	
9	Hydraulic	Main control valve mounting bolt	M12 × 1.75	12.2±1.3	88.2±9.4	
10	system	Travel motor mounting socket bolt	M16 × 2.0	35.6±7.1	257±51.4	
11		Hydraulic oil tank mounting bolt	M20 × 2.5	57.9±5.8	419±42.0	
12		Turning joint mounting bolt, nut	M12 × 1.75	12.8±3.0	92.6±21.7	
13		Swing motor mounting bolt	M20 × 2.5	57.9±6.4	419±46.3	
14		Swing bearing upper mounting bolt	M20 × 2.5	57.9±6.0	419±43.4	
15		Swing bearing lower mounting bolt	M20 × 2.5	57.9±6.0	419±43.4	
16		Real axle mounting bolt, nut	M20 × 1.5	58.4±6.8	422±45.5	
17	Power	Transmission bracket mounting bolt	M20 × 2.5	58.4±6.4	422±46.3	
18	train	Transmission mounting bolt	M20 × 2.5	44±2.0	318±14.5	
19	system	Oscillating cylinder mounting bolt	M22 × 1.5	83.2±9.2	602±66.5	
20		Oscillating cylinder support mounting bolt	M16 × 2.0	29.7±4.5	215±32.5	
21		Wheel nut	M22 × 1.5	60±5.0	433±36.2	
22		Front drive shaft mounting bolt, nut	M10 × 1.0	5.9±0.6	42.7±4.3	
23		Rear drive shaft mounting bolt, nut	M10 × 1.0	5.9±0.6	42.7±4.3	
24		Counterweight mounting bolt	M27 × 3.0	140±15	1013±108	
25	Othoro	Cab mounting bolt, nut	M12 × 1.75	12.8±3.0	92.6±21.7	
26	Others	Operator's seat mounting bolt	M 8 × 1.25	4.05±0.8	29.3±5.8	
27		Under cover mounting bolt	M12 × 1.75	12.8±3.0	92.6±21	

^{*} For tightening torque of engine and hydraulic components, see engine maintenance guide and service manual.

2. TORQUE CHART

The torques given are standard figures. Any figures specifically described in this manual has priority.

1) BOLT AND NUT

(1) Coarse thread

Bolt size	8	вт	10	ОТ
Boil Size	kg · m	lb ⋅ ft	kg · m	lb ⋅ ft
M 6×1.0	0.9 ~ 1.3	6.5 ~ 9.4	1.1 ~ 1.7	8.0 ~ 12.3
M 8×1.25	2.0 ~ 3.0	14.5 ~ 21.7	2.7 ~ 4.1	19.5 ~ 29.7
M10 × 1.5	4.0 ~ 6.0	28.9 ~ 43.4	5.5 ~ 8.3	39.8 ~ 60.0
M12 × 1.75	7.4 ~ 11.2	53.5 ~ 81.0	9.8 ~ 15.8	70.9 ~ 114
M14 × 2.0	12.2 ~ 16.6	88.2 ~ 120	16.7 ~ 22.5	121 ~ 163
M16 × 2.0	18.6 ~ 25.2	135 ~ 182	25.2 ~ 34.2	182 ~ 247
M18 × 2.5	25.8 ~ 35.0	187 ~ 253	35.1 ~ 47.5	254 ~ 344
M20 × 2.5	36.2 ~ 49.0	262 ~ 354	49.2 ~ 66.6	356 ~ 482
M22 × 2.5	48.3 ~ 63.3	349 ~ 458	65.8 ~ 98.0	476 ~ 709
M24 × 3.0	62.5 ~ 84.5	452 ~ 611	85.0 ~ 115	615 ~ 832
M30 × 3.0	124 ~ 168	898 ~ 1214	169 ~ 229	1223 ~ 1656
M36 × 4.0	174 ~ 236	1261 ~ 1704	250 ~ 310	1808 ~ 2242

(2) Fine thread

Dolt size	8	ВТ	1	OT
Bolt size	kg · m	lb ⋅ ft	kg · m	lb ⋅ ft
M 8×1.0	2.2 ~ 3.4	15.9 ~ 24.6	3.0 ~ 4.4	21.7 ~ 31.8
M10 × 1.2	4.5 ~ 6.7	32.5 ~ 48.5	5.9 ~ 8.9	42.7 ~ 64.4
M12 × 1.25	7.8 ~ 11.6	56.4 ~ 83.9	10.6 ~ 16.0	76.7 ~ 116
M14 × 1.5	13.3 ~ 18.1	96.2 ~ 131	17.9 ~ 24.1	130 ~ 174
M16 × 1.5	19.9 ~ 26.9	144 ~ 195	26.6 ~ 36.0	192 ~ 260
M18 × 1.5	28.6 ~ 43.6	207 ~ 315	38.4 ~ 52.0	278 ~ 376
M20 × 1.5	40.0 ~ 54.0	289 ~ 391	53.4 ~ 72.2	386 ~ 522
M22 × 1.5	52.7 ~ 71.3	381 ~ 516	70.7 ~ 95.7	511 ~ 692
M24 × 2.0	67.9 ~ 91.9	491 ~ 665	90.9 ~ 123	658 ~ 890
M30 × 2.0	137 ~ 185	990 ~ 1339	182 ~ 248	1314 ~ 1796
M36 × 3.0	192 ~ 260	1390 ~ 1880	262 ~ 354	1894 ~ 2562

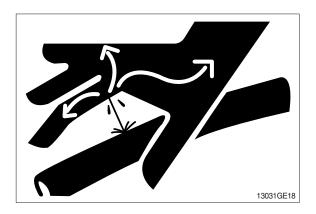
2) PIPE AND HOSE (FLARE type)

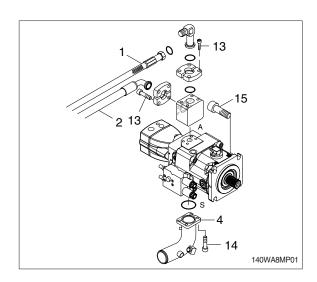
Thread size (PF)	Width across flat (mm)	kgf · m	lbf ⋅ ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130.2
1"	41	21	151.9
1-1/4"	50	35	253.2

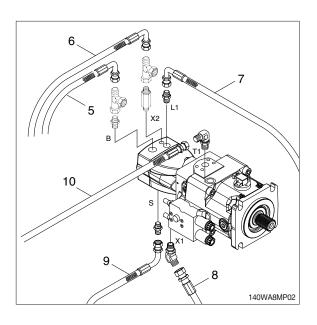
3) PIPE AND HOSE (ORFS type)

Thread size (UNF)	Width across flat (mm)	kgf · m	lbf · ft
9/16-18	19	4	28.9
11/16-16	22	5	36.2
13/16-16	27	9.5	68.7
1-3/16-12	36	18	130.2
1-7/16-12	41	21	151.9
1-11/16-12	50	35	253.2

4) FITTING

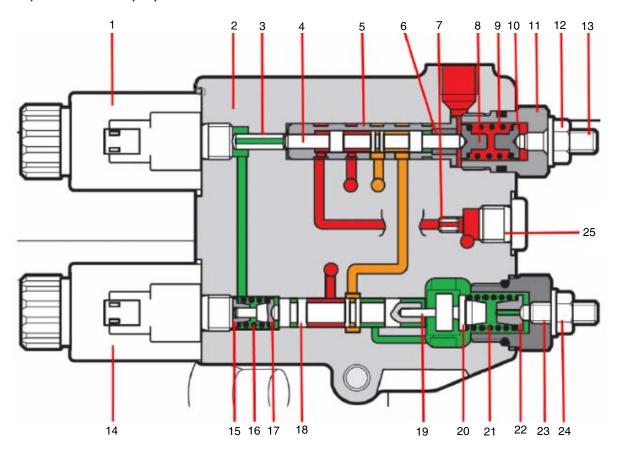

Thread size	Width across flat (mm)	kgf · m	lbf · ft
1/4"	19	4	28.9
3/8"	22	5	36.2
1/2"	27	9.5	68.7
3/4"	36	18	130.2
1"	41	21	151.9
1-1/4"	50	35	253.2


GROUP 3 PUMP DEVICE


1. REMOVAL AND INSTALL

1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the drain plug under the hydraulic tank and drain the oil from the hydraulic tank.
 - \cdot Hydraulic tank quantity : 122 ℓ (32.2 U.S. gal)
- (5) Remove socket bolts (13) and disconnect hoses (1, 2).
- (6) Disconnect pilot line hoses (5, 6, 7, 8, 9, 10, 11).
- (7) Remove socket bolts (14) and disconnect pump suction pipe (4).
- When pump suction tube is disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (8) Sling the pump assembly and remove the pump mounting bolts (15).
 - · Weight: 91 kg (200 lb)
 - Tightening torque : 29.7 \pm 4.5 kgf·m (215 \pm 32.5 lbf·ft)
- Pull out the pump assembly from housing. When removing the pump assembly, check that all the hoses have been disconnected.

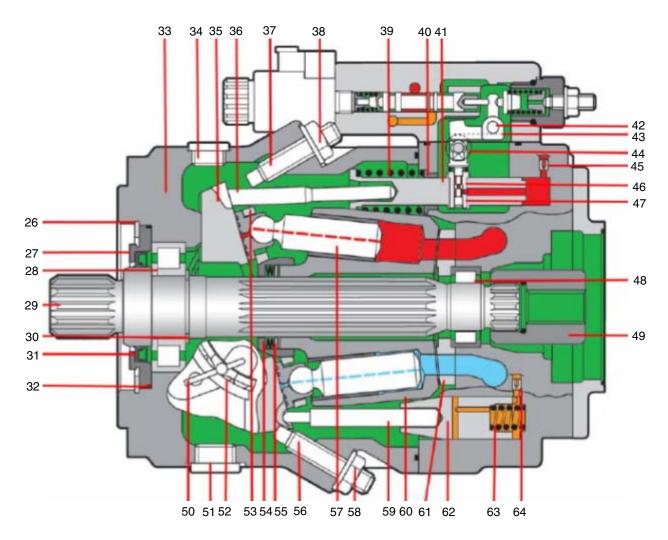


2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Remove the suction strainer and clean it.
- (3) Replace return filter with new one.
- (4) Remove breather and clean it.
- (5) After adding oil to the hydraulic tank to the specified level.
- (6) Bleed the air from the hydraulic pump.
- ① Remove the air vent plug (2EA).
- 2 Tighten plug lightly.
- 3 Start the engine, run at low idling, and check oil come out from plug.
- 4 Tighten plug.
- (7) Start the engine, run at low idling (3~5 minutes) to circulate the oil through the system.
- (8) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2. MAIN PUMP

1) STRUCTURE (1/2)


140WA2MP04

- 1 Prop. solenoid
- 2 Control housing
- 3 Pin
- 4 Control piston LS
- 5 Control bushing LS
- 6 Bushing
- 7 Orifice
- 8 Spring cup
- 9 Spring LS

- 10 Spring cup
- 11 Screw plug
- 12 Sealing nut
- 13 Set screw
- 14 Prop. solenoid
- 15 Spring cup
- 16 Spring
- 17 Spring cup
- 18 Control piston LR

- 19 Bolt
- 20 Spring bolt
- 21 Spring cup
- 22 Set screw
- 23 Sealing nut
- 24 Seal screw
- 25 Screw plug

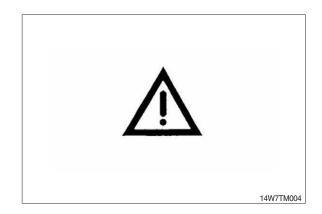
STRUCTURE (2/2)

140WA2MP05

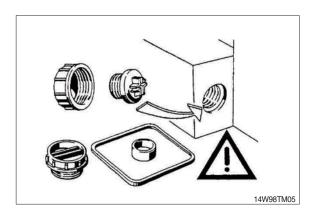
2	26 Snap ring	39	Spring	52	Cage pair
2	27 Locking ring	40	Bushing	53	Retaining plate
2	28 Cylinderical roller bea	ring 41	Adjusting bushing small	54	Retaining ball
2	29 Drive shaft	42	Bolt	55	Cup spring stack
3	30 Snap ring	43	Angle lever	56	Adjusting screw
3	31 Shaft seal ring	44	Measuring roll	57	Piston pad
3	32 O-ring	45	Orifice	58	Sealing nut
3	33 Housing	46	Measuring bushing	59	Adjusting rod big
3	34 Screw plug	47	Measuring piston	60	Cylinder
3	35 Cradle	48	Cylinderical roller bearing	61	Control plate
3	36 Adjusting rod small	49	Coupling hub	62	Adjusting bushing big
3	37 Adjusting screw	50	Wire	63	Spring
3	38 Sealing nut	51	Screw plug	64	Orifice

2) GENERAL PRECAUTIONS

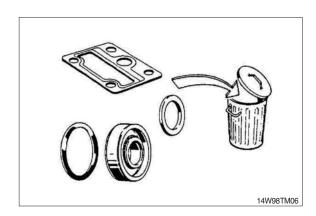
(1) Disassembly

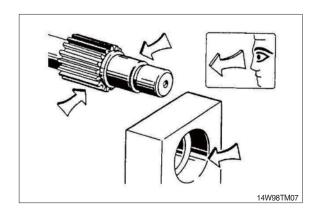

- ① Before disassembling the main pump, check the items to be inspected and, for remedy against trouble, closely examine the nature of the trouble, so that the motor can be disassembled effectively.
- ② To disassemble the main pump, use the disassembling procedures described in section 2) and select a clean place.
- ③ Place a rubber or vinyl sheet or other such protective materials on your working bench to protect the surface of the main pump to be serviced.
- ① During disassembly, give a match mark to the mating surfaces of each part.
- ⑤ Arrange removed parts in order so that they will not become damaged or missing during disassembly.
- ⑥ Once seals have been disassembled, they should be replaced even if damage is not observed. Have replacement seals ready on hand before starting your disassembling job.

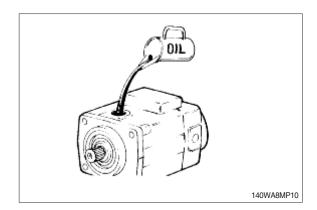
(2) Assembly

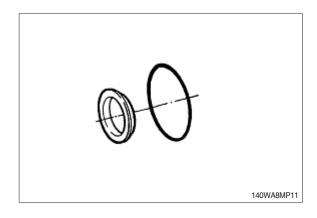

- ① Reassemble in a work area that is clean and free from dust and grit.
- ② Handle parts with bare hands to keep them free of linty contaminants.
- ③ Repair or replace the damaged parts.
 Each parts must be free of burrs its corners.
- ④ Do not reuse O-ring and seal ring that were removed in disassembly. Provide the new parts.
- Wash all parts thoroughly in a suitable solvent. Dry thoroughly with compressed air.
 - Do not use the cloths.
- ⑥ When reassembling oil motor components of main pump, be sure to coat the sliding parts of the main pump and valve with fresh hydraulic oil. (NAS class 9 or above)
- ① Use a torque wrench to tighten bolts and plugs, to the torque specified.

3) GENERAL REPAIR INSTRUCTIONS

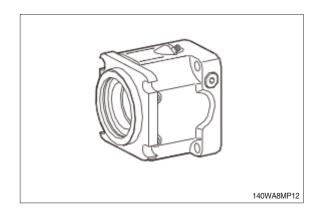

Observe the following notices when carrying out repair work at hydraulic aggregates.

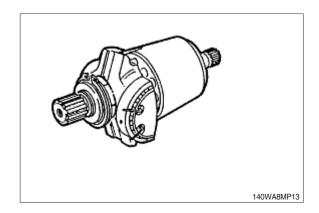

(1) Close all ports of the hydraulic aggregates.

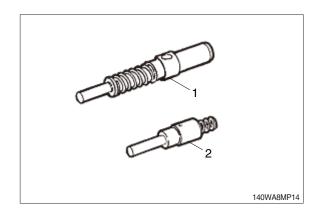

(2) Replace all seals.
Use only Hyundai original spare parts.

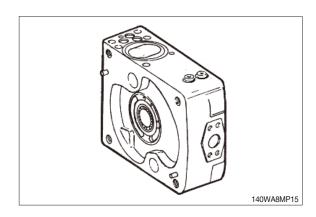

- (3) Check all seal and sliding surfaces for wear.
- Rework of sealing area f.ex. with abrasive paper can damage surface.

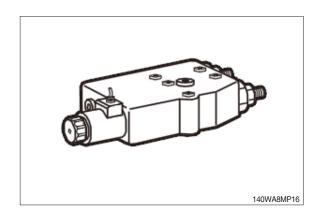
(4) Fill up hydraulic aggregates with hydraulic oil respectively deaerate before start up.

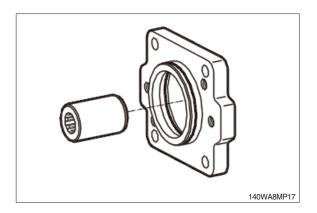

(5) Seal kit for drive shaft

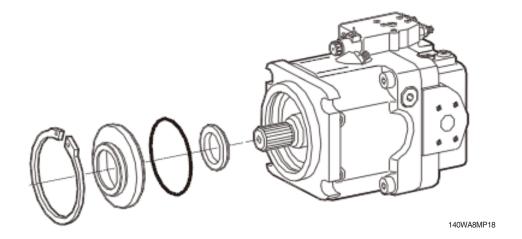

(6) External seal kit.

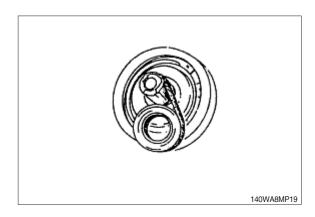

(7) Housing.

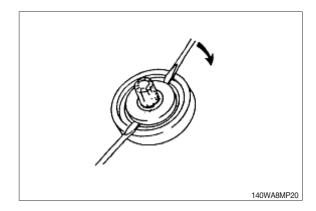

(8) Complete rotary group.

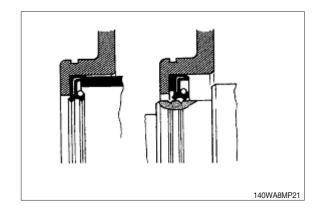

- (9) Hydraulic control
 - 1 Small size
 - 2 Big size


(10) Port plate


(11) Complete regulator

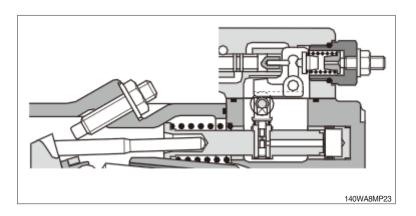

(12) Pump support plate


4) SEALING OF THE DRIVE SHAFT

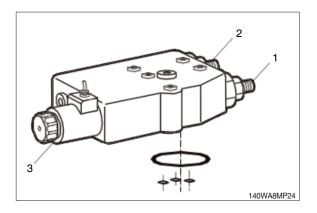

(1) Protect the drive shaft.

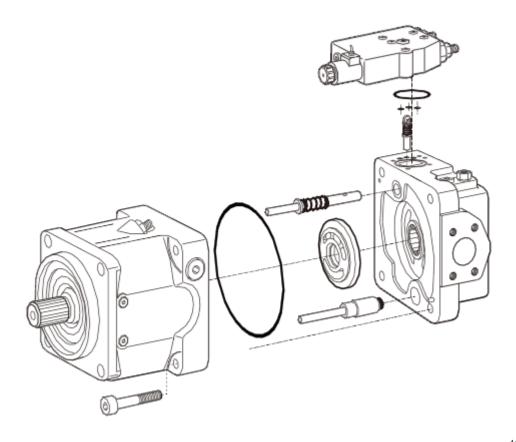
(2) Loosen retaining ring and remove it, press away front cover.




- (3) Press in the shaft seal ring to the correct position with a suitable sleeve.
- * If the shaft is deeply grooved, insert shim behind seal.

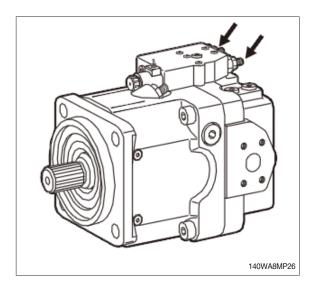
5) SEALING OF THE REGULATOR HOUSING

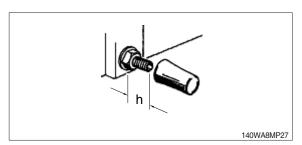

(1) Remove screws and press off regulator, thereby make sure that sealing surface is not damaged.



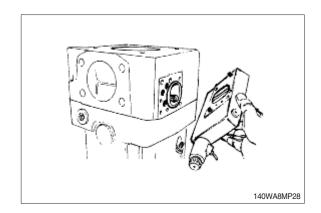
- 1 Power control
- 2 Load sensing control
- 3 Solenoid for power override
- Do not change position of adjustment screws.

Remove complete set of threaded bush with adjustment screws.

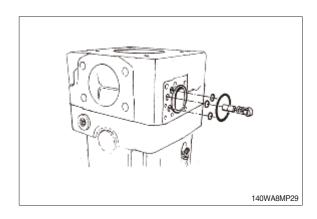

6) REMOVE PORT PLATE, REGULATOR

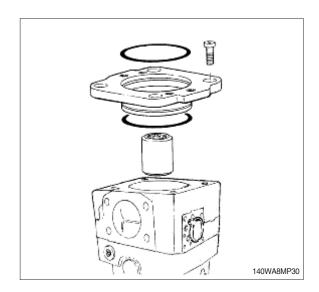


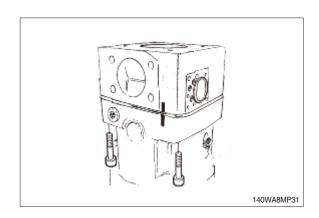
140WA8MP25

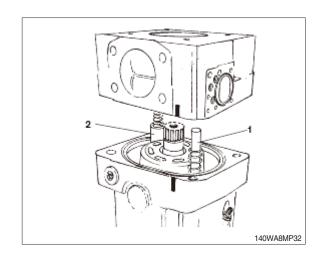

(1) Remove protection cover.

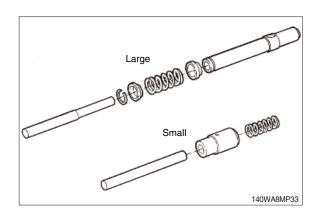
Measure and note adjustment heigth "h".

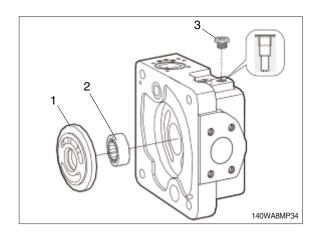


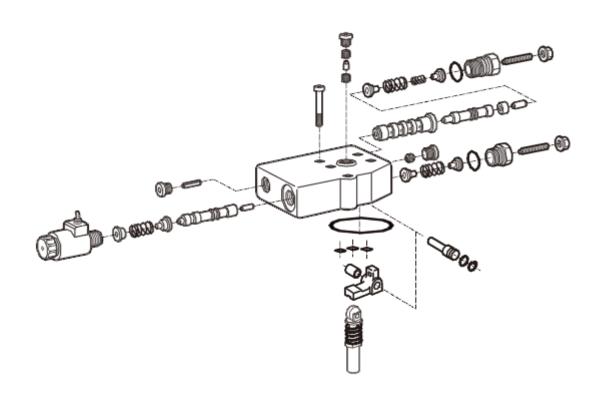

(2) Remove regulator housing.


(3) Remove O-ring, measuring piston with bushing and spring.

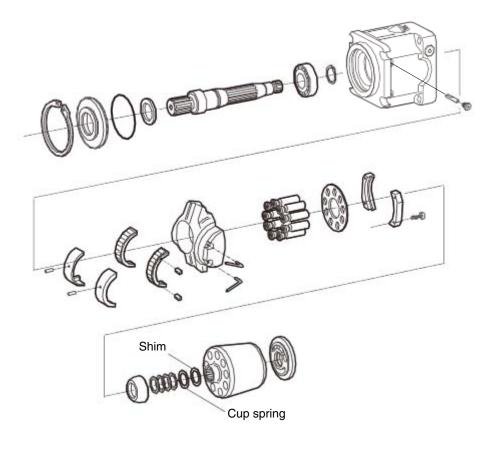

(4) Remove pump support plate.


(5) Mark position of the connection plate. Loosen connection plate fixation.

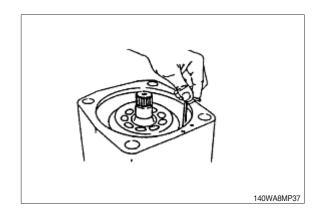

(6) Remove port plate with control plate. Disassemble regulator.


- 1 Hydraulic control small
- 2 Hydraulic control large

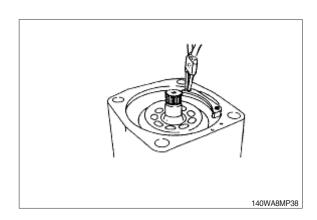
- 1 Control plate
- 2 Cylinder roller bearing
- 3 Port "G"



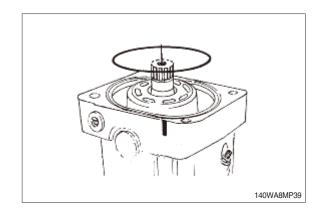
7) REMOVE REGULATOR

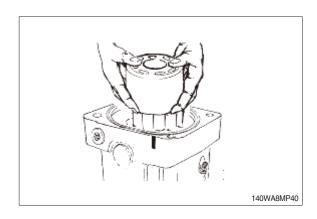

140WA8MP35

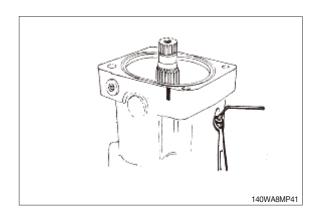
8) REMOVE ROTARY GROUP

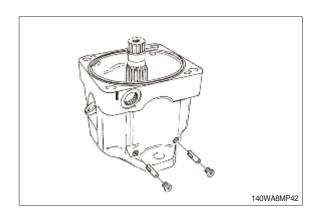


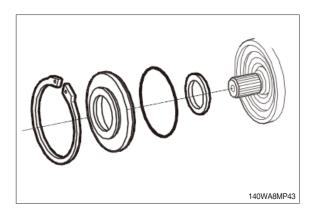
140WA8MP36

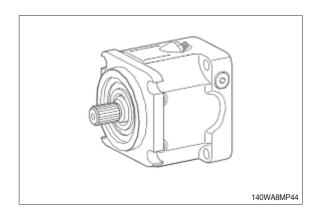

(1) Loosen fixing of the retaining segments.

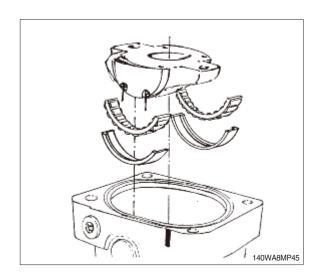

(2) Remove retaining segments with screws.


(3) Remove O-ring.

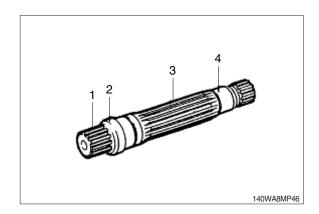

(4) Remove cylinder with pistons.


(5) Remove Q-min and Q-max screws after noting down adjustment dimension.

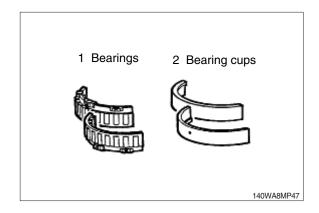

(6) Remove joint pin for swivel cradle.


(7) Remove completely cover ring.

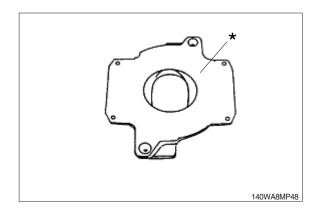
(8) Press out drive shaft.

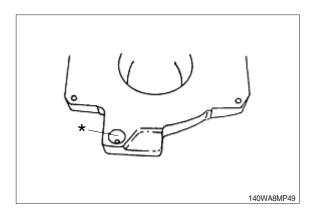


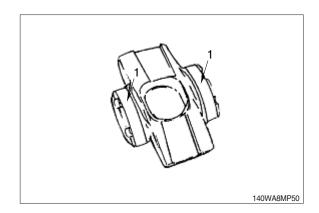
(9) Remove swivel cradle with bearing as well as bearing case.

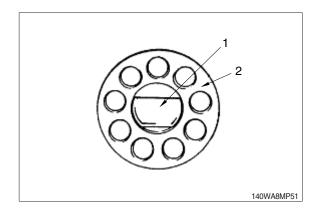


9) GENERAL REPAIR INSTRUCTIONS

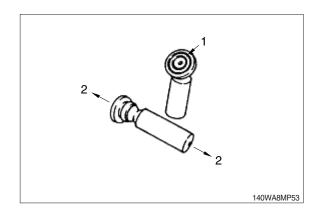

- (1) Check
- ① Gears (1); Contact area shaft seal (2); Gears (3); Bearing seat (4).
- ② Sliding surface (1) free of scoring.

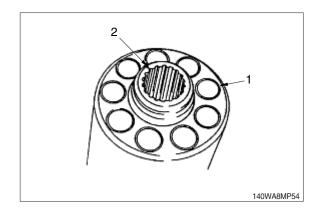

- (2) Check
- ① Bearings (1).
- ② Bearing cups (2).


- (3) Check
- ① Contact area (*).

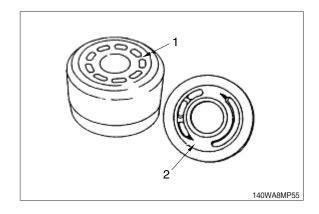

- (4) Check
- ① Socket for regulator (*).


- (5) Check
- ① Contact area of bearing (1).

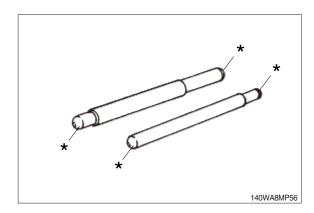

- (6) Inspection
- ① Retaining ball (1)
- ② Retaining plate (2).


- (7) Inspection
- ① Fixing segments

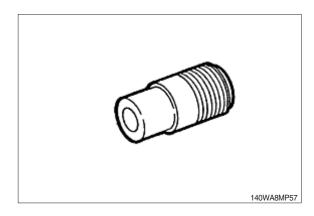
- (8) Inspection
- ① Slipperpads (1),
- ② Axial backslash (2).



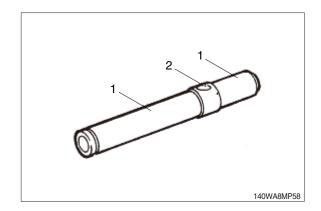
- (9) Inspection
- ① Cylinder boring (1),
- ② Gears (2).


(10) Inspection

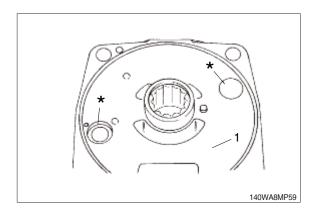
- ① Cylinder contact area (1).
- ② Contact area control plate (2).


(11) Inspection

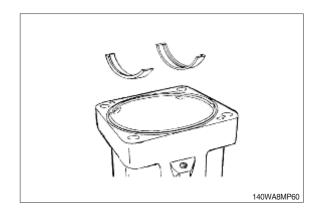
- ① Fixing segments
- ▲ Assemble the grinded side to the cradle!


(12) Inspection

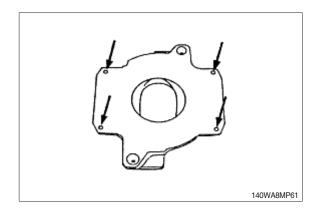
① Piston (*)
Adjustment


(13) Inspection

- ① Positioning piston (1),
- ② Boring control bush (2).

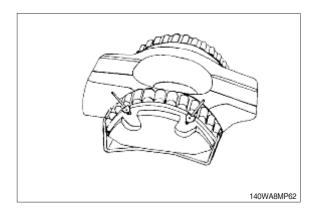

(14) Inspection

- ① Boring (*),
- ② Contact area control plate (1).

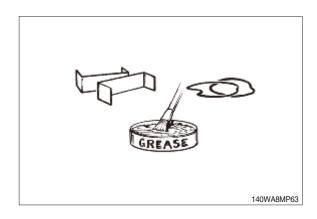


10) PUMP ASSEMBLY

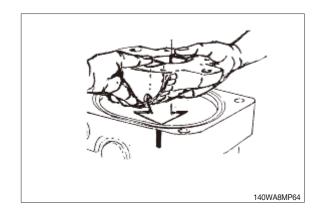
(1) Insert bearing bell.

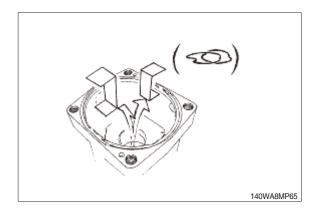


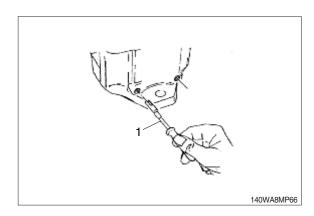
(2) Clean threaded borings.

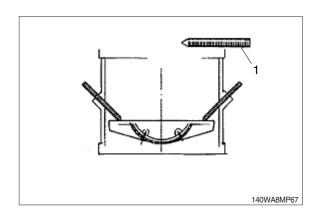


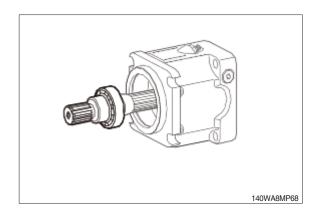
(3) Install bearings with wire guide on swivel cradle.

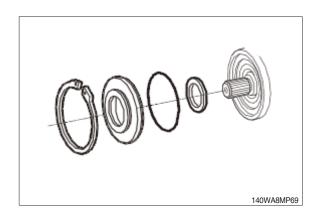

Fixing with auxiliary device.

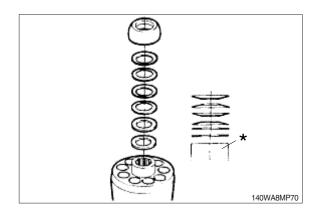

- (4) Auxiliary devices e. g.
- $\ \ \, \textcircled{1} \ \, \textbf{Clamp}$
- ② Rubber rings
- ② Grease

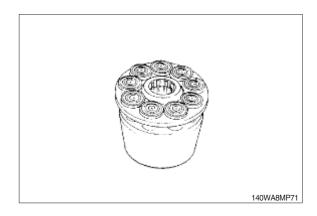

- (5) Place swivel cradle with bearing into bearing shell.
 - * Installation position.


- (6) Remove auxiliary devices.
- ▲ Check bearing seats.

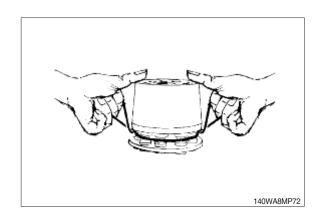

- (7) Adjust guide wire. Install joint pins. Install locking screws.
 - 1 Auxiliary device screw driver


- (8) Fit swivel cradle with threaded pin in zero position.
 - 1 Auxiliary device (threaded pins 2x).

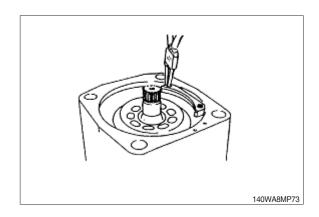

(9) Install drive shaft.


(10) Mount cover ring.

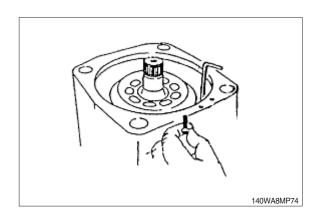
- (11) Mount shims, springs and retaining ball.
- ▲ Observe correct mounting position*.

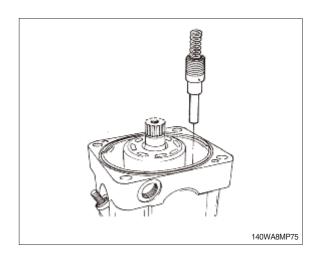


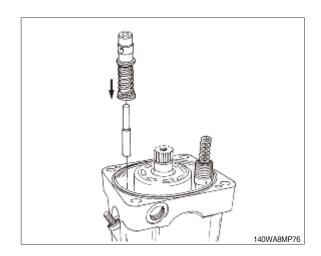
- (12) Place retaining plate with piston into cylinder.
- ▲ Align gearing of retaining ball / cylinder.

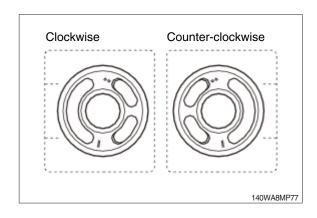


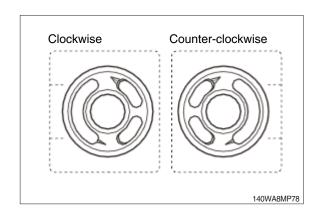
(13) Assembly hint

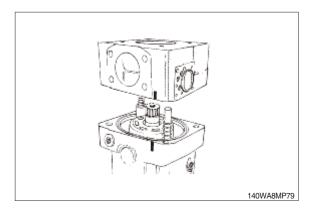

Fix with O-ring via piston retaining assembly.

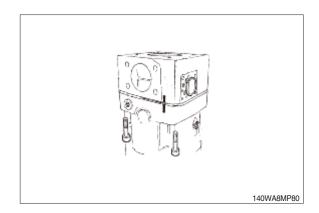

(14) Insert fixing segments.

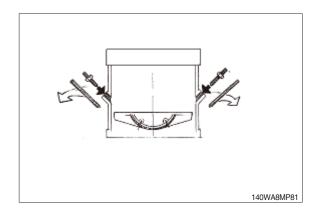

- (15) Install screws with Precote.
- ♠ Pay attention with hardening time. Tight screws with torque value.

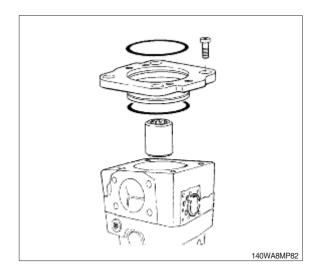

(16) Hydraulic control rod - big size

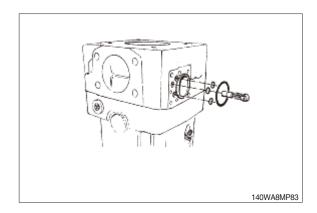

(17) Hydraulic control rod - small size.

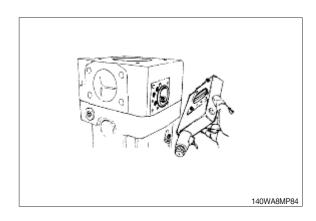

- (18) Direction of rotation
- ① Standard type


② Special type

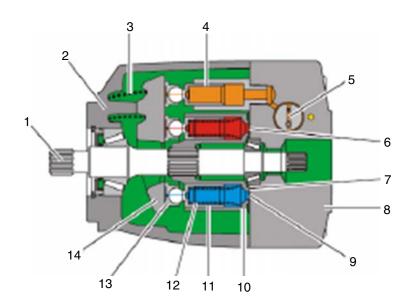

- (19) Install control plate.
 - * Installation position (direction of rotation).


- (20) Fix port plate, assembly with screws.
- X Tightening torque
- · Tightening torque : 40.8 kgf·m (295 lbf·ft)


- (21) Remove threaded pins.
 - ① Install Q-min, Q-max- screws.
- ② Adjustment measure


▲ Assemble pump support plate.

(22) Install measuring piston with O-rings.

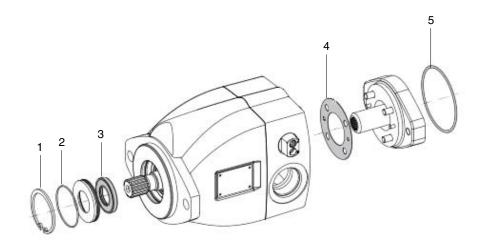


(23) Place regulator.

3. STEERING PUMP

1) STRUCTURE

140WA2MP06


- 1 Drive shaft
- 2 Case
- 3 Spring
- 4 Stroke piston
- 5 Control vavle

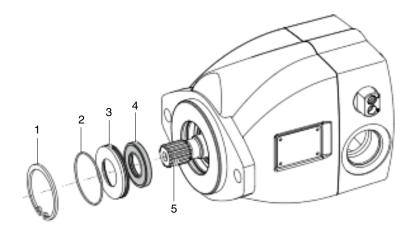
- 6 High pressure side
- 7 Control plate
- 8 Port plate
- 9 Suction side
- 10 Cylinder

- 11 Piston
- 12 Spring in piston
- 13 Slipper pad
- 14 Swash plate

2) SEALING OF ASSEMBLY GROUPS

Seal kit for control valves and basic unit

140WA8MP100


- 1 Snap ring
- 2 O-ring

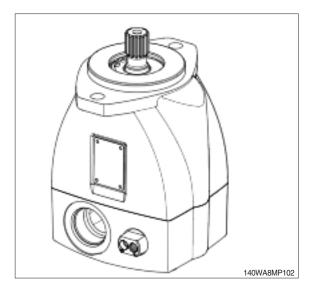
- 3 Shaft seal
- 4 Flat gasket
- 5 O-ring

3) REPLACING SHAFT SEAL

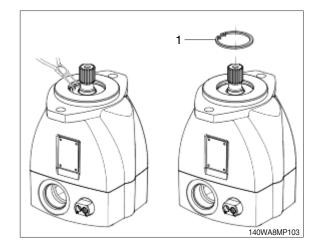
※ Special tools are needed

(1) Removing shaft seal

140WA8MP101


- 1 Snap ring
- 2 O-ring

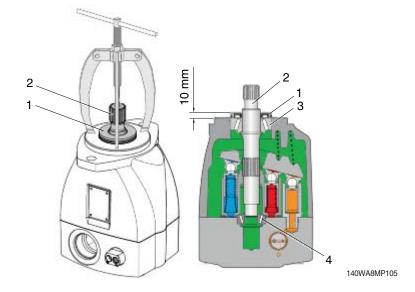
- 3 Bearing cover
- 4 Shaft seal


5 Drive shaft

(2) Removal and installation position

In order to replace the shaft seal bring the axial piston unit in an upright position i.e. drive shaft upwards

- (3) Remove the snap ring or shim ring (1).
- When removing, the snap ring may release in a project-like manner and spring into your face.
- Wear safety glasses.


(4) Pull-off tool for removal of bearing cover. Use a suitable tool when removing the bearing cover.

The relevant thread size in the drive shaft can be found in the installation drawing.

(5) Removal of shaft seal

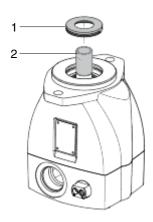
- 1 Bearing cover
- 2 Drive shaft
- 3 Tapered roller bearing
- 4 Tapered roller bearing

- ① Pull the drive shaft (2) out far enough to be able to remove the bearing cover (1) without a problem. CAUTION however not more than 10 mm. When removing the bearing cover, pay attention, that the drive shaft is not pulled out any further.
- * Pulling the drive shaft too far out, can cause considerable problems during re-installation or when inserting the drive shaft into the bearing(4) and can lead to rotary group damage.
- ② Remove the pull-off tool without lifting the drive shaft out any further.
- 3 After removal of the bearing cover (1) bring the drive shaft (2) with the tapered roller bearing and the outer ring (3) back into the initial position i.e. push back as far as possible into the bearing (4) or tapered roller bearing with outer ring (3) to stop collar drive shaft. Leave the axial piston unit in the upright position.

(6) Replacement of O-ring and shaft seal

A special tool is needed to replace the shaft seal

- 1 O-ring
- 2 Bearing cover
- 3 Shaft seal


140WA8MP106

- ① Press the shaft seal (3) with a suitable special tool out of the bearing cover (2).
- ② Remove the O-ring (1).
- ③ Press the new shaft seal (3) with a suitable special tool in.
- ④ Use and install now the new O-ring (1) from the seal kit as the old O-ring is being destroyed with the removal.

4) INSTALLATION OF BEARING COVER (with new shaft seal and O-ring)

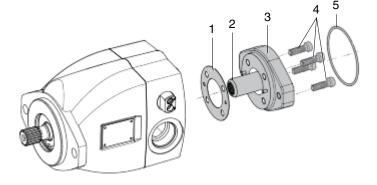
(1) Bearing cover

- 1 Bearing cover with shaft seal and O-ring
- 2 Mounting sleeve
- ① Bring the mounting sleeve (2) over the drive shaft.
- ② Lightly grease the new shaft seal between the sealing lip and dust lip to prevent dry running.
- ③ Push the bearing cover (1) correctly positioned over the mounting sleeve (2) without canting and without using force to the stop into the housing.

140WA8MP107

(2) Snap ring/shim ring

Snap ring


- ① Install the snap ring (1) correctly positioned in the housing.
- ② Make sure, that the snap ring snaps completely into the groove.
- If the snap ring must be replaced, it is necessary that the new, rough snap ring from the seal kit is ground the exactly the same height (shim measurement) as the old snap ring.

140WA8MP108

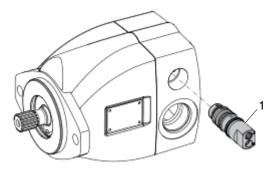
5) SEALING OF THE UNIVERSAL THROUGH DRIVE

- 1 Flat gasket
- 2 Splined hub
- 3 Adapter flange
- 4 Mounting bolts
- 5 O-ring

140WA8MP109

(1) Removal

- ① Remove the O-ring (5).
- ② Loosen and remove the mounting bolts (4).
- ③ Remove the adapter flange (3).
- 4 Remove the splined hub (2).
- ⑤ Remove the flat gasket (1).
- 6 Check the sealing surface for damage.


(2) Installation

- ① Put the flat gasket (1) correctly positioned onto the adapter flange, cylinder pins are used as guide.
- Pins are not pressed in and can fall out.
- ② Install the adapter flange (3) with flat gasket (1) onto the port plate.
- ③ Screw the mounting bolts (4) in by hand and tighten these with the correct tightening torque.
- ④ Put the O-ring (5) into the appropriate groove.
- ⑤ Put the splined hub (2) correctly positioned onto the drive shaft.

6) SEALING OF CONTROL VALVE

In case of leakage, the complete control valve must be replaced.

1 Control valve

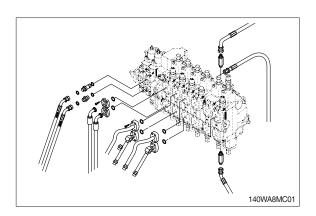
140WA8MP110

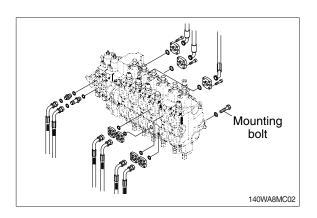
(1) Replace the control valve

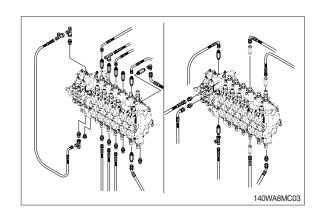
- $\ensuremath{\bigcirc}$ Loosen and unscrew the control valve (1) out of the port plate.
- ② Screw the new control valve (1) in by hand, tighten with a torque of 6.1 ± 1.0 kgf·m (44.3 ± 7.4 lbf·ft).

GROUP 4 MAIN CONTROL VALVE

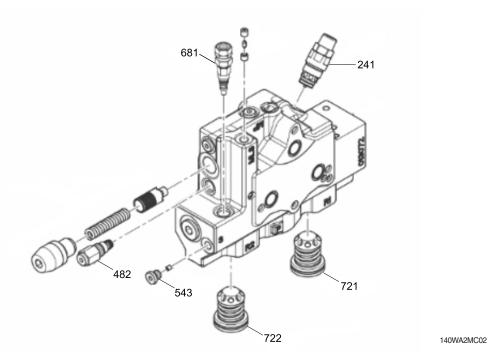
1. REMOVAL AND INSTALL OF MOTOR


1) REMOVAL

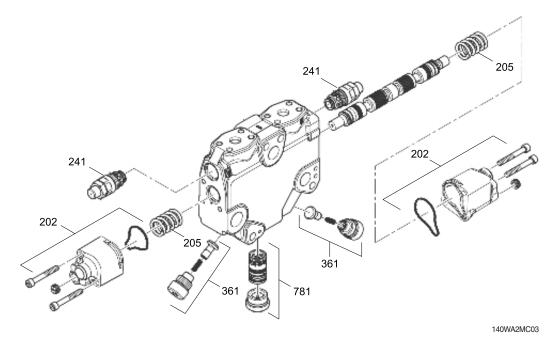

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the wirings for the pressure sensor and so on.
- (5) Remove bolts and disconnect pipe.
- (6) Disconnect pilot line hoses.
- (7) Disconnect pilot piping.
- (8) Sling the control valve assembly and remove the control valve mounting bolt and bracket.
 - · Weight: 144 kg (317 lb)
 - \cdot Tightening torque : 12.2 \pm 1.3 kgf \cdot m (88.2 \pm 9.4 lbf \cdot ft)
- (9) Remove the control valve assembly. When removing the control valve assembly, check that all the piping have been disconnected.


2) INSTALL

- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from below items.
- ① Cylinder (Boom, arm, bucket)
- ② Swing motor
- ③ Travel motor
- See each item removal and install.
- (3) Confirm the hydraulic oil level and recheck the hydraulic oil leak or not.



2. STRUCTURE 1) INLET SECTION



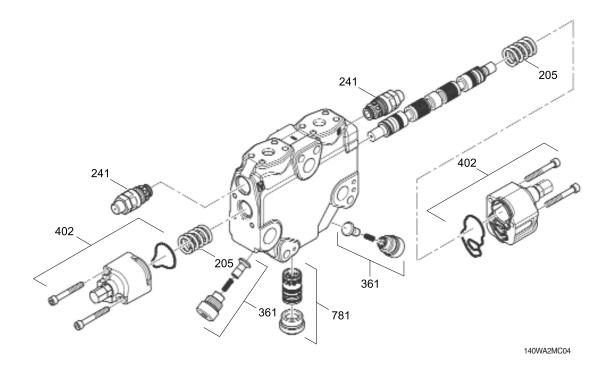
241 Pressure relief valve482 Flow valve

543 Screw681 Pressure relief valve

721 Check valve722 Check valve

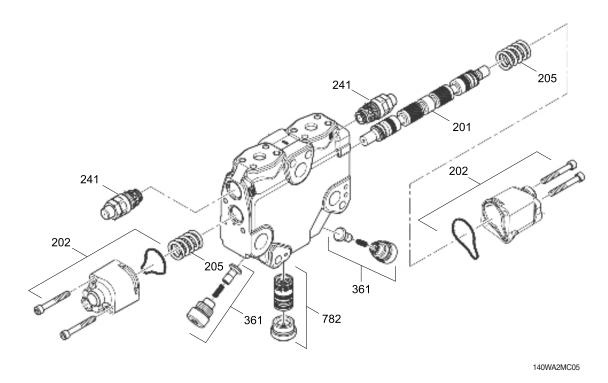
2) BOOM SECTION

202 Cover assy

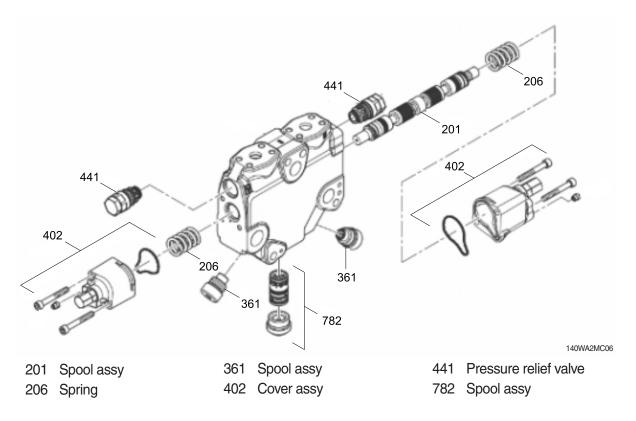

205 Spring

241 Pressure relief valve

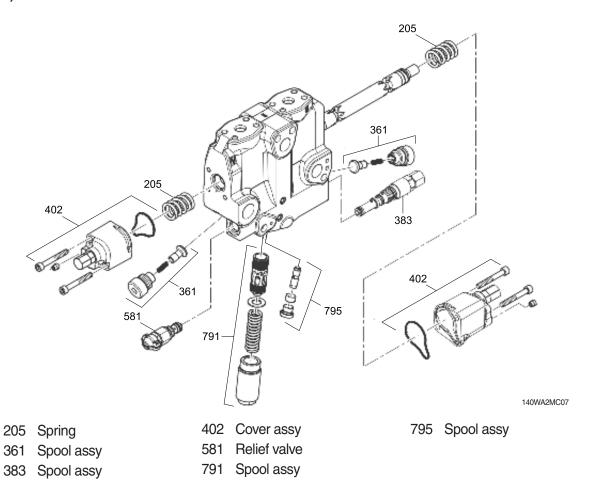
361 Spool assy


781 Spool assy

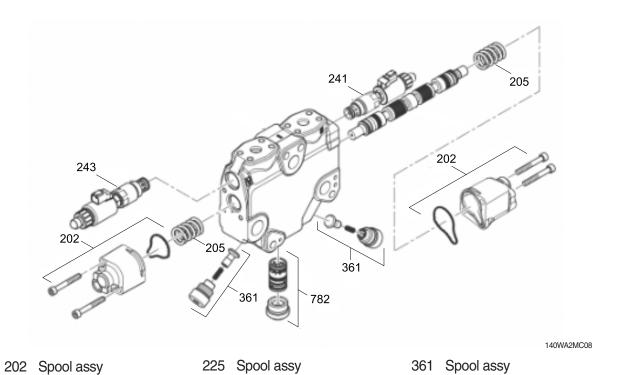
3) ARM SECTION


205 Spring
241 Pressure relief valve
361 Spool assy
402 Cover assy
781 Spool assy
782 Spool assy
783 Spool assy
784 Spool assy
785 Spool assy
786 Spool assy
787 Spool assy
788 Spool assy
789 Spool assy
780 Spool assy
781 Spool assy
781 Spool assy
781 Spool assy
782 Spool assy
783 Spool assy
784 Spool assy
785 Spool assy
786 Spool assy
787 Spool assy
788 Spool assy

4) BUCKET SECTION

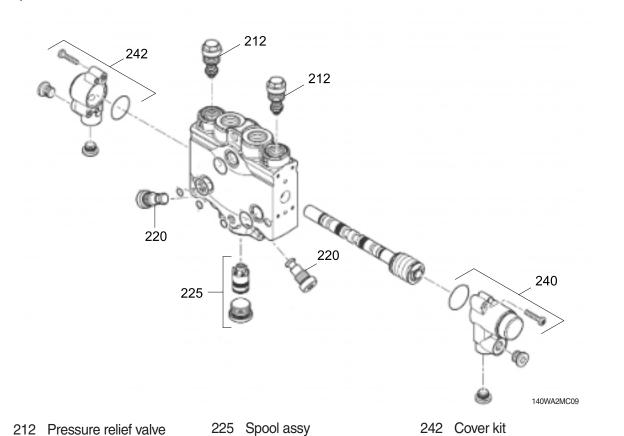


201Spool assy205Spring361Spool assy202Cover assy241Pressure relief valve782Spool assy


5) TRAVEL SECTION

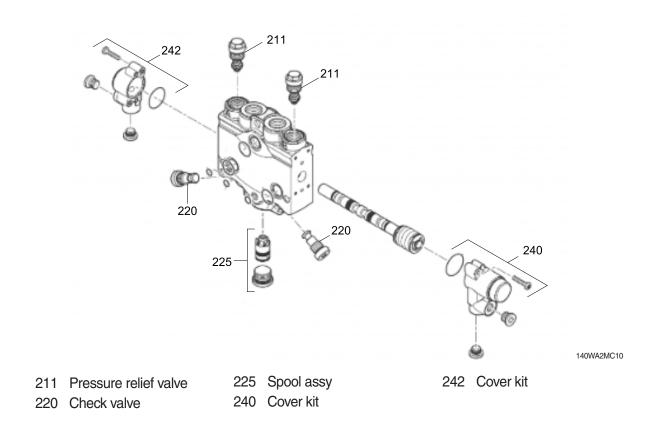
6) SWING SECTION

7) OPTION SECTION


243 Pressure relief valve

781 Spool assy

8) 2 PIECE BOOM SECTION


205 Spring

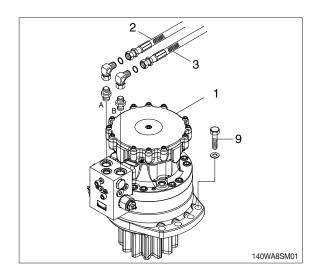
220 Check vavle

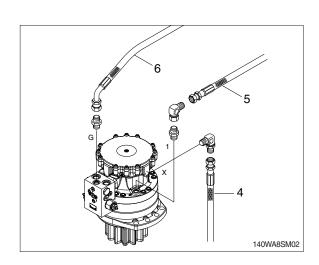
240 Cover kit

9) DOZER (OUTRIGGER) SECTION

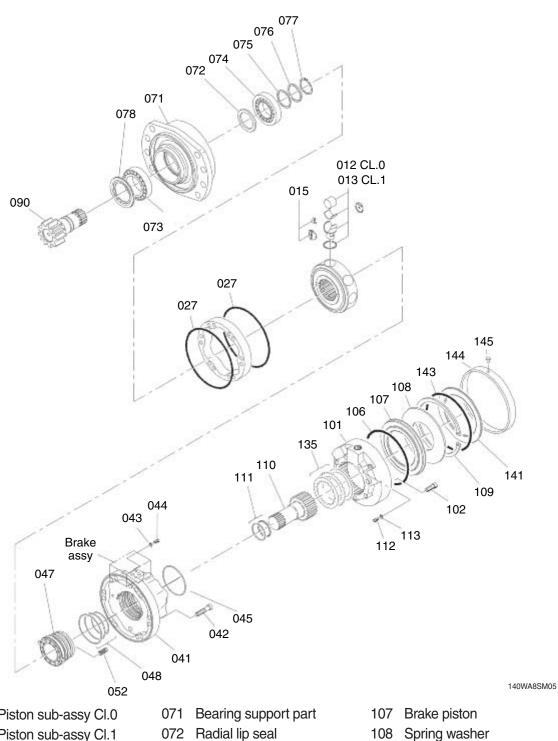
GROUP 5 SWING DEVICE

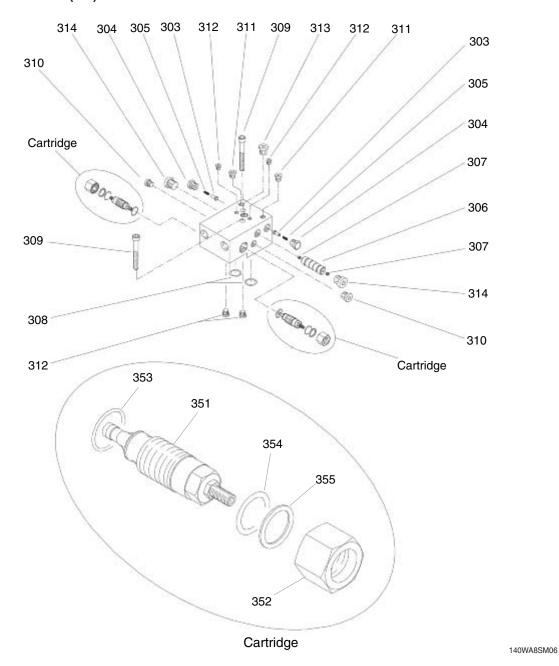

1. REMOVAL AND INSTALL OF MOTOR


1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect hose assembly (2).
- (5) Disconnect pilot line hoses (3, 4, 5, 6).
- (6) Sling the swing motor assembly (1) and remove the swing motor mounting socket bolts (9).
 - · Motor device weight: 148 kg (326 lb)
 - \cdot Tightening torque : 57.9 \pm 6.4 kgf \cdot m (419 \pm 46.3 lbf \cdot ft)
- (7) Remove the swing motor assembly.
- When removing the swing motor assembly, check that all the piping have been disconnected.

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- (2) Bleed the air from the swing motor.
- ① Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- 3 Tighten plug lightly.
- 4 Start the engine, run at low idling and check oil come out from plug.
- 5 Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.



2. SPARE PARTS (1/2)

012	Piston sub-assy Cl.0	071	Bearing support part	107	Brake piston
013	Piston sub-assy Cl.1	072	Radial lip seal	108	Spring washer
015	Repair kit	073	Roller bearing	109	Snap ring
027	Joint seal	074	Roller bearing	110	Brake shaft
041	Valve cover part	075	Set of shims	111	Seal
042	Screw	076	Thrust ring	112	Screw
043	Seal washer	077	Snap ring	113	Sealing ring
044	Screw	078	Lip seal	135	Brake kit
045	O-ring	090	Shaft	141	Protector
047	Valve	101	Brake body	143	O-ring
048	Seal kit	102	Screw	144	Protection plate
052	Spring	106	O-ring	145	Dowel

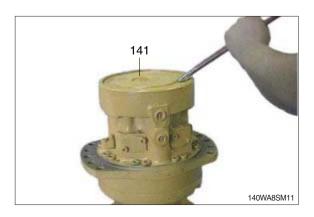
SPARE PARTS (2/2)

302	Cartridge	308	O-ring	314	Plug
303	Valve	309	Screw	353	O-ring
304	Plug	310	Plug	354	O-ring
305	Spring	311	Plug	355	Back-up
306	Valve spool	312	Plug		
307	Nozzle	313	Plug		

3. DISASSEMBLY AND ASSEMBLY

1) TOOLS

1) 10013								
	To	ool name			Remark			
Allen wrench (5, 6, 8, 10, 12, 14)					B			
Hexagon wrench (13, 17, 19, 22, 24, 27, 41)					22			
пелауоп wrenon (13, 17, 19, 22, 24, 27, 41)				., -, 1	27			
Torque wrench					Capable of tightening with the specified torques			
Internal snap ring pliers					For snap ring with 65 mm (2.56") to 120 mm (4.72") in diameter.			
					- Spread : 12 mm (0.98") to 260 mm (10.23") dia.			
					- Max. pulling force : 7138 kgf (15736 lbf).			
3-leg puller						140WA8SM08		
Mandrels f	or the bra	ke						
1) For reas	_				C MAINING			
2) To compress the spring washer.					Milling			
Item	Mano			drel 2	XW FE			
α Δ	mm 190	Inch	190	Inch		QØ		
ØA ØB	180	7.09 7.48	180 190	7.09	T	<u>п</u>		
С	100	3.93	100	3.93				
ØD	35	1.37	35	1.37		11 4		
E	10	0.39	10	0.39	ØA ØB			
F	10	0.39	10	0.39	 4	→		
G	20	0.78	20	0.78		140WA8SM09		
Tool for mechanical brake release					-M16 280 60x30	₹120 ₹16.5 — 50x5		

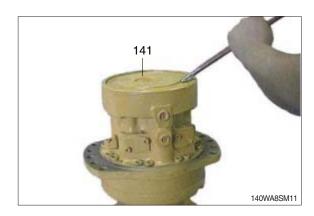

2) MECHANICAL BRAKE RELEASE

In certain service situations, it may be necessary to release the motor brake.

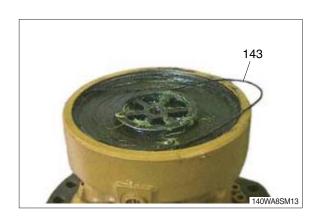
- Plan to supply dowels (145), the brake cover (141) and the O-ring (143).
- (1) Extract the dowels (145).
- (2) Remove the protective plate (144).

(3) Remove and discard the brake cover (141).

(4) Tighten the screw in the piston and tighten the nut until the motor shaft turns freely.


3) REPLACEMENT OF THE O-RING OF THE BRAKE PISTON

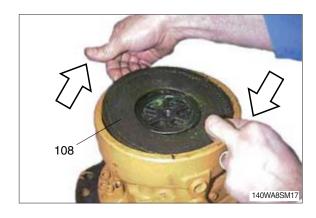
(1) Disassembly

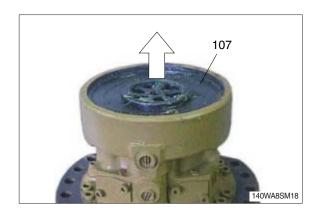

- ① Place the motor on the bearing support.
- Plan to supply dowels (145), the brake cover (141) and the O-ring (143).
- ② Extract the dowels (145).
- ③ Remove the protective plate (144).

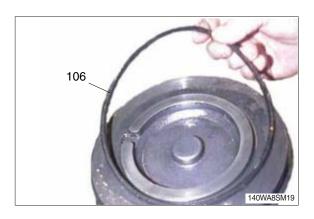
④ Remove and discard the brake cover (141).

⑤ Extract and discard the O-ring (143).

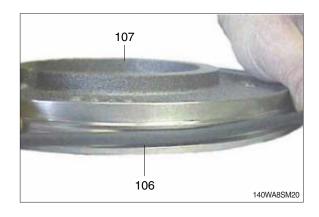
- 6 Compress the washer (108)
 - Using a mandrel and an extractor
 - Using a mandrel and a press


Mark the mounting direction of the snap ring.

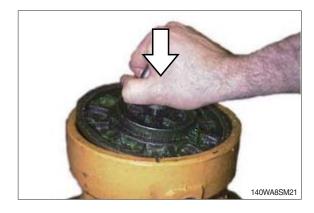

- Remove the snap ring (109) with an internal snap ring pliers.
 - Extractor and pliers : figure 6504 and 6505
 - Press and pliers : figure 6505 and 6507.


8 Extract the washer (108).

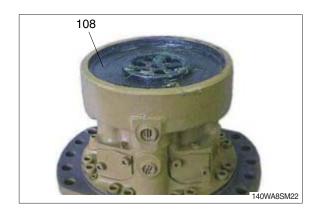
 $\ensuremath{\mathfrak{G}}$ Extract the brake piston (107).



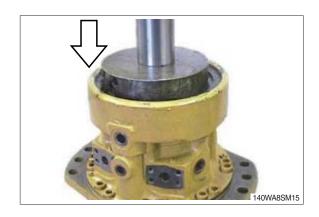
10 Remove and discard the O-ring (106).



(2) Ressembly

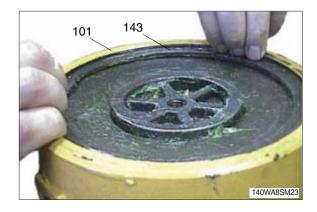

- Before assembling, it is necessary to make sure that all parts, sealing surfaces and grooves are clean.
- All traces of rust, mud, water must be removed.
 - ① Coat with anti-oxidizing grease the grooves, the top of the brake piston, the spring washer, the snap ring and the piston seal contact surface in the brake body.
 - ② Install a new O-ring (106) in the piston (107).
 - The ring should be tight on the piston and not twisted.

- ③ Install the brake piston (107).
- * Take care when passing the seal over the snap ring groove.

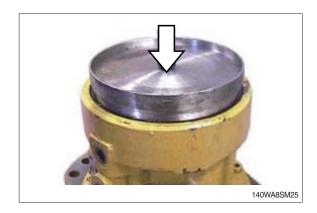


4 Install the spring washer (108).

- 5 Compress the washer (108):
 - Using a mandrel and an extractor
 - Using a mandrel and a press.

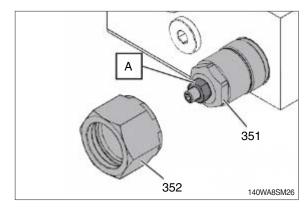


- ⑥ Install the snap ring (109) with an internal snap ring pliers in line with the mark made during disassembly.
 - Extractor and pliers: fig. 6504 and 6505.
 - Press and pliers : fig. 6505 and 6507.



Install a new O-ring (143) coated with anti-oxidizing grease in the groove of brake body (101).

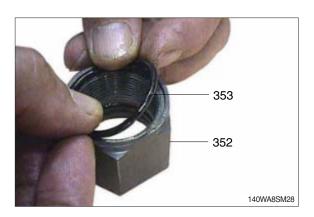
- * Make sure that the outer edge of the cover is engaged in the groove.


- 10 Install the protective plate (144).
- ① Drive the dowels (145).

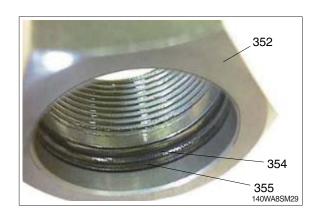
 $\ensuremath{\textcircled{12}}$ Install the motor.

4) REPLACEMENT OF A CARTRIDGE (302) OR RING (353, 354 AND 355) OF THE BLOCK ASSEMBLY

Never loosen the locknut [A] that set the cartridge pressure during the disassembly and reassembly of nut (352) and cartridge (351).



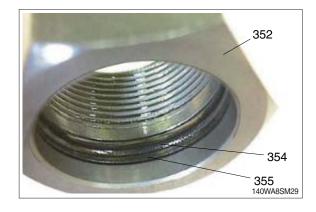
(1) Disassembly

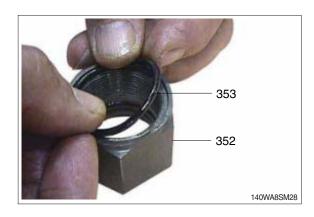

- ① Release the pressure in the supply circuit.
- ② Remove the nut (352) then the cartridge body (351).

③ Discard the O-ring (353).

④ Discard the O-ring (354) and the back-up ring (355).

(2) Reassembly

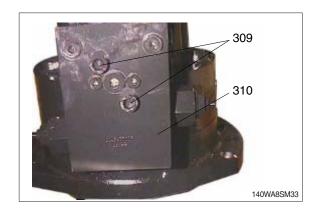

- Make sure that the contact surfaces between the cartridge and the block are clean.
 - ① Install the cartridge (351) without nut (352).


- ② Tighten the cartridge to the required torque.
 - \cdot Tightening torque : 20.3 \pm 2.1 kgf \cdot m (147 \pm 15 lbf \cdot ft)

- ③ Grease and install the back-up (355) and the O-ring (354) in the nut groove (352).
- * The O-ring (354) must be installed towards the thread.

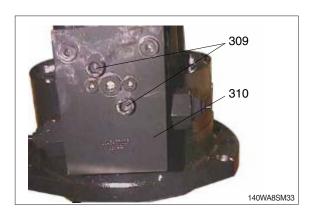
④ Grease and install the O-ring (353) in the nut spot facing (352).

⑤ Install and tighten the nut (352) to the required torque.


 \cdot Tightening torque : 6.1 $^\pm$ 0.6 kgf \cdot m (44.2 $^\pm$ 4.4 lbf \cdot ft)

5) REPLACEMENT OF THE BLOCK ASSEMBLY

(1) Removal


- ① Release the pressure in the supply circuit.
- ② Disconnect the drain line at the tank level to avoid its siphoning.
- ③ Disconnect and plug the pipes or hoses which are connected to the block.
- 4 Remove the mounting screws (309).

⑤ Remove the block (300) and discard the O-rings (308). (See spare parts).

(2) Installation

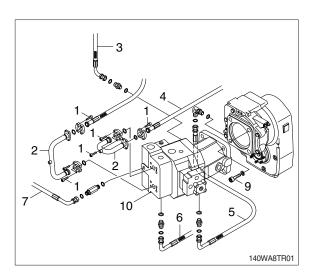
- Make sure that the mounting face is clean.
 - ① Grease and install new O-rings (308).
 - ② Install the block, the mounting face allows one mounting position only.
 - ③ Install and tighten the mounting screws (309) to the required torque.

GROUP 6 TRAVEL MOTOR

1. REMOVAL AND INSTALL

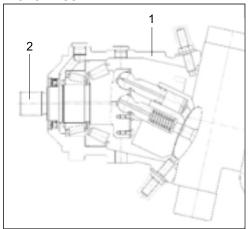
1) REMOVAL

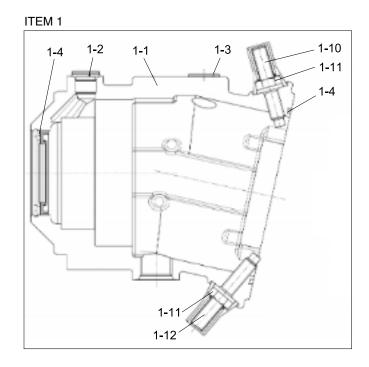
- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the socket bolt (1) and remove the pipes (2).
- (5) Disconnect hoses (3, 4, 5, 6, 7).
- (6) Loosen the socket bolt (9) and remove travel motor (10).
 - · Weight: 56 kg (120 lb)
 - \cdot Tightening torque : 35.6 \pm 7.1 kgf \cdot m


 $(257 \pm 51.4 \, lbf \cdot ft)$

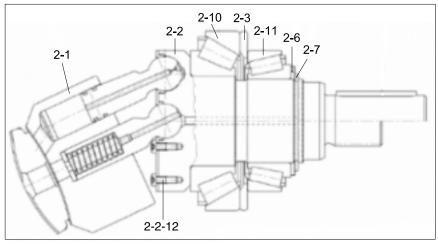
When removing the travel motor assembly, check that all the hoses have been disconnected.

2) INSTALL


- Carry out installation in the reverse order to removal.
- (2) Confirm the hydraulic oil level and check the hydraulic oil leak or not.



2. STRUCTURE (1/3) 1) HIGH SPEED


MOTOR ASSY

- 1 Motor housing assy
- 2 Rotary kit

ITEM 2

140WA2TR10

1_1	$H \cap$	using
1 - 1	110	usii iu

1-2 Lock screw

1-3 Lock screw

1-4 Motor seal kit

1-10 Threaded pin

1-11 Sealing nut

1-12 Threaded pin

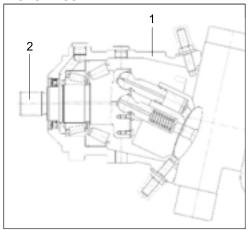
2-1 Hydraulic rotary section

2-2 Drive shaft

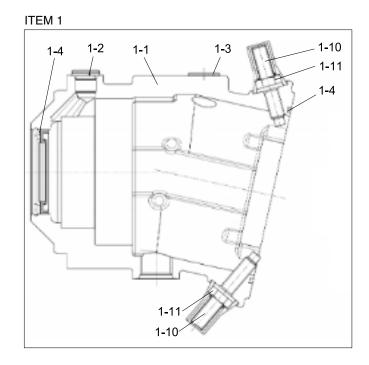
2-2-12 Screw

2-3 Shim

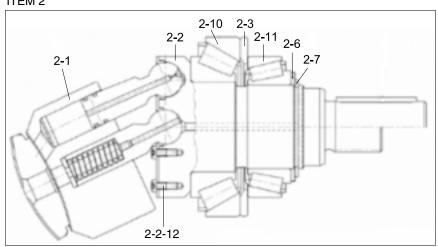
2-6 Backup plate


2-7 Retainer ring

2-10 Roller bearing

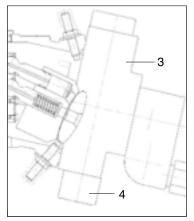

2-11 Roller bearing

2) LOW SPEED


MOTOR ASSY

- 1 Motor housing assy
- 2 Rotary kit

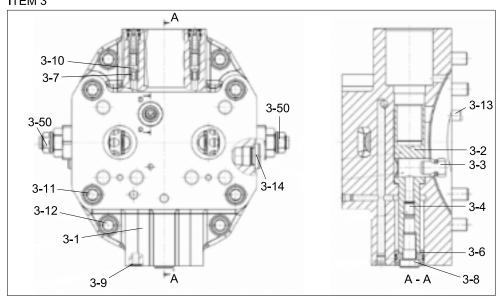
ITEM 2



- 1-1 Housing
- 1-2 Lock screw
- 1-3 Lock screw
- 1-4 Motor seal kit
- 1-10 Threaded pin
- 1-11 Sealing nut
- 2-1 Hydraulic rotary section
- 2-2 Drive shaft
- 2-2-12 Screw
 - 2-3 Shim

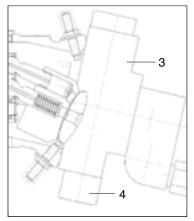
- 2-6 Backup plate
- 2-7 Retainer ring
- 2-10 Roller bearing
- 2-11 Roller bearing

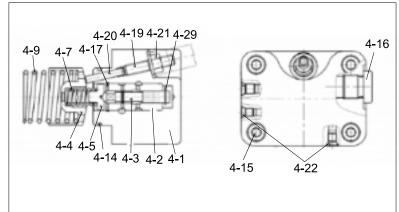
STRUCTURE (2/3) 1) HIGH SPEED


MOTOR ASSY

4-20 4-19 4-21 4-29 4-9 4-7 4-17 4-4 4-5 4-14 4-3 4-2 4-1

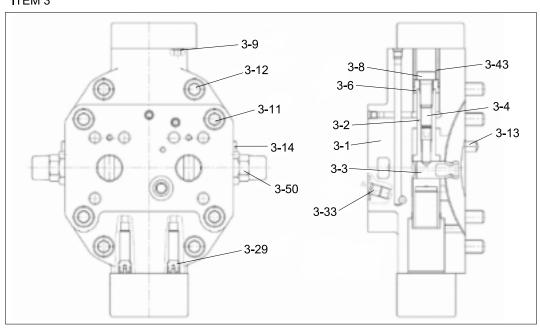
- 3 Port plate assy
- 4 Control unit


ITEM 3


3-1	Port plate	3-12	Socket screw 4		Pressure spring
3-2	Positioning piston	3-13	Cylinder pin	4-14	O-ring
3-3	Positioning trunnion	3-14	Locking screw	4-15	Socket screw
3-4	Threaded pin	3-50	Relief valve	4-16	Locking screw
3-6	Piston ring	4-1	Control housing	4-17	Retainer ring
3-7	Bushing	4-2	Control bushing	4-19	Thread pin
3-8	Socket screw	4-3	Control piston	4-20	Cylinder pin
3-9	O-ring	4-4	Adjust bushing	4-21	Seal lock nut
3-10	Check valve	4-5	Spring collar	4-22	Break pin
3-11	Socket screw	4-7	Pressure spring	4-29	Retainer disc

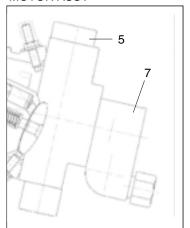
2) LOW SPEED

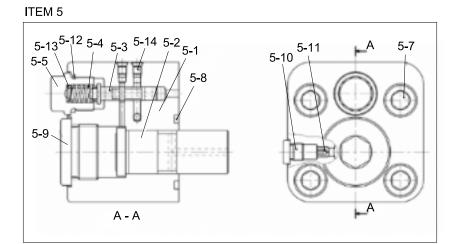
MOTOR ASSY



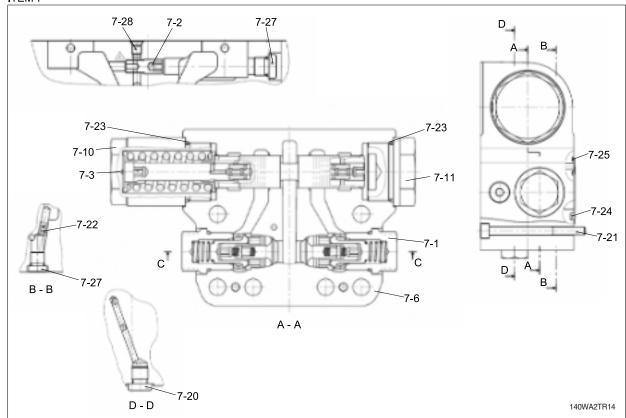
ITEM 4

- 3 Port plate assy
- 4 Control unit

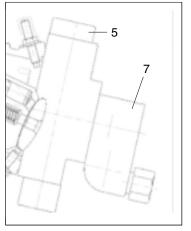

ITEM 3


3-1	Port plate	3-14	Locking screw	4-9	Pressure spring
3-2	Positioning piston	3-29	Plug	4-14	O-ring
3-3	Positioning trunnion	3-33	Lock screw	4-15	Socket screw
3-4	Threaded pin	3-43	Stop bushing	4-16	Locking screw
3-6	Piston ring	3-50	Relief valve	4-17	Retainer ring
3-8	Socket screw	4-1	Control housing	4-19	Thread pin
3-9	O-ring	4-2	Control bushing	4-20	Cylinder pin
3-10	Check valve	4-3	Control piston	4-21	Seal lock nut
3-11	Socket screw	4-4	Adjust bushing	4-22	Break pin
3-12	Socket screw	4-5	Spring collar	4-29	Retainer disc
3-13	Cylinder pin	4-7	Pressure spring		

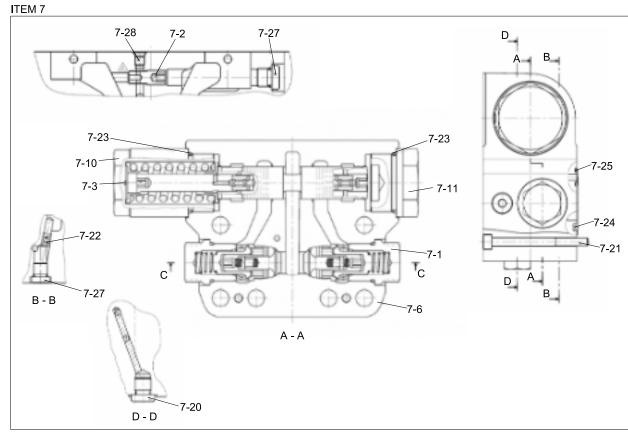
STRUCTURE (3/3) 1) HIGH SPEED


MOTOR ASSY

5 Hydraulic stroke limiter7 Motion control valve assy


ITEM 7

5-1	Limiter housing	5-11	Orifice	7-11	Locking screw
5-2	Piston	5-12	O-ring	7-20	Locking screw
5-3	Control piston	5-13	Shim	7-21	Socket screw
5-4	Pressure spring	5-14	Break pin	7-22	Plug
5-5	Lock screw	7-1	Valve	7-23	O-ring
5-7	Socket screw	7-2	Shuttle valve	7-24	O-ring
5-8	O-ring	7-3	Brake piston assy	7-25	O-ring
5-9	Lock screw	7-6	Housing	7-27	Locking screw
5-10	Lock screw	7-10	Locking screw	7-28	Break pin


2) LOW SPEED

MOTOR ASSY

5 Hydraulic stroke limiter

7 Motion control valve assy

5-1	Cover	7-10 Locking sc	Locking screw 7-24 O-	
5-3	Throttle screw	7-11 Locking sc	rew 7-25	O-ring
7-1	Valve	7-20 Locking sc	rew 7-27	Locking screw
7-2	Shuttle valve	7-21 Socket scr	ew 7-28	Break pin
7-3	Brake piston assy	7-22 Plug		
7-6	Housing	7-23 O-ring		

3. TIGHTENING TORQUE

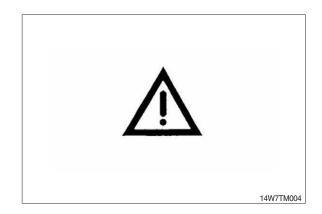
The torques given are standard figures. Any figures specifically described in the procedure has priority.

Page	Item	Size	kgf · m	lbf ⋅ ft
8-54, 55	1-2	M22 × 1.5	6.1	44
	1-3	M26 × 1.5	7.1	51
	1-11	M12	7.0	50.9
	2-2-12	M 6 × 20	1.4	10.3
8-58	5-5	-	32.6	236
	5-7	M10 × 1.0	5.2	37.6

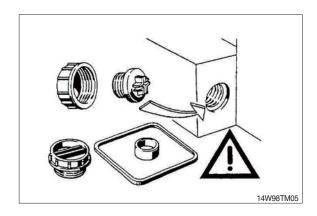
4. DISASSEMBLY AND ASSEMBLY

1) GENERAL PRECAUTIONS

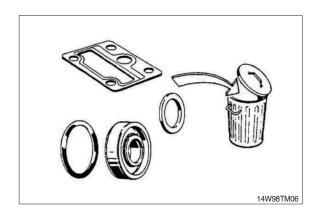
(1) Disassembly

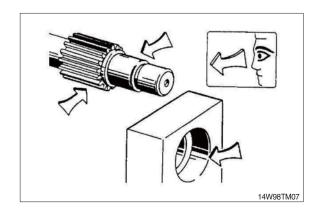

- ① Before disassembling the motor, check the items to be inspected and, for remedy against trouble, closely examine the nature of the trouble, so that the motor can be disassembled effectively.
- ② To disassemble the motor, use the disassembling procedures described in section 2) and select a clean place.
- ③ Place a rubber or vinyl sheet or other such protective materials on your working bench to protect the surface of the motor to be serviced.
- ① During disassembly, give a match mark to the mating surfaces of each part.
- ⑤ Arrange removed parts in order so that they will not become damaged or missing during disassembly.
- ⑥ Once seals have been disassembled, they should be replaced even if damage is not observed. Have replacement seals ready on hand before starting your disassembling job.

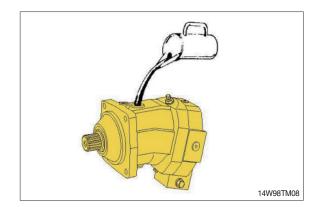
(2) Assembly

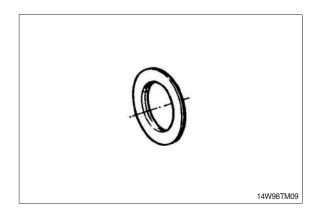

- ① Reassemble in a work area that is clean and free from dust and grit.
- ② Handle parts with bare hands to keep them free of linty contaminants.
- ③ Repair or replace the damaged parts.
 - Each parts must be free of burrs its corners.
- ① Do not reuse O-ring oil seal and floating seal that were removed in disassembly. Provide the new parts.
- (5) Wash all parts thoroughly in a suitable solvent.
 - Dry thoroughly with compressed air.
 - Do not use the cloths.
- When reassembling oil motor components of motor, be sure to coat the sliding parts of the motor and valve with fresh hydraulic oil. (NAS class 9 or above)
- ① Use a torque wrench to tighten bolts and plugs, to the torque specified as follows.

2) SEAL KITS AND COMPONENT GROUPS

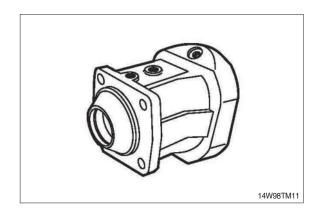

Observe the following notices when carrying out repair work at hydraulic aggregates.

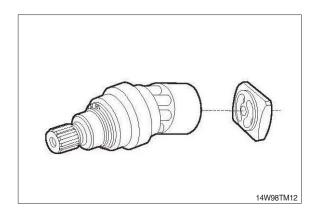

(1) Close all ports of the hydraulic aggregates.

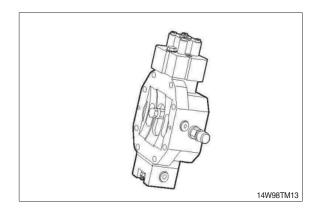

(2) Replace all seals.
Use only original spare parts.

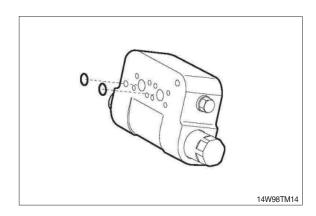

- (3) Check all seal and sliding surfaces for wear.
- Rework of sealing area f.ex. with abrasive paper can damage surface.

- (4) Fill up hydraulic aggregates with hydraulic oil before start up.
- Without fill up bearing damage happens!


(5) Seal kit for drive shaft

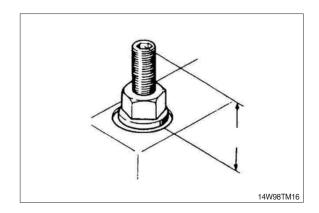

(6) External seal kit.

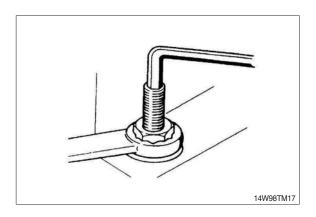

(7) Housing.


(8) Complete rotary group.

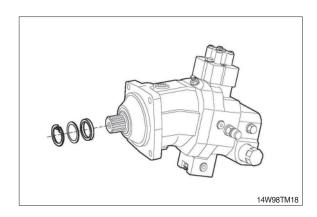

(9) Port plate with control piston.

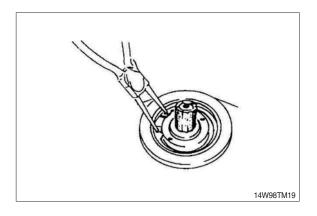
(10) Counter balance valve.

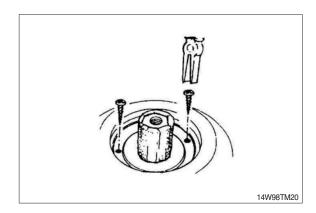

(11) Relief valve.

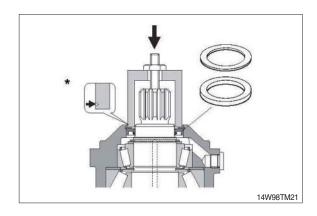

3) SEAL NUT

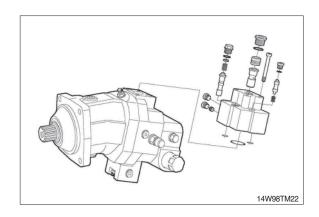
(1) Replace seal nut.


First measure and record setting height.

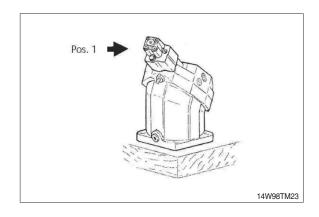

(2) When tightening, counterhold setting screw, then check setting height.


4) SEALING THE DRIVE SHAFT

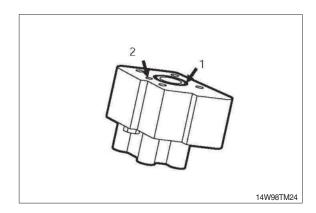

(1) Protecting the drive shaft. Remove retaining ring and shim.


(2) Screw in sheet metal screw into the holes fitted with rubber.Pull out seal with pliers.

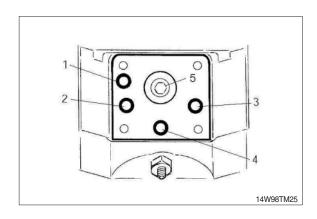
- (3) Press in shaft seal and shim with bush to stop.
- ▲ Pay attention to pressing depth.
 - * Mark for pressing depth. Assemble retaining ring.

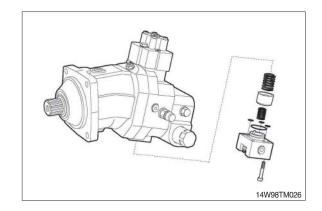


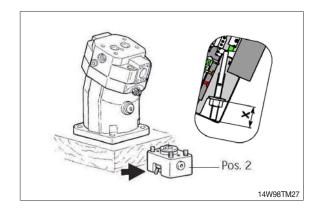
5) SEALING OF THE CONTROL PARTS

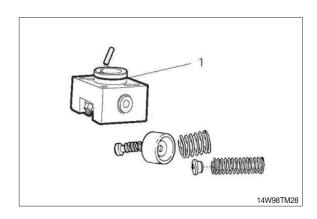


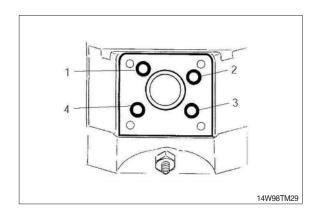
(1) Disassembly position


Remove cover pos.1.

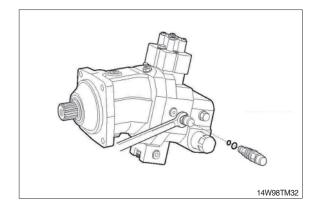

- 1 O-ring
- 2 Input flow of oil control
- Installation position differs according to the control components.


- 1 Input flow of oil control
- 2 High pressure / Low pressure
- 3 High pressure / Low pressure
- 4 Leakage oil
- 5 Control piston

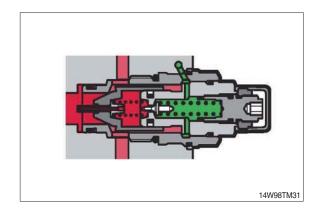

- (2) Disassembly position: Remove cover 2.
- * Attention spring load.


Dimension X : Note dimension (begin of regulation)

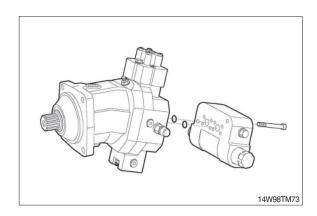
1 Check of O-ring



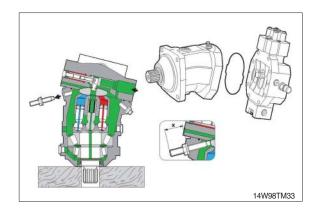
- 1 O-ring / High pressure-small control position side
- 2 O-ring / Control pressure
- 3 O-ring / High pressure-check valve
- 4 O-ring / High pressure-check valve



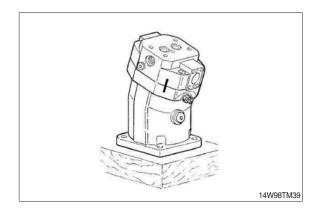
6) SEALING OF THE RELIEF VALVE / COUNTER BALANCE VALVE


(1) Remove relief valve.

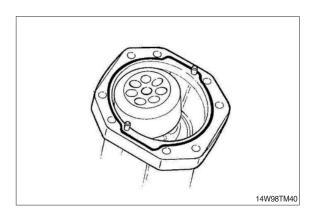
(2) Inspect O-ring

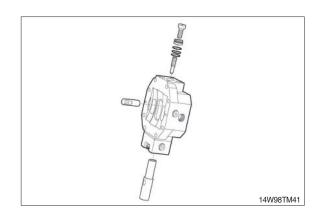


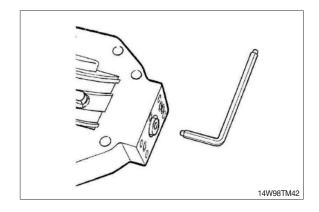
(3) Remove counter-balance valve.
Inspect
O-ring

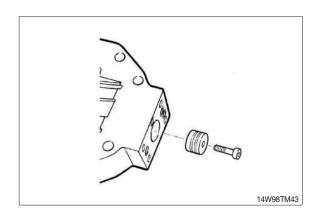


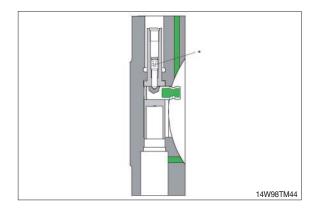
7) DISASSEMBLY OF THE PORT PLATE

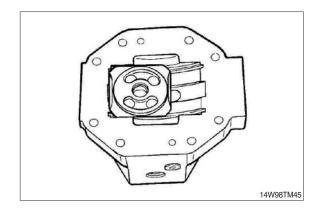

- · Note dimension X
- · Remove Qmin screw
- · Swivel rotary group to zero P
- For disassembly of the port plate, swivel always rotary group to zero position. Piston rings to hang out of the cylinder boring.

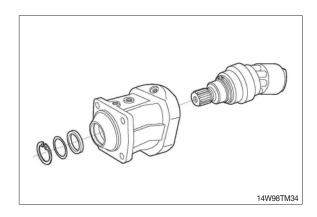

Port plate.
 Mark position. Loosen screws.
 Removal.

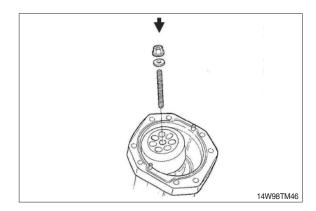

- (2) Check O-ring.
- Stick new O-ring with some grease. Do not swivel rotary group. Piston rings to hang out from the cylinder boring.

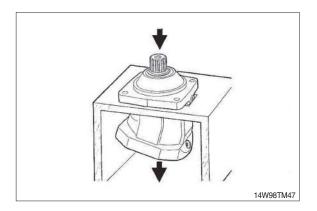

8) REMOVE OF THE POSITIONING PISTON


(1) Loosen fixing screw.
Use only socket wrench.

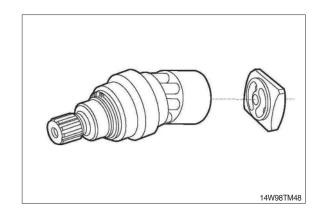

(2) Remove piston with piston ring.


- (3) Warm up fixation screw * for positioning plug via boring (screw glued-to turn out).
- W Use new screw.Precote coating.Note tightening torque.

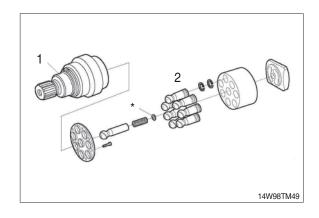

- Stick control lens in sliding surface with grease. Assembly in reversal order. Mount port plate.
- * Rotary group vertical.


9) REMOVE ROTARY GROUP

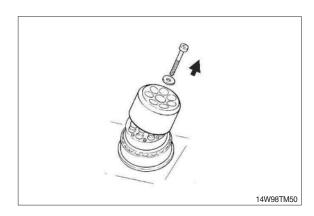
(1) Screw in threaded pin into center pin. Fix the cylinder with disc and locknut. M8 \times 105 ℓ



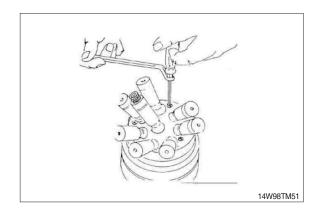
- (2) Press out rotary group.
- If the bearings are used again do not hit on the drive shaft.


10) EXCHANGING OF THE ROTARY GROUP

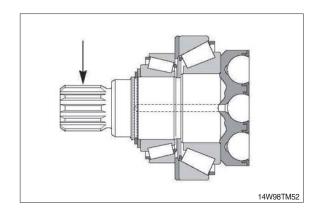
Complete rotary group Setting of hydraulic part necessary.



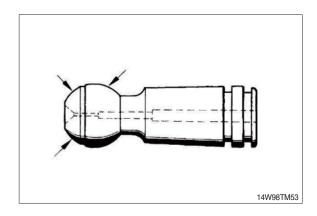
Rotary group


- 1 Mechanical part : Adjust drive shaft with bearing
- 2 Hydraulic part : Adjustment necessary

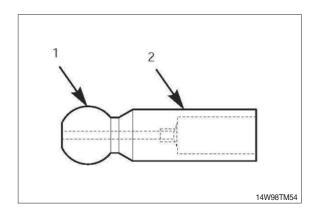
(1) Remove fixing screw (cylinder). Remove cylinder.



- (2) Disassemble retaining plate.
- Screws are glued.
 Use Torx tools.


11) INSPECTION INSTRUCTIONS

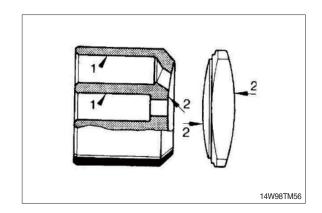
(1) Free of corrosion, erosion or fretting; No damage to splines or keyways.


(2) Pistons

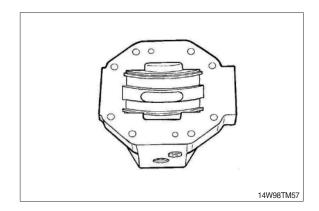
No scoring and no pittings.


(3) Center pin

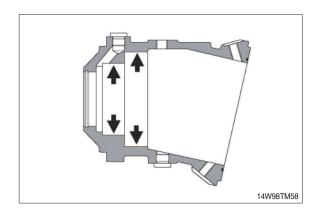
No scoring and no pittings.


(4) Retaining plate

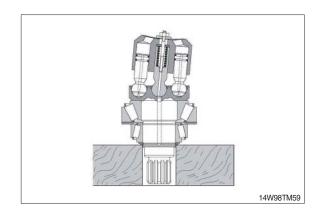
No scoring and no evidence of wear.


(5) Cylinder block / Control lens

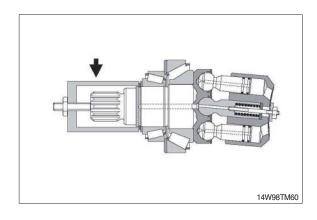
- 1 Bores free of scoring, no evidence of wear
- 2 Faces smooth and even, free of cracks and scoring


(6) Control housing

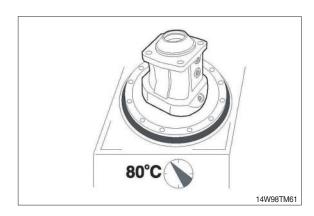
Sliding surface and side guides free of scoring and no wear.

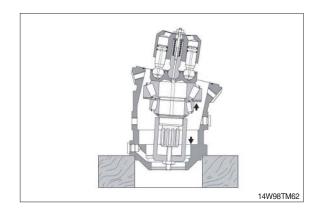

(7) Visual check

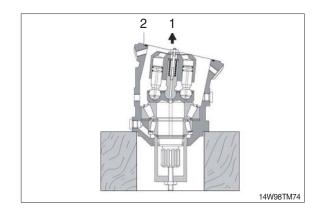
Bearing areas free of scoring and no evidence of wear.



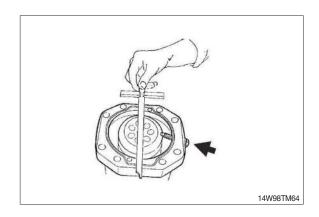
12) ROTARY GROUP ASSEMBLY


(1) Rotary group completely assembled ready for assembly.

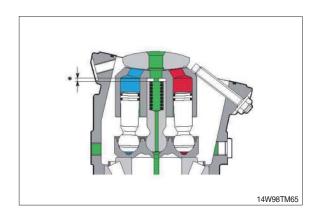

(2) Place assembly sleeve.


(3) Warm up housing to 80°C.

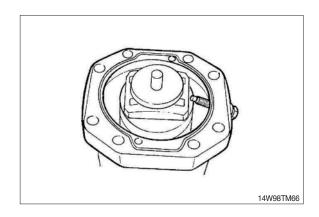
(4) Insert rotary group into housing to seat position.

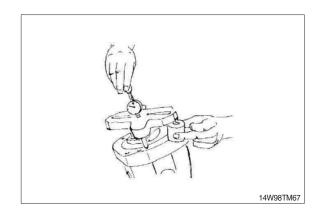


- (5) Fix zero position of cylinder with Q_{max} screw.
 - 1 Disassemble cylinder fixing screw
 - 2 Insert O-ring



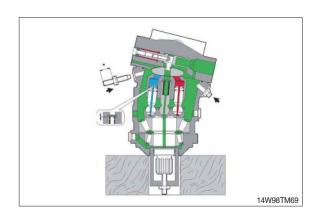
13) ROTARY GROUP ADJUSTMENT

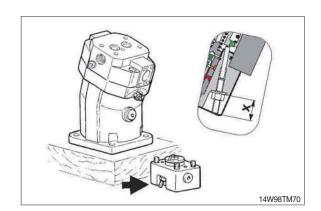

(1) Determine cylinder swivel range to max angle with screw.

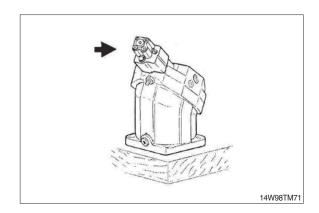

(2) * Disc

(3) Place centering disc.

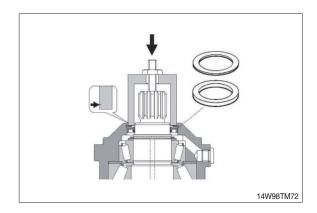
(4) Mount measuring device.

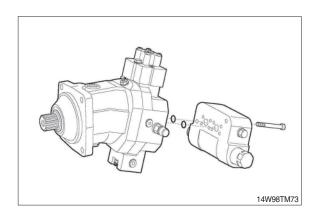



(5) Check dimension X.


14) ASSEMBLY OF THE PORT PLATE

- (1) Assemble port plate.
- * Take care of assembly design. Tighten fixing screws with torque.
- (2) Set Qmin screw to dimension(*).
- (3) Assemble plug.
- (4) Remove assembly sleeve.
- (5) Assemble control components.




(6) Assemble cover.

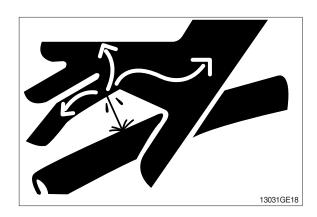
- (7) Assemble shaft seal, disc and safety ring. Press in with assembly sleeve.
- $\mbox{\%}$ Take care of press in depth.

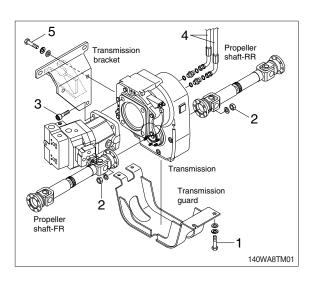
(8) Assemble counter balance valve.

GROUP 7 TRANSMISSION

1. REMOVAL AND INSTALL

1) REMOVAL


- (1) Swing the work equipment 90° and lower it completely to the ground.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.


▲ Escaping fluid under pressure can penetrate the skin causing serious injury.

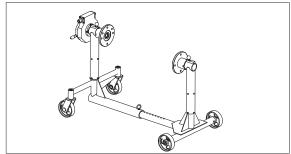
- When pipes and hoses are disconnected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Remove the transmission guard plate mounting bolt (1) if equipped.
- (5) Remove the propeller shaft mounting nuts (2).
 - \cdot Tightening torque : 5.9 \pm 0.6 kgf \cdot m (42.7 \pm 4.3 lbf \cdot ft)
- (6) Remove the travel motor mounting bolt (3).
 - · Tightening torque : $35.6\pm7.1 \text{ kgf} \cdot \text{m}$ (257 $\pm51.4 \text{ lbf} \cdot \text{ft}$)
- (7) Remove the hoses (4).
 Fit blind plugs to the disconnected hoses.
- (8) Remove the mounting bolts (5), then remove the transmission device assembly.
 - · Weight: 135 kg (298 lb)
 - · Tightening torque : $44.0\pm2.0 \text{ kgf} \cdot \text{m}$ (318 $\pm14.5 \text{ lbf} \cdot \text{ft}$)

2) INSTALL

- Carry out installation in the reverse order to removal.
- (2) Bleed the air from the transmission.
- ① Remove the air vent plug.
- ② Pour in hydraulic oil until it overflows from the port.
- ③ Tighten plug lightly.
- ④ Start the engine, run at low idling, and check oil come out from plug.
- ⑤ Tighten plug fully.
- (3) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

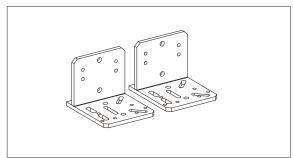
2. GENERAL INSTRUCTIONS

1) GENERAL WORKING INSTRUCTIONS

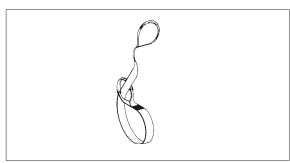

- (1) This manual has been developed for the skilled serviceman, trained by manufacturer.
- (2) During all operations, pay attention to cleanliness and skilled working. Therefore,transmission removed from the machine must be cleaned prior to open them.
- (3) We assume that the special tools, specified by manufacturer, will be used. The special tools are available from manufacturer.
- (4) After the disassembly, all components must be cleaned, especially corners, cavities and recesses of housing and covers.
- (5) The old sealing compound must be carefully removed.
- (6) Check lubricating holes, grooves and pipes for free passage. They must be free of residues, foreign material or protective compounds.
- (7) The latter refers especially to new parts.
- (8) Parts which have been inevitably damaged in a disassembly operation, must be generally replaced by new ones, e.g. rotary seal rings, O-rings, U-section rings, cap boots, protective caps etc..
- (9) Components such as roller bearings, thrust washers, synchronizing parts etc. which are subject to normal wear in automotive operation, must be checked by the skilled Serviceman. He will decide if the parts can be reused.
- (10) For the heating of bearings etc., hot plates, rod heaters or heating furnaces must be used.
- (11) Never heat parts directly with the flame. An auxiliary solution would be to immerse the bearing in a vessel filled with oil, which is then heated with the flame. In this way, damage to the bearings could be avoided.
- (12) Ball bearings, covers, flanges and parts like that must be heated to about 90 to 100°C.
- (13) Hot-mounted parts must be reset after cooling in order to assure a proper contact.
- (14) Before pressing shafts, bearings etc. in position, both parts must be lubricated.
- (15) During to reassembly, all specified adjustment values, testing specifications and tightening torque must be respected.
- (16) After the repair, units are filled up with oil.
- (17) After the oil filling, the oil level plugs and oil drain plugs must be tightened to the specified tightening torque.

2) IMPORTANT INSTRUCTIONS CONCERNING THE LABOUR SAFETY

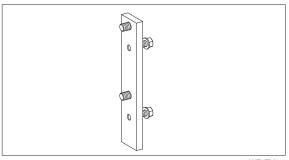
- (1) In principle, repairers are themselves responsible for the labour safety.
- (2) The observance of all valid safety regulations and legal rules is a precondition to prevent damage to individuals and products during the maintenance and repair operations.
- (3) Before starting the work, the repairers have to make themselves familiar with these regulations.
- (4) The proper repair of these products requires especially trained personnel.
- (5) The repairer himself is obliged to provide for the training.


3. SPECIAL TOOLS FOR DISASSEMBLY AND REASSEMBLY

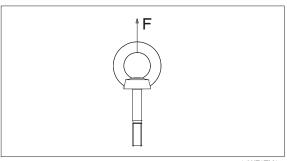
1) Assembly truck assy with tilting device 5870 350 000


14WF8TM01

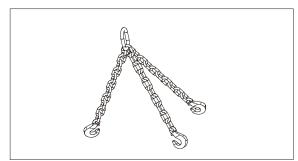
2) Supporting bracket 5870 350 106


14WF8TM02

3) Lifting strap5870 281 026

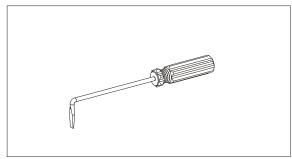

14WF8TM03

4) Fixture 5870 350 079

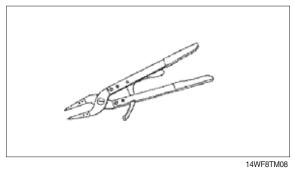


14WF8TM04

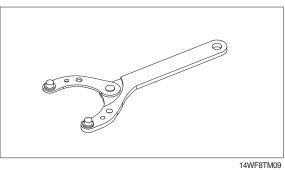
5) Eye bolt assortment5870 204 002



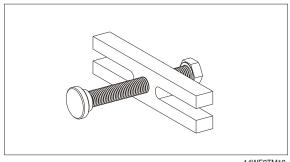
6) Lifting chain 5870 221 047


14WF8TM06

7) Resetting device 5870 400 001



14WF8TM07


8) Clamping pliers 5870 900 021

9) Clamping fork 5870 240 025

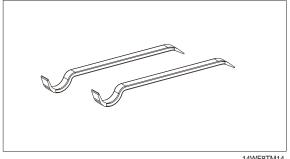
10) Extractor 5870 000 017



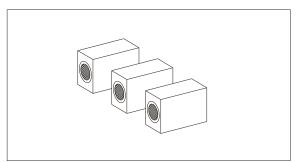
11) Rapid grip 5873 012 021


14WF8TM11

12) Basic tool 5873 002 001


14WF8TM12

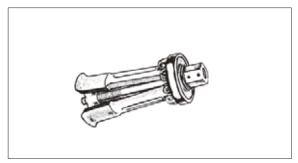
13) Cut-off device 5870 300 028


14WF8TM13

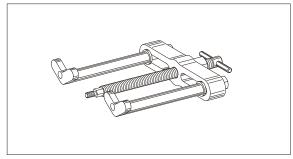
14) Assembly lever 5870 345 036

14WF8TM14

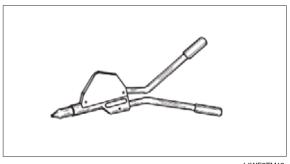
15) Solenoid block 5870 450 003



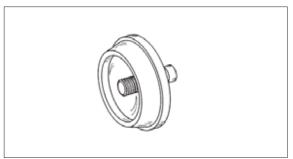
16) Grab sleeve 5873 001 037


14WF8TM16

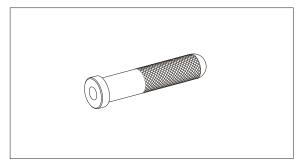
17) Inner extractor 5870 300 019


14WF8TM17

18) Counter support 5870 300 020

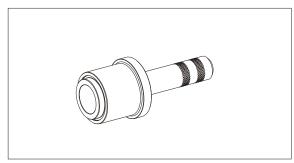

14WF8TM18

19) Lever riveting tongs 5870 320 016

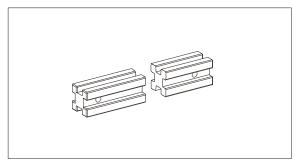


14WF8TM19

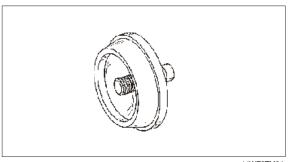
20) Driver tool 5870 058 073



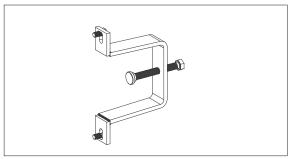
21) Handle 5870 260 002


14WF8TM21

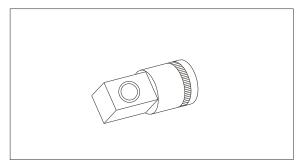
22) Driver tool 5870 048 281


14WF8TM22

23) Straightedge 5870 200 108

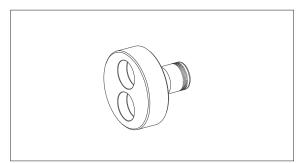

14WF8TM23

24) Driver tool 5870 058 078

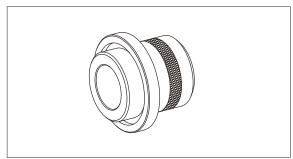


14WF8TM24

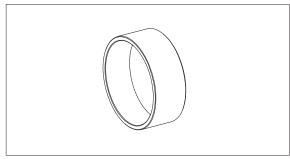
25) Clamping bar 5870 654 049



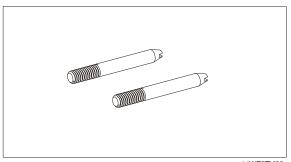
26) Reduction 5870 656 056


14WF8TM26

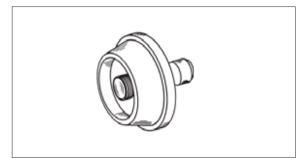
27) Plug insert AA00 392 461


14WF8TM27

28) Driver tool 5870 048 279

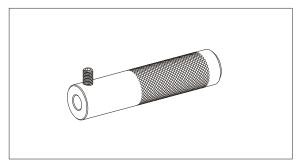

14WF8TM28

29) Pressure piece 5870 506 150

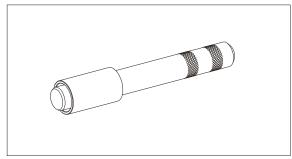


14WF8TM29

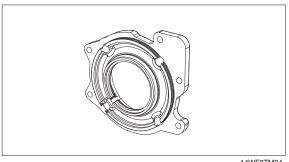
30) Adjusting screws (M12) 5870 204 021



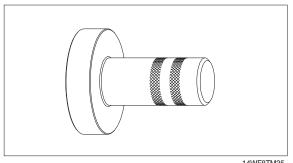
31) Driver tool 5870 058 051


14WF8TM31

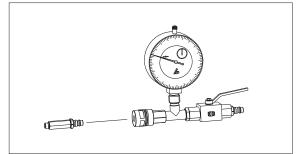
32) Press-fit mandrel AA00 392 151


14WF8TM32

33) Driver tool 5870 048 283

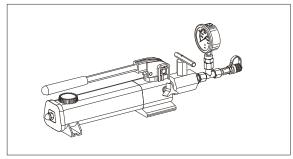

14WF8TM33

34) Measuring device 5870 200 131

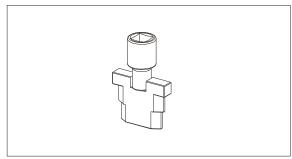


14WF8TM34

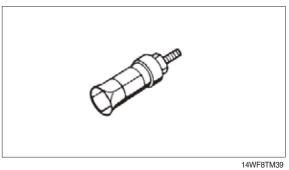
35) Driver tool 5870 506 161



36) Air connection 5870 505 012

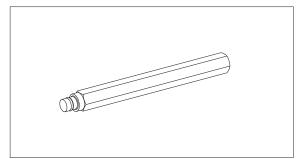

14WF8TM36

37) HP pump 5870 287 007

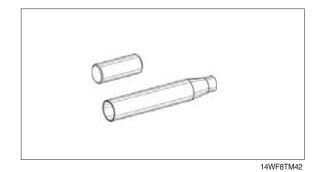

14WF8TM37

38) Spline mandrel 5870 510 039

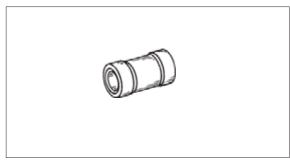
14WF8TM38


39) Inner extractor 5870 300 012

40) Counter support 5870 300 011



41) Driver tool 5870 705 003



14WF8TM41

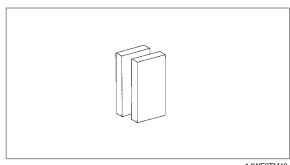
42) Inner installer 5870 651 055

43) Calibrating mandrel 5870 651 056

4. COMMERCIAL TOOLS FOR DISASSEMBLY AND REASSEMBLY

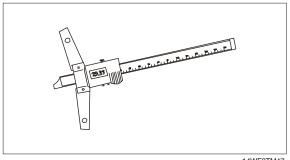
1) Magnetic stand 5870 200 055

14WF8TM44


2) Dial indicator 5870 200 057

14WF8TM45

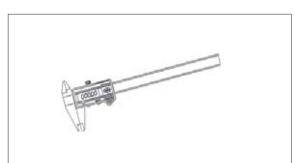
3) Gauge blocks


5870 200 066 70 mm 5870 200 067 100 mm

14WF8TM46

4) Digital depth gauge

5870 200 072 200 mm 5870 200 114 300 mm



14WF8TM47

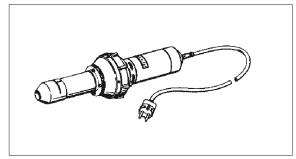
5) Digital caliper gauge

5870 200 109

150 mm

6) Torque wrench

5870 203 030	0.6 -6.0 Nm
5870 203 031	1.0 – 12 Nm
5870 203 032	3.0 – 23 Nm
5870 203 033	5.0 – 45 Nm
5870 203 034	10 – 90 Nm
5870 203 039	80 – 400 Nm
5870 203 016	140 – 750 Nm
5870 203 011	750 - 2000 Nm


14WF8TM49

14WF8TM50

7) Hot air blower

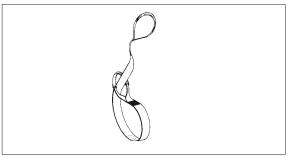
5870 221 500	230 V
5870 221 501	115 V

14WF8TM51

8) Plastic hammer

5870 280 004 Ø 60 mm

Substitute nylon insert

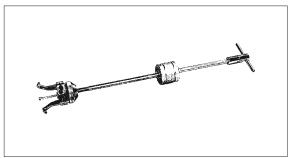

5870 280 006

14WF8TM52

9) Lifting strap

5870 281 026

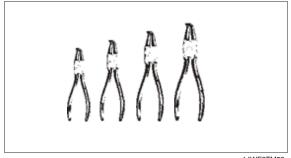
10) Lifting chain 5870 281 047


14WF8TM54

11) Pry bar 5870 345 071

14WF8TM55

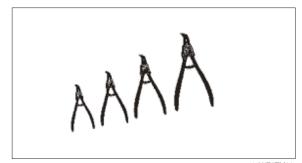
12) Striker 5870 650 004


14WF8TM56

13) Set of internal pliers 11-12-13-14 5870 900 013

14WF8TM57

14) Set of internal pliers I11-I21-I31-I41 90° 5870 900 014


14WF8TM58

15) Set of external pliers A1-A2-A3-A4 5870 900 015

14WF8TM59

16) Set of external pliers A01-A02-A03-A04 90° 5870 900 016

14WF8TM60

17) Two-armed	l puller
---------------	----------

5870 970 001	
Jaw width	80 mm
Throat depth	100 mm
5870 970 002	
Jaw width	120 mm
Throat depth	125 mm
5870 970 003	
love veidth	170 mm

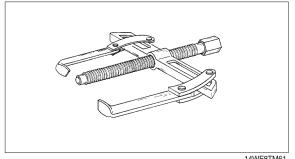
5870 970 004

Jaw width 200 mm 175 mm Throat depth

5870 970 006

350 mm Jaw width Throat depth 250 mm

5870 970 007


Jaw width 520 mm 300 - 500 mm Throat depth

5870 970 026

Jaw width 250 mm Throat depth 200 mm

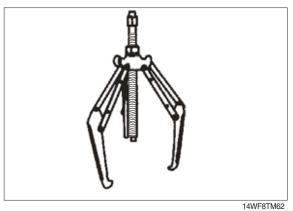
5870 970 028

Jaw width 380 mm Throat depth 200 mm

18) Three armed puller

Throat depth

5870 971 006 Jaw width


Throat depth

5870 971 001 Jaw width Throat depth	85 mm 65 mm
5870 971 002 Jaw width Throat depth	130 mm 105 mm
5870 971 003 Jaw width Throat depth	230 mm 150 mm
5870 971 004 Jaw width Throat depth	295 mm 235 mm
5870 971 005 Jaw width	390 mm

230 mm

640 mm

290 mm

5. SEPARATE TRANSMISSION FROM AXLE HOUSING

(only for version Axle attachment)

1) Drain oil from axle housing – use a suitable oil reservoir.

(S) Assembly truck 5870 350 000 (S) Clamping fork 5870 350 106

 ${f \Delta}$ Waste oil to be disposed of ecologically.

14WF8TM63

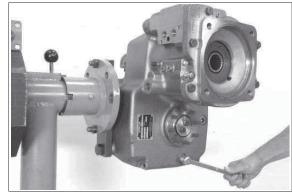
- 2) Pick-up Transmission by means of lifting tackle, loosen threaded joint and separate complete Transmission from axle housing.
 - (S) Lifting strap 5870 281 026

14WF8TM64

6. DISASSEMBLY – BRAKE / CLUTCH / PLANETARY CARRIER

1) Mount transmission to assembly truck.

(S) Assembly truck assy. 5870 350 000


(S) Fixture 5870 350 079

14WF8TM65

2) Loosen screw plug and drain oil – use a suitable oil reservoir.

▲ Waste oil to be disposed of ecologically.

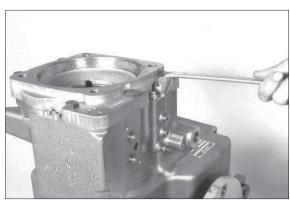
14WF8TM66

Lubrication pump

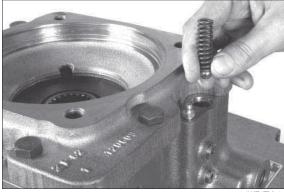
- 3) Remove lubrication pump or shift interlock (depending on version, Illustration shows version with Lubrication pump).
- Complete disassembly of lubrication pump / shift interlock see page 8-153.

14WF8TM67

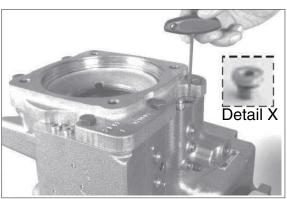
Speed sensor


4) Loosen screw and pull off speed sensor.

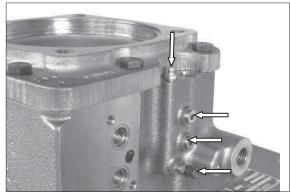
14WF8TM68


Emergency release (Parking brake)

- Remove breather.
 (Illustration 14WF8TM69~14WF8TM72 shows version transmission installation position "Vertical")
- ** Position of single connections or breather valves /lubrication nipples etc. as to version transmission installation position Horizontal - see 14WF8TM265.


14WF8TM69

6) Remove compression spring and ball.

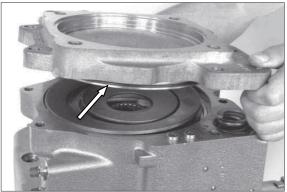

14WF8TM70

7) Remove threaded element (see Detail X) with O-ring from hole.

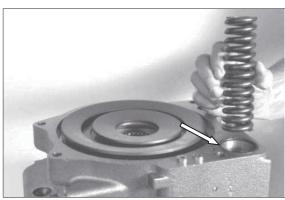
14WF8TM71

8) Remove lubrication nipple, both screw plugs and breather valve – see arrow.

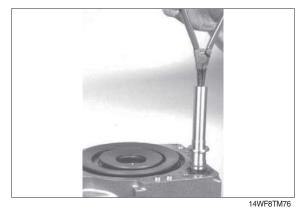
14\MEQTM72


Input housing and modulation valve

- 9) Loosen threaded joint of input housing evenly.
- Input housing is subject to cup spring and compression spring preload.


14WF8TM73

10) Take off input housing and remove O-ring (arrow).


14WF8TM74

11) Remove compression spring and O-ring (arrow).

14WF8TM75

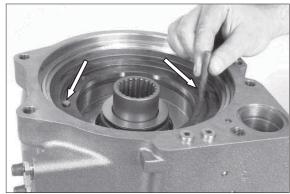
12) Pull complete piston out of hole.

Brake and clutch

13) Remove cup springs from brake.

14WF8TM77

14) Remove cup springs from clutch.


14WF8TM78

15) Remove piston.

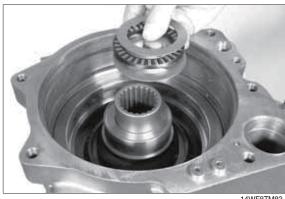
14WF8TM79

16) Pull off both cyl. pins (arrows).

14WF8TM80

17) Attach 2 (two) eyebolts and pull piston cautiously out of housing – risk of damage.

(S) Eyebolt assortment 5870 204 002 (S) Lifting chain 5870 281 047



14WF8TM81

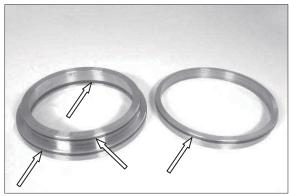
18) Remove both seals (arrows) from piston.

19) Remove axial roller cage with both thrust washers.

20) Remove pressure piece and compression spring.

14WF8TM84

- 21) Remove pressure ring with ring also see 14WF8TM86 - cautiously with lever - risk of damaging sealing surfaces.
 - (S) Resetting device
- 5870 400 001
- * Ring may also remain in housing during disassembly – disassemble ring separately.

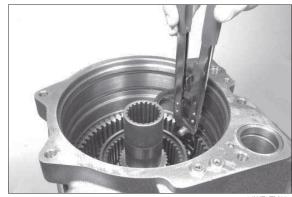


- 22) Remove pressure ring from ring cautiously with lever - risk of damaging sealing surfaces.
 - (S) Resetting device 5870 400 001

14WF8TM86

23) Remove seal and O-rings (see arrows) from pressure ring and ring.

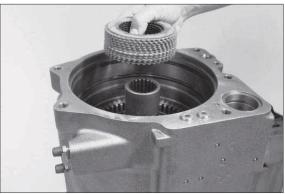
14WF8TM87


24) Take disk package of brake with end plate(s) out of housing.

14WF8TM88

- 25) Disengage retaining ring.
 - (S) Clamping pliers

5870 900 021



14WF8TM89

26) Remove snap ring and shim.

27) Take disk package of clutch with end plate(s) out of ring gear.

14WF8TM91

28) Remove cpl. input shaft with ring gear from housing.

14WF8TM92

29) Unsnap retaining ring.

14WF8TM93

30) Press input shaft out of ball bearing/ring gear.

14WF8TM94

31) Unsnap retaining ring.

14WF8TM95

- 32) Press centering disk from input shaft.
- ※ In case of extreme press fit heat centering disk.

14WF8TM96

- 33) Unsnap retaining ring and remove ball bearing.
 - (S) Clamping pliers 5870 900 021


Planetary carrier

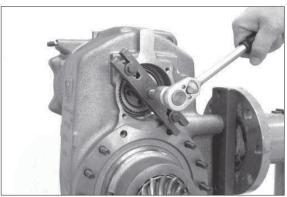
34) Remove axial needle cage.

14WF8TM9

35) If not yet disassembled previously – remove lubrication pump or shift interlock (depending on version).
(Illustration shows version - Lubrication pump).

14WF8TM99

- 36) Loosen threaded joint and remove disk fasten output flange by means of clamping fork.
 - (S) Clamping fork 5870 240 025



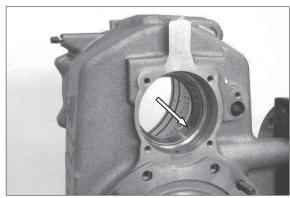
14WF8TM100

- 37) Press cpl. planetary carrier out of roller bearing.
 - (S) Extractor

5870 000 017

Pay attention to releasing planetary carrier and bearing inner ring.

14WF8TM101


38) Pull second bearing inner ring from planetary carrier.

(S) Rapid grip 5873 012 021 (S) Basic tool 5873 002 001

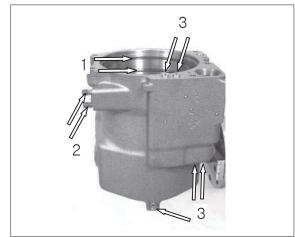
14WF8TM102

- 39) If required force both bearing outer rings (arrow) out of bearing hole.
- When reusing tapered roller bearings pay attention to bearing allocation, i.e. respective bearing inner ring to bearing outer ring.

14WF8TM103

40) Unsnap retaining ring.

14WF8TM104


- 41) Lift planetary gear with resetting device then disassemble with two armed puller .
 - (S) Resetting device 5870 400 001
- * If necessary, force out slotted pins (6x).

14WF8TM105

42) Remove both seals (1).

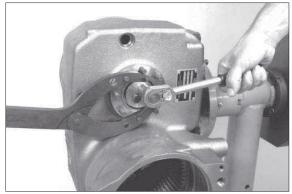
- Remove breather valves (2) and all screw plugs (3) with seal and O-ring.
- Illustration shows positions for transmission version Installation position "Vertical".

14WF8TM106

43) Only for version

Transmission installation position "Horizontal": Loosen countersunk screws and remove screen sheet.

Countersunk screws are installed with locking compound (loctite). If necessary, heat for disassembly.

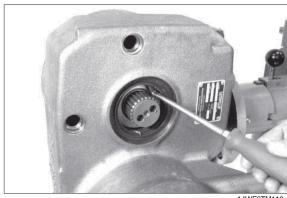


14WF8TM107

7. DISASSEMBLY - OUTPUT


Version "Axle attachment"

- Loosen threaded joint, remove cover and O-ring.


14WF8TM108

2) Pull off flange.

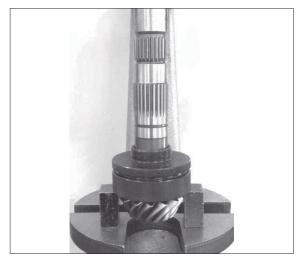
14WF8TM109

- 3) Remove shaft seal with a lever.
- (S) Resetting device 5870 400 001

4WF8TM110

- 4) Fix pinion with fixture and press off.
 - (S) Cut-off device 5870 300 028 (S) Assembly lever 5870 345 036 (S) Solenoid block 5870 450 003
- Pay attention to releasing bearing inner ring and adjusting ring (rolling torque/pinion bearing) behind.

14WF8TM111


5) Remove O-ring (see arrow) and bush from pinion.

14WF8TM112

6) Press-off bearing inner ring from pinion shaft.

(S) Grab sleeve 5873 001 037 (S) Solenoid block 5870 450 003

14WF8TM113

7) Pull bearing outer ring out of bearing cover.

(S) Inner extractor 5870 300 019 (S) Counter support 5870 300 020

* Pay attention to shim behind (pinion gap setting).

8) Pull off bearing cover.

14WF8TM115

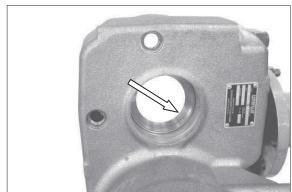
9) Remove O-rings (arrows).

14WF8TM116

10) Remove shaft seal.

14WF8TM117

11) Lift output gear with oil screen sheet out of housing. Remove oil screen sheet from output gear.

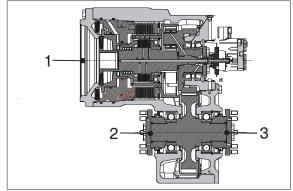

14WF8TM118

12) Remove screen sheet.

14WF8TM119

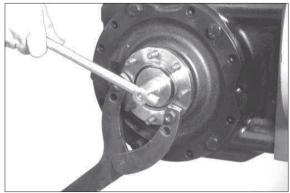
13) Disassemble bearing outer ring from housing hole (see arrow).

14WF8TM120

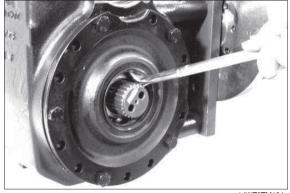

14) If necessary, remove stud bolts.

14WF8TM121

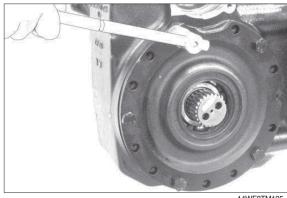
Version "Separate installation"


- 15) 1 = Input
 - 2 = Output front axle
 - 3 = Output rear axle

14WF8TM122


- 16) Use clamping fork to fix output flange. Loosen threaded joint, pull off disk, O-ring and flange.
 - (S) Clamping fork

5870 240 025


14WF8TM123

- 17) Remove shaft seal with a lever.
- * Disassemble second output flange and shaft seal analogously.

14WF8TM124

18) Loosen threaded joint.

14WF8TM125

19) Use lifting tackle to separate output gear with cover from transmission housing.

20) Press output gear out of ball bearing/cover - remove releasing oil screen sheet.

21) Unsnap retaining ring and disassemble ball bearing from cover.

14WF8TM128

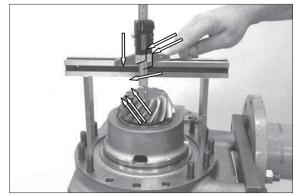
22) Remove O-rings (see arrows) from cover.

14WF8TM129

23) Remove screen sheet from transmission housing.

14WF8TM130

24) Disassemble ball bearing from housing hole.



14WF8TM131

8. REASSEMBLY - OUTPUT

1) Seal finished holes (8x) of oil supply holes with screw plugs.

5870 320 016 (S) Lever riveting tongs

Version "Axle attachment"

2) Install stud bolts.

Tightening torque

MA = 27 Nm

* Pay attention to installation position.

14WF8TM133

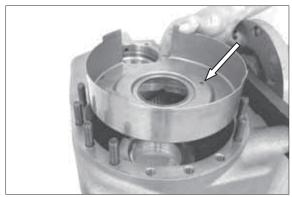

3) Install bearing outer ring until contact.

(S) Driver tool

5870 058 073

(S) Handle

5870 260 002



14WF8TM134

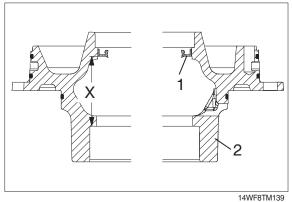
4) Insert slotted pin (see arrow) to the bottom.

- 5) Position screen sheet with slotted pin (see 14WF8TM135) into fixing hole (arrow).
- * Pay attention to installation position, slotted pin = radial fixing of screen sheet.

14WF8TM136

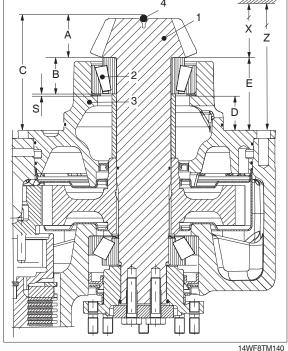
6) Insert output gear with the short collar showing downwards.

14WF8TM137


- 7) Press shaft seal into bearing cover.
 - (S) Driver tool

5870 048 281

- * For installation wet shaft seal on outer diameter with spirit.
- * Installation position of shaft seal, pay attention that seal lip is showing to oil sump (see 14WF8TM139).
- * Use of specified driver ensures exact installation position of shaft seal.

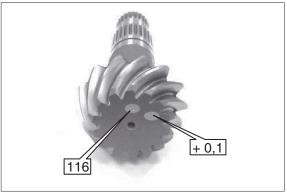


- 8) 1 = Shaft seal
 - 2 = Bearing cover
 - X = Installation dimension

Determine shim for pinion gap

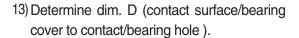
- 9) 1 = Pinion
 - 2 = Roller bearing
 - 3 = Bearing cover
 - $4 = Ball (\emptyset = 7 mm)$
 - A = Auxiliary dimension
 - B = Bearing width
 - C = Reference dimension
 - D = Contact surface/bearing cover to contact/bearing hole
 - E = 73.0 mm (constant value)
 - X = Pinion dimension (stamped into pinion)
 - Z = 189.0 mm(contact surface/bearing cover to center/axle housing)
- For correct installation and positioning of pinion, following steps must be carried out as precisely as possible.

- 10) Determine auxiliary dimension A.
 - Position ball ($\emptyset = 7 \text{ mm}$) into centering hole of pinion and determine dim. A, from contact surface/pinion shoulder to ball.
 - Auxiliary dimension A = e.g. 42.56 mm
- Auxiliary dimension A is obligatory to determine reference dimension C - on installed pinion (Fig. 14WF8TM168).
 - (S) Straightedge


5870 200 108

14WF8TM141

11) Read pinion dim. X on pinion (see arrow) or measure it in case of manufacturingspecific + or - deviation from pinion dim. (relating value is marked by hand on pinion e.g. + 0.1).


Pinion dim. X (without + or - deviation) = 116.0 mm Pinion dim. X with an indicated deviation + 0.1 = 116.1 mmPinion dim. X with an indicated deviation - 0.1 = 115.9 mm

14WF8TM142

- 12) Determine dim. B bearing width, paying attention that rollers are seated without clearance (roller setting - rotate bearing inner ring in both directions several times).
- * Since installed roller bearing is subject to preload in installation position, deduction of empirical value of - 0.1 mm must be considered.

Dim. B = e.g. $36.65 \text{ mm} - 0.1 \text{ mm} \rightarrow 36.55 \text{ mm}$

Dim. D = e.g. 35.10 mm

(S) Straightedge (2 sets) 5870 200 066

14WF8TM143

14WF8TM144

- 14) Insert determined shim(s) S = e.g. 1.35 mmand install bearing outer ring until contact.
 - (S) Driver tool 5870 058 078
 - (S) Handle 5870 260 002

14WF8TM145

15) Oil O-rings (arrows) and insert them into annular grooves of bearing cover.

14WF8TM146

16) Bend edges of fixing straps of oil screen sheet slightly - assembly aid (sheet is fixed to bearing cover - see 14WF8TM148).

14WF8TM147

- 17) Mount oil screen sheet on bearing cover.
- Pay attention to installation position place locating tab of oil screen sheet into recess of bearing cover (see arrow).

14WF8TM148

- 18) Mount preassembled bearing cover and locate equally with hexagon nuts until contact. Then remove hexagon nuts again.
- M Oil contact face/oil screen sheet/housing (assembly aid).

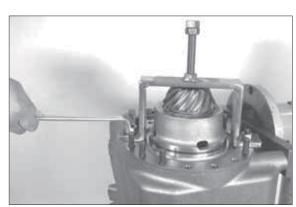
14WF8TM149

- 19) Install heated bearing inner ring until contact.
- * Adjust bearing inner ring after cooing down.

14WF8TM150

20) Mount bush, oil O-ring (arrow) and put it into annular groove.

14WF8TM151


21) Mount preassembled pinion.

14WF8TM152

- 22) Fix pinion with clamping bar.
 - (S) Clamping bar

5870 654 049

14WF8TM153

Determine adjusting ring for rolling torque/pinion bearing:

23) Rotate transmission by 180°.

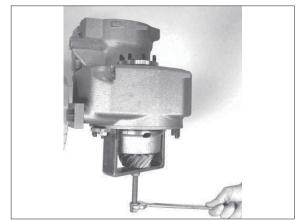
Mount adjusting ring (s = optional).

- It is recommended to reinstall the adjusting ring (e.g. s = 1.35 mm) removed during disassembly, if however the required rolling torque of 1.5~4.0 Nm (without shaft seal) is not obtained – see bearing rolling torque check Fig. 14WF8TM159 – bearing rolling torque is to be corrected with an adequate adjusting ring.
- When shaft seal is installed, try to achieve upper rolling torque value.
- 24) Insert heated bearing inner ring until contact.
- * Adjust bearing inner ring after cooling down.

14WF8TM154

14WF8TM155

25) Mount flange.


4WF8TM156

- 26) Place shim and fix flange with hexagon screws.
 - Tightening torque (M 10/10.9) MA = 68 Nm(S) Clamping fork 5870 240 025
- ** Rotate pinion when tightening in both directions (roller setting) several times.

14WF8TM157

27) Turn back pinion fastening / remove clamping bar.

14WF8TM158

Check rolling torque of pinion bearing

- 28) Bearing rolling torque (without shaft seal) 1.5~4.0 Nm
- When using new roller bearings /for mounted shaft seal, try to achieve the upper value.
- If the required rolling torque deviates, it must be corrected with an adequate adjusting ring (see 14WF8TM154).

(S) Reduction ½ -¼ 5870 656 056

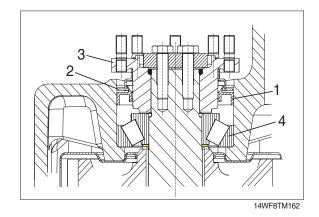
(S) Plug insert AA00 392 461

14WF8TM159

29) Disassemble flange again.

14WF8TM160

Shaft seal output flange


- 30) Install new shaft seal.
 - (S) Driver tool

5870 048 279

- For reassembly wet shaft seal on outer diameter with spirit.
- Pay attention to installation position of shaft seal, seal lip showing to oil sump (see 14WF8TM162).
- W Use of specified driver tool ensures exact installation position of shaft seal.
- 31) 1 = Shaft seal
 - 2 = Metal sheet
 - 3 = Output flange
 - 4 = Roller bearing

14WF8TM161

32) Install stud bolts.

Tightening torque (M10 \times 1) MA = 20 Nm

※ Pay attention to installation position. Install stud bolts with short thread length into flange.

14WF8TM163

- 33) Install screen sheet (see 14WF8TM162).
 - (S) Pressure piece

5870 506 150

W Use of specified driver tool ensures exact installation position of screen sheet.

14WF8TM164

34) Mount preassembled flange and put O-ring into recess.

14WF8TM165

35) Place disk and fix it with hexagon screws.

Tightening torque (M 10/10.9) Ma = 68 Nm

(S) Clamping fork 5870 240 025

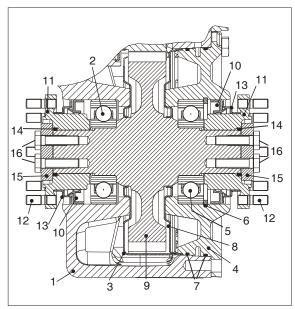
14WF8TM166

Check pinion gap

- 36) Position ball [use Ø = 7 mm → ball Ø like for determination of auxiliary dimension A into centering hole of the pinion and determine dim. C (see 14WF8TM140), from contact surface/bearing cover to ball.
 - (S) Straightedge

5870 200 108

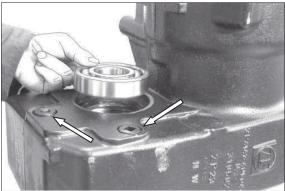
 \triangle If the constant value of dimensionE = 73.00 ± 0.05 mm


If the constant value of Dim. E = 73.00 ± 0.05 mm is not achieved, correct with an adequate shim/pinion gap (see 14WF8TM145).

For a correction of the shim/pinion gap, a counter correction of adjusting ring of rolling moment/ pinion gap — Fig. 14WF8TM154 must also be considered.

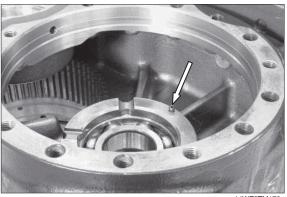
14WF8TM167

- 37) 1 = Transmission housing
 - 2 = Ball bearing
 - 3 = Screen sheet
 - 4 = Bearing cover
 - 5 = Ball bearing
 - 6 = Retaining ring
 - 7 = O-ring
 - 8 = Oil screen sheet
 - 9 = Output gear
 - 10 = Shaft seal
 - 11 = Output flange
 - 12 = Stud bolt
 - 13 = Metal sheet
 - 14 = O-ring
 - 15 = Disk
 - 16 = Hexagon screw


14WF8TM168

38) Provide screw plugs (see arrows) with new O-ring and install it.

Tightening torque


MA = 80 Nm

* Then insert ball bearing (2) until contact.

14WF8TM169

39) Rotate transmission by 180°.
Insert slotted pin (see arrow) to the bottom.

14WF8TM170

- 40) Position screen sheet with slotted pin into fixing hole (arrow).
- Observe installation position –slotted pin = radial fixing of screen sheet.

14WF8TM171

41) Insert ball bearing into cover and fix with retaining ring.

14WF8TM172

42) Oil both O-rings (arrows) and insert them into annular grooves of planetary carrier.

14WF8TM173

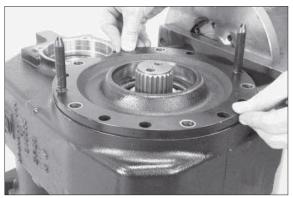
43) Bend edges of fixing straps of oil screen sheet slightly. Assembly aid screen sheet is fixed to bearing cover - see 14WF8TM176).

14WF8TM174

- 44) Insert oil screen sheet onto bearing cover
- * Observe installation position place locating tab (see arrow) into recess of bearing cover (radial fixing).

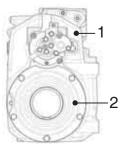
14WF8TM175

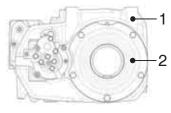
- 45) Press output gear into ball bearing/bearing
- Support ball bearing onto bearing inner ring.


14WF8TM176

46) Heat bearing inner ring of ball bearing.

14WF8TM177

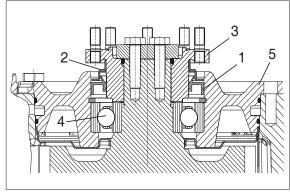

- 47) Attach two adjusting screws and mount preassembled bearing cover/output gear until contact.
 - (S) Adjusting screws (M12) 5870 204 021
- Observe installation position of bearing cover (2) in transmission (1) – transmission installation VERTICAL or HORIZONTAL see detailed sketches below:



14WF8TM178

<HORIZONTAL>

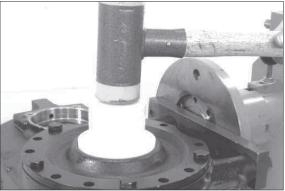
48) Fix bearing cover by means of hexagon screws.


Tightening torque (M 12/8.8) MA = 80 Nm

14WF8TM181

Shaft seal output flange

- 49) 1 = Shaft seal
 - 2 = Metal sheet
 - 3 = Output flange
 - 4 = Ball bearing
 - 5 = Bearing cover



14WF8TM182

- 50) Install new shaft seal.
 - (S) Driver tool

5870 048 279

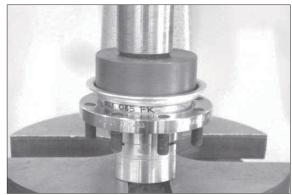
- For reassembly wet shaft seal on outer diameter with spirit.
- Pay attention to installation position of shaft seal, seal lip showing to oil sump.
- We Use of specified driver tool ensures exact installation position of shaft seal.

14WF8TM183

51) Install stud bolts.

Tightening torque (M10 \times 1) MA = 20 Nm

Pay attention to installation position. Install stud bolts with short thread length into flange.



14WF8TM184

- 52) Install screen sheet (see 14WF8TM183).
 - (S) Pressure piece

5870 506 150

* Use of specified driver tool ensures exact installation position of screen sheet.

14WF8TM185

53) Install preassembled output flange.

14WF8TM186

54) Insert O-ring.

14WF8TM187

- 55) Position disk and fix output flange by means of hexagon screws.
 - Tightening torque (M10/10.9) MA = 68 Nm
- Install second shaft seal/output flange (front axle output) analogously.

14WF8TM188


9.REASSEMBLY - BRAKE / CLUTCH / **PLANETARY CARRIER**

Planetary carrier

1) Install bearing outer ring until contact.

(S) Driver tool 5870 058 051 (S) Handle 5870 260 002

 Observe bearing allocation – bearing inner ring to bearing outer ring - also see instructions for disassembly, 14WF8TM103.

14WF8TM189

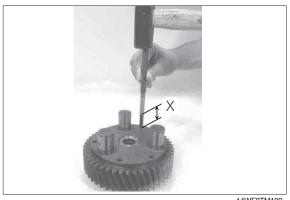
2) Rotate transmission by 180°. Install second bearing outer ring until contact.

(S) Driver tool 5870 058 051 5870 260 002 (S) Handle

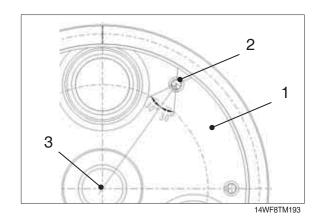
 Observe bearing allocation – bearing inner ring to bearing outer ring - also see instructions for disassembly 14WF8TM103.

14WF8TM190

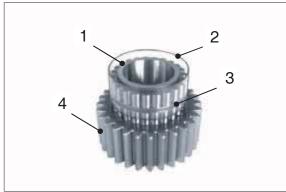
3) Only for version transmission installation position


* Insert screen sheet and fasten with countersunk screws.

Tightening torque (M 6/8.8) MA = 7.4 Nm Wet countersunk screws with Loctite type no.243.


14WF8TM191

- 4) Install slotted pins (2) considering installation dimension X and installation position, see 14WF8TM193 (groove showing to center).
 - (S) Press-fit mandrel AA00 392 151



14WF8TM192

- 5) 1 = Planetary carrier
 - 2 = Slotted pin (6x)
 - 3 = Center (planetary carrier)

- 6) Insert cylindrical roller bearing into planetary gear. Press cylindrical roller bearing through packaging sleeve until snap ring engages into annular groove of planetary gear.
- W Use packaging sleeve to facilitate assembly.
 - 1 = Cylindrical roller bearing
 - 2 = Packaging sleeve
 - 3 = Snap ring
 - 4 = Planetary gear

14WF8TM194

- 7) Press on planetary gear over bearing inner ring until contact.
 - (S) Driver tool

5870 048 283

Install planetary gears with large radius on cylindrical roller bearing (downwards) towards planetary carrier.

14WF8TM195

- 8) Engage retaining ring.
- Adjust retaining ring until contact with groove base.

14WF8TM196

9) Press bearing inner ring onto planetary carrier until contact.

14WF8TM197

10) Insert preassembled planetary carrier.

14WF8TM198


- 11) Fix planetary carrier with pressure plate and clamping bar.
 - (S) Clamping bar

5870 654 049


14WF8TM199

12) Rotate transmission by 180°. Check contact of bearing outer ring (see arrow). Reassembly of bearing outer ring, see 14WF8TM189.

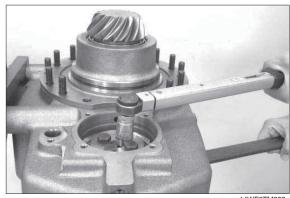
14WF8TM200


- 13) Install heated bearing inner ring until contact.
- Adjust bearing inner ring after cooling down

14WF8TM201

14) Position disk and manually turn in hexagon screws (fix planetary carrier).

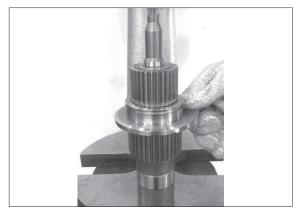
Then remove clamping bar, see 14WF8TM199.


14WF8TM202

15) Fix clamping fork to output flange.

Tighten hexagon screws evenly – risk of strain.

Tightening torque (M 10/10.9) MA = 46 Nm(S) Clamping fork 5870 240 025


While tightening hexagon screws, rotate planetary carrier several times in both directions (roller setting).

14WF8TM203

Brake and clutch

16) Mount heated centering disk and press it until contact.

14WF8TM204

17) Fix centering disk by engaging retaining ring into annular groove of input shaft.

14WF8TM205

- 18) Insert ball bearing into ring gear and fasten it by engaging retaining ring into annular groove of ring gear.
 - (S) Clamping pliers

5870 900 021

14WF8TM206

19) Heat bearing inner ring of ball bearing.

14WF8TM207

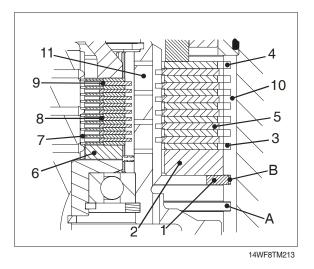
20) Mount preassembled ring gear to input shaft until contact.

14WF8TM208

21) Engage retaining ring into annular groove of input shaft.

14WF8TM209

- 22) Rotate transmission by 180°.
 Insert axial needle cage into recess of planetary carrier.
- Oil axial needle cage for reassembly.


23) Insert preassembled input shaft (with ring gear).

14WF8TM211

Disk components brake and clutch

- 24) A = Lower annular groove (Item retaining ring-1)
 - B = Upper annular groove (Item retaining ring-1)
 - 1 = Retaining ring
 - 2 = End plate/Brake (1 pc)
 - 3 = Outer disk/Brake (6 pcs.)
 - 4 = Outer disk/Brake optional (1 pc)
 - 5 = Inner disk/Brake (6 pcs.)
 - 6 = End plate/Clutch (1 pc)
 - 7 = Lining disk/Clutch (10 pcs.)
 - 8 = Outer disk/Clutch (8 pcs.)
 - 9 = Outer disk/Clutch optional (1 pc)
 - 10 = Transmission housing
 - 11 = Disk carrier / Ring gear

Reassembly brake:

- 25) Engage retaining ring (1) into annular groove (A).
 - (S) Clamping pliers 5870 900 021
- Observe installation position of retaining ring (1).

14WF8TM215

26) Insert end plate (2).

14WF8TM216

- 27) Insert disk package alternately, beginning with an outer disk.
- Position outer disk (1 pc) s = variable 2.8 ~ 3.7 mm to top of disk package (piston side). With outer disk s = variable, disk clearance/piston stroke is adjusted see 14WF8TM229.

14WF8TM217

- 28) Insert disk package alternately, beginning with a lining disk.
- Position outer disk (1 pc) s = variable 1.2 ~1.6 mm to top of disk package (pressure piece side).
 - With outer disk s = variable, disk clearance / piston stroke is adjusted see 14WF8TM228.

14WF8TM218

29) Mount pressure piece (without compression spring).

14WF8TM219

30) Oil axial roller cage and mount it with both axial washers (1x each, positioned underneath and onto axial needle cage).

14WF8TM220

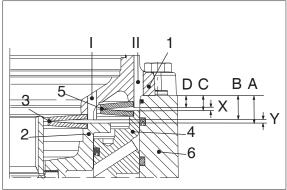
31) Insert piston (brake) – without mounted sealing elements.

14WF8TM221

32) Insert piston (clutch) – without mounted sealing elements.

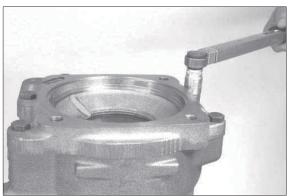
14WF8TM222

- 33) Insert both cup springs/clutch.
- Fix cup springs with grease and position them centrically.
- Observe installation position, see 14WF8TM225.


14WF8TM223

- 34) Insert both cup springs/brake.
- Fix cup springs with grease and position them centrically.
- Observe installation position, see 14WF8TM225.

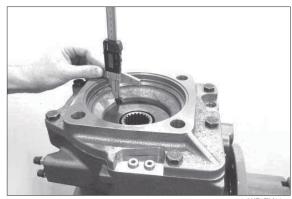
14WF8TM224


- 35) 1 = Measuring device
 - 2 = Piston/clutch
 - 3 = Cup springs/Clutch
 - 4 = Piston/Brake
 - 5 = Cup springs/Brake
 - 6 = Transmission housing
 - I = Measuring hole (disk clearance / clutch)
 - II = Measuring hole (disk clearance / brake)
 - A = Mounting face/Housing Front face/Piston
 - B = Mounting face/Housing Piston contact/Housing
 - B = Modriting 1400/11040/11g 11010/1100/1140/11040/11
 - C = Mounting face/Housing Front face/Piston D = Mounting face/Housing - Piston contact/Housing
 - D = Mountaing lace/1 loading 1 loter contact loading
 - $Y = Disk clearance/Clutch \rightarrow 2.4 + 0.3 mm (piston stroke)$
 - $X = Disk clearance/Brake \rightarrow 1.8 + 0.3 mm (piston stroke)$

14WF8TM225

36) Locate measuring device evenly with hexagon screws (risk of breakage) until contact.

Tightening torque (M 12/8.8) MA = 80 Nm(S) Measuring device 5870 200 131


14WF8TM226

37) Determine dim. A (Measuring hole I) from mounting face/housing to front face/piston (clutch).

Dim. A e.g. = 22.45 mm

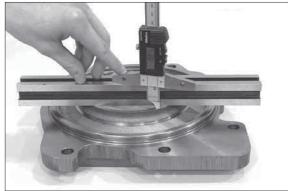
(S) Straightedge

5870 200 108

14WF8TM227

38) Determine Dim. C (Measuring hole II) from mounting face/housing to front face/piston (brake).

Dim. C e.g. = 11.85 mm


14WF8TM228

39) Determine Dim. B from mounting face/housing to clutch piston contact/housing.

Dim. B e.g. = 19.95 mm A-B = 2.50 mm (disk clearance)

Clutch disk clearance (piston stroke) = 2.4 + 0.3 mm

▲ If the required disk clearance (piston stroke) is not obtained, correct with a suitable outer disk – see 14WF8TM218.

14WF8TM229

40) Determine Dim. D from mounting face/housing to brake piston contact/housing.

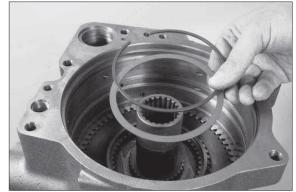
Dim. D e.g. = 9.95 mm

C-D = 1.90 mm (disk clearance)

Disk clearance (piston stroke) Brake = 1.8+0.3 mm

▲ If the required disk clearance (piston stroke) is not obtained, correct with a suitable outer disk – see 14WF8TM217.

14WF8TM230


41) Remove measuring device again – loosen screws evenly.

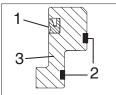
Remove all cup springs, both pistons, axial roller cage with axial washers and pressure piece.

14WF8TM231

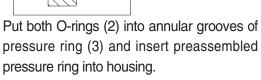
42) Insert shim into ring gear and fix by engaging snap ring into annular groove of ring gear.

14WF8TM232

- 43) Place O-ring (see arrow) into groove and insert ring.
- Oil sealing surfaces in housing and O-ring for reassembly.
- Observe installation position

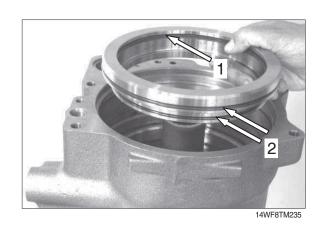

14WF8TM233

- 44) Mount ring with driver tool until contact.
 - (S) Driver tool 5870 506 161



14WF8TM234

45) Oil sealing surfaces in housing and sealing elements. Insert seal (1) with sealing lip showing to oil sump - also see detail sketch.



pressure ring (3) and insert preassembled pressure ring into housing.

- 46) Bring pressure ring with driver tool into contact position.
 - (S) Driver tool

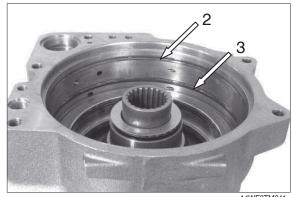
5870 506 161

14WF8TM237

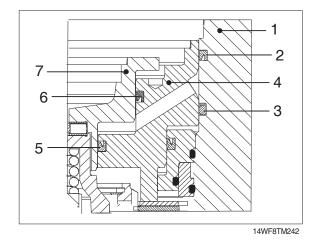
47) Insert compression spring until contact.

14WF8TM238

48) Insert pressure piece over compression spring until contact.


14WF8TM239

49) Oil axial roller cage and mount it with both axial washers (1x each to be positioned underneath and onto axial needle cage).


14WF8TM240

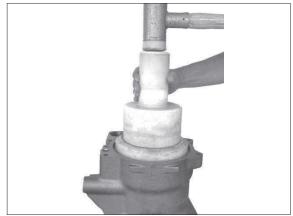
- 50) Insert seal (2, with sealing lip showing to oil sump) and seal (3) - see 14WF8TM242 into housing (1).
- Oil sealing elements and sealing surfaces on piston for reassembly.

14WF8TM241

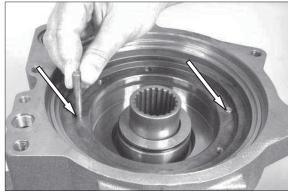
- 51) 1 = Housing
 - 2 = Seal (with sealing lip)
 - 3 = Seal
 - 4 = Piston / Brake
 - 5 = Seal (with sealing lip)
 - 6 = Seal (with sealing lip)
 - 7 = Piston / Clutch

- 52) Insert seals (5 and 6, see 14WF8TM247), with sealing lips showing to oil sump into piston / brake (4).
- * Oil sealing surfaces on piston and sealing elements for reassembly.

14WF8TM243


- 53) Insert preassembled piston/brake until contact.
- Position piston in such a way that oil supply hole (see arrow) is at 12.00 o'clock position. Observe version as to transmission installation position HORIZONTAL – VERTICAL.

14WF8TM244


- 54) Use driver tool to bring piston into contact position.
 - (S) Driver tool

5870 506 161

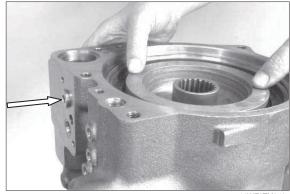
14WF8TM245

55) Insert both cyl. pins (arrow).

14WF8TM246

56) Insert piston/clutch until contact.

14WF8TM247


57) Press piston axially, against compression spring preload.

Provide screw plug with new O-ring and seal pressure oil supply hole (see arrow).

Tightening torque

MA = 40 Nm

Axial position of piston is maintained (Facilitate assembly for installation of input housing, see 14WF8TM254~ 14WF8TM255).

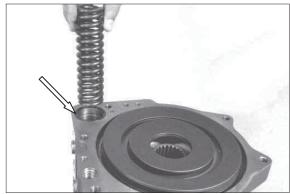
14WF8TM248

- 58) Insert both cup springs/clutch.
- Observe installation position, see also 14WF8TM225.

14WF8TM249

- 59) Insert both cup springs/brake.
- * Observe installation position see also 14WF8TM225.

14WF8TM250


Install modulation valve and input housing

60) Insert piston (modulation valve cpl. – can only be replaced as unit).

14WF8TM251

61) Place O-ring (see arrow) into annular groove of housing and insert compression spring.

62) Oil O-ring and insert it into annular groove of input housing.

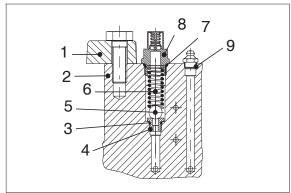
14WF8TM253

- 63) Insert two adjusting screws (M 12), mount input housing and fix it with hexagon screws.
 - (S) Adjusting screws (M12) 5870 204 021
- * For installation of input housing align cup springs centrically.

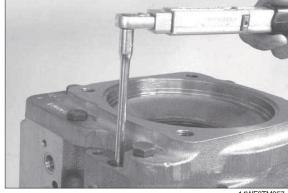
14WF8TM254

64) Locate input housing evenly with hexagon screws (risk of breakage) until contact.

Tightening torque (M 12/8.8) MA = 80 Nm

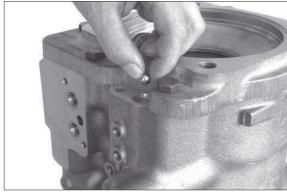


14WF8TM255


Emergency release (parking brake)

- 65) 1 = Input housing
 - 2 = Housing
 - 3 = O-ring
 - 4 = Threaded element (orifice)
 - 5 = Ball
 - 6 = Compression spring
 - 7 = O-ring
 - 8 = Breather
 - 9 = Position of lubrication nipple for version Transmission installation position Vertical
- ** Position of lubrication nipple for version transmission installation position Horizontal, see 14WF8TM261.
- Remove protective cap of lubrication nipple only if emergency release is required.
- 66) Install threaded element (4) with new O-ring (3).

Tightening torque (M 10×1) MA = 15 Nm



14WF8TM256

14WF8TM257

67) Insert ball (5).

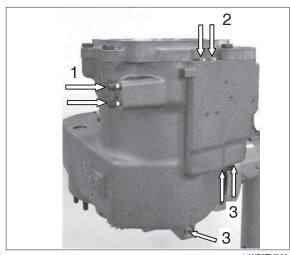
14WF8TM258

68) Insert compression spring (6).

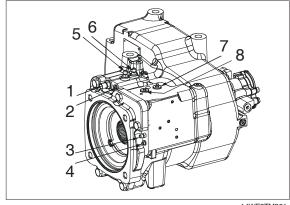
14WF8TM259

Check emergency release for leak tightness

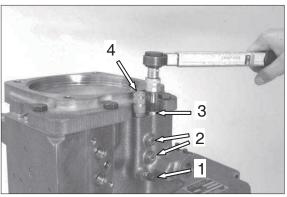
- 69) Illustration shows version transmission installation position Vertical.
- For version transmission installation position Horizontal connections and positions of breather valves/lubrication nipple etc. must be considered as shown on illustration of 14WF8TM261.

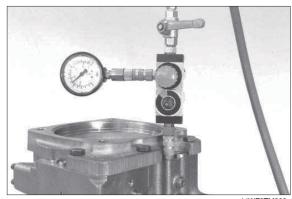

Install both breather valves (1), screw plugs (2) with new seal rings and screw plugs (3) with new O-rings.

Breather valve (M 10×1) MA = 15 Nm Screw plug (M 10×1 with seal ring) MA = 20 Nm Screw plug (M 10×1 with O-ring) MA = 20 Nm


- 70) 1 = Breather/Pressure relief-valve (emergency release –parking brake)
 - 2 = Screw plug
 - 3 = Breather valve (emergency release – parking brake)
 - 4 = Lubrication nipple (emergency release – parking brake)
 - 5 = Breather valve (multi-disk clutch)
 - 6 = Breather valve (mulit-disk brake)
 - 7 = Pressure oil connection multi-disk brake
 - 8 = Pressure oil connection multi-disk clutch
- 71) Install breather valve (1), screw plugs (2), screw plug (3) with new O-ring and compressed air connection piece (4).

Breather valve (M 10×1) MA = 15 Nm Screw plug (M 10×1 with O-ring) MA = 20 Nm Screw plug (M 18×1.5 with O-ring) MA = 35 Nm Compressed air connect. piece (M 10×1) with seal ring MA = 20 Nm


- 72) Pressurize emergency release with compressed air p = 5 + 1bar and close shut-off valve. During a test duration of 3 minutes no pressure drop is allowed.
 - (S) Air connection 5870 505 012


14WF8TM260

14WF8TM261

14WF8TM262

14WF8TM263

73) Remove screw plug and compressed air connection piece (see 14WF8TM262). Install breather (3) with new O-ring and lubrication nipple (4).

Lubrication nipple (M 10×1) MA = 15 Nm Breather (M 18×1.5) $M_A = 22 \text{ Nm}$

Check multi-disk brake and clutch for leak tightness as wells as closing pressure

74) 1 = Transmission housing

2 = Input housing

AB = Pressure oil connection - multi-disk brake

AK = Pressure oil connection – multi-disk clutch

EB = Breather valve - multi-disk brake

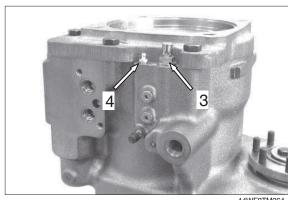
EK = Breather valve – multi-disk clutch

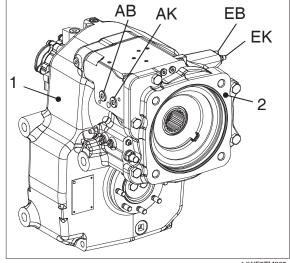
- Illustration shows version transmission installation position Vertical.
- * For version Transmission installation position Horizontal, connections and positions of breather valves/lubrication nipple etc. according to illustration in 14WF8TM261 must be considered.

Multi-disk brake

- 75) Connect HP pump (AB see 14WF8TM265 and 14WF8TM261) and build up pressure of p = 30 (max. 35 bar).
 - Bleed pressure chamber several times. Close shut-off valve.

During a test duration of 3 minutes no measurable pressure drop is allowed.


(S) HP pump 5870 287 007


Closing pressure test (Cup spring preloading force)

76) When measuring closing pressure, valve block may not be attached to transmission due to by-pass function between brake and clutch. Connection AK (see 14WF8TM265 and 14WF8TM261) open (not closed and tank connection).

Reduce pressure slowly, when pressure range 12~9 bar (closing pressure) is reached, input shaft must be locked at a tightening torque of 35 Nm.

(S) Spline mandrel 5870 510 039

14WF8TM265

14WF8TM267

Multi-disk clutch

- 77) Connect HP-pump (AK see 14WF8TM265 and 14WF8TM261), build up pressure of p = 30~max. 35 bar.
 - Relieve pressure chamber several times. Close shut-off valve.

During a test duration of 3 minutes no measurable pressure drop is allowed.

(S) HP-pump

5870 287 007

Closing pressure test (Cup spring preloading force)

78) When measuring closing pressure, valve block (only for version with mounted valve block) may not be attached to transmission due to by-pass function between brake and clutch.

Connection AB (see 14WF8TM265 and 14WF8TM261) open (not closed and tank connection).

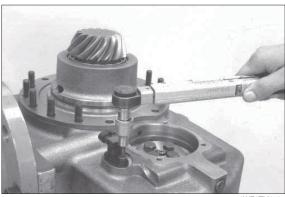
Reduce pressure slowly, when pressure range 17~13 bar (closing pressure) is reached, input shaft must be locked at a tightening torque of 35 Nm.

(S) Spline mandrel

5870 510 039

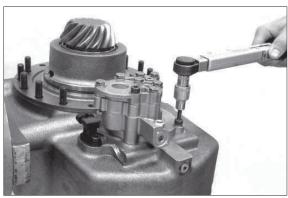
Speed sensor

79) Install speed sensor with new O-ring.


Tightening torque (M 8/8.8) MA = 23 Nm

14WF8TM26

14WF8TM269



14WF8TM270

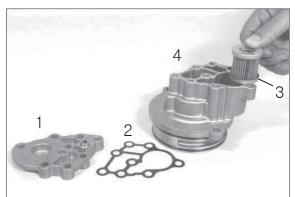
Lubrication pump/shift interlock

80) Install lubrication pump (with O-rings) or shift interlock – depending on version – (Illustration shows – Lubrication Pump).

Tightening torque (M 8/10.9) MA = 23 Nm

14WF8TM271

10.DISASSEMBLY - LUBRICATION PUMP/ SHIFT INTERLOCK and VALVE BLOCK


Lubrication pump version

1) Loosen threaded joint and pull off cpl. lubrication pump.

14WF8TM272

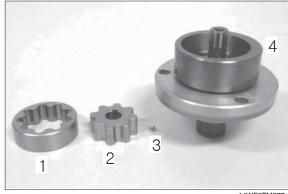
2) Loosen cover screws, remove cover (1) with seal (2) and filter (3) from housing (4).

14WF8TM273

3) Remove cpl. pressure limiting valve and both O-rings (arrows).

14WF8TM274

4) Keep housing in vertical position, while loosening pump cover screws.


14WF8TM275

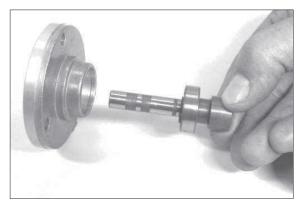
- * Maintain contact position of pump and rotate by 180°- disassembly aid.
- 5) Then pull pump in vertical position out of housing - pay attention to possibly releasing balls and compression springs.

14WF8TM276

- 6) Remove outer (1) and inner rotor (2) and take releasing ball [(3) driver] out of control housing (4).
- W Outer, inner rotor and control housing = rotor set

14WF8TM277

7) Remove control housing and releasing balls and compression springs (3 pcs. each).


14WF8TM278

8) Unsnap retaining ring.

14WF8TM279

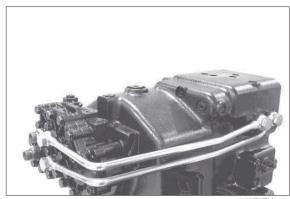
9) Pull cpl. pump shaft out of pump cover.

14WF8TM280

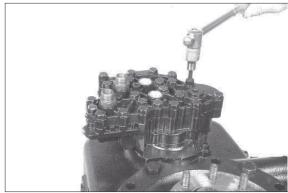
10) Unsnap retaining ring and press ball bearing from shaft.

14WF8TM281

11) Pull needle sleeve out of housing hole.


(S) Inner extractor 5870 300 012 (S) Counter support 5870 300 011

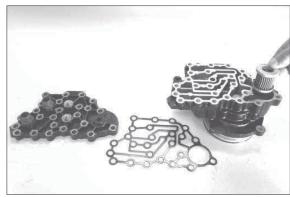
14WF8TM282


Shift interlock version

12) Disassemble both oil tubes.

14WF8TM283

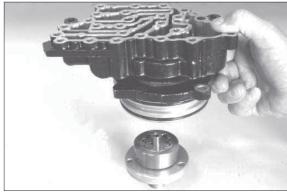
13) Loosen threaded joint of shift interlock (3 x cylindrical screws) and remove cpl. shift interlock.


14WF8TM284

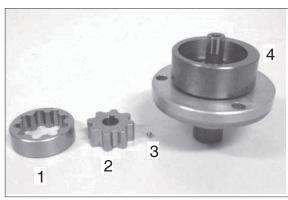
14) Loosen cover screws, remove cover and gasket (see also 14WF8TM286).

14WF8TM285

15) Take filter out of housing.


14WF8TM286

16) Loosen cover screws of pump.


14WF8TM287

- Maintain contact position of pump and rotate it by 180° disassembly aid.
- 17) Then pull pump in vertical position out of housing pay attention to possibly releasing balls and compression springs (see 14WF8TM289 and 14WF8TM290).

14WF8TM288

- 18) Remove outer (1) and inner rotor (2) and take releasing ball [(3) driver] out of control housing (4).
- W Outer, inner rotor and control housing = rotor set

14WF8TM289

19) Remove control housing and releasing balls and compression springs (3 pcs. each).

14WF8TM290

20) Unsnap retaining ring.

14WF8TM291

21) Pull cpl. pump shaft out of pump cover.

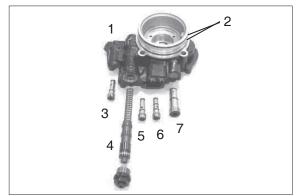
14WF8TM292

22) Unsnap retaining ring and press ball bearing from shaft.

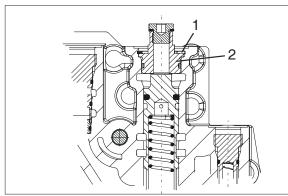
14WF8TM293

23) Pull needle sleeve out of housing hole.

(S) Inner extractor 5870 300 012

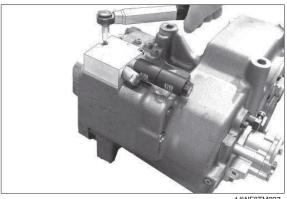

(S) Counter support 5870 300 011

14WF8TM294

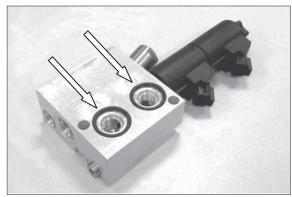

- 24) Remove O-rings and all single parts, remove valves.
 - 1 = Housing
 - 2 = O-rings
 - 3 = Check valve (010)
 - 4 = Shift piston
 - 5 =Check valve (009)
 - 6 = Check valve (008)
 - 7 = Pressure relief valve

Position 4 (shift piston) shows version with screw plug.

14WF8TM295

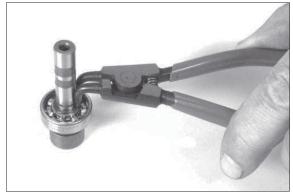

- 25) In sketch 14WF8TM296 version II is shown with plug (2) and retaining ring (1).
- ▲ When disengaging retaining ring Pay attention to spring preload. Protect against movement.

14WF8TM296


Disassemble valve block

26) Loosen fixing screws and remove cpl. valve block.

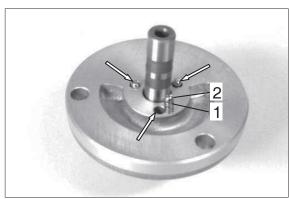
14WF8TM297


- 27) Remove both O-rings (see arrows).
- Do not further disassemble. Valve block may only be replaced as component.

14WF8TM298

11. REASSEMBLY LUBRICATION PUMP

1) Mount ball bearing onto pump shaft and fix it by engaging retaining ring into annular groove of pump shaft.


14WF8TM299

2) Press preassembled pump shaft into pump cover and fix it by engaging retaining ring into annular groove of pump cover.

14WF8TM300

- 3) Insert compression springs (1) and ball (2) into holes (see arrows - 3x).
- * Keep preassembled single parts in vertical position-pay attention to position of inserted balls and compression springs (see work steps 14WF8TM301~14WF8TM307).

14WF8TM301

- 4) Mount control housing.
- * Control housing, inner and outer rotor = rotor set

 Position ball – (see arrow, engagement for inner rotor) with grease into countersink of pump shaft.

14WF8TM303

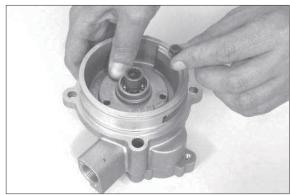
- 6) Mount inner rotor.
- Place groove of inner rotor over ball (see arrows).

14WF8TM304

7) Mount outer rotor

14WF8TM305

- 8) Insert needle sleeve to installation dimension X into housing.
 - $X = 0.2 \sim 0.7$ mm below plane face / housing
 - (S) Driver tool
- 5870 705 003
- W Use of specified driver tool ensures exact installation position.
- Insert needle sleeve with marked front face showing upwards.
- Check opening of orifice / oil hole in housing bottom.


14WF8TM30

9) Maintain pump in vertical position while inserting housing with mounted needle sleeve onto preassembled pump.

14WF8TM307

- 10) Rotate housing by 180° and fix pump with hexagon screws.
- Maintain contact position of inserted pump.

14WF8TM308

11) Fix pump.

Tightening torque (M6/8.8) MA = 9.5 Nm

14WF8TM309

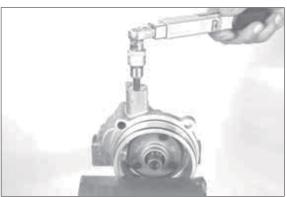
12) With counter-turning motions on pump shaft, swiveling of control housing (stop LH/RH in pump cover) is audible.

14WF8TM310

13) Oil both O-rings (arrows) and put them into annular groove of housing.

14WF8TM311

14) Insert O-rings (see arrows) into annular grooves of pressure relief valve.

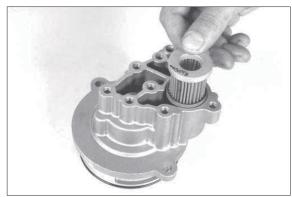


14WF8TM312

15) Mount pressure relief valve.

Tightening torque

MA = 10 Nm


14WF8TM313

16) Secure pressure relief valve by center punch marks (2x).


14WF8TM314

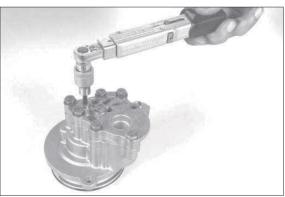
17) Insert filter.

14WF8TM315

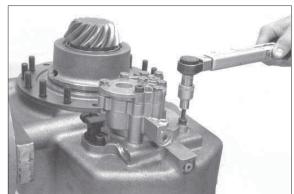
18) Place gasket.

14WF8TM316

19) Place cover and fix it with hexagon screws and disks.

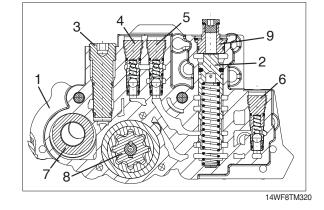

Tightening torque (M8/8.8) MA = 23 Nm

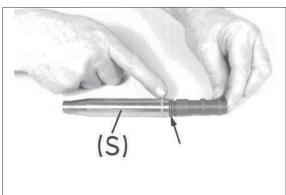
14WF8TM317


20) Insert screw plug with new O-ring.

Tightening torque (M10 \times 1) Ma = 15 Nm

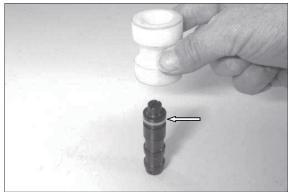
14WF8TM318


- 21) Mount cpl. lubrication pump and fasten it with cylindrical screws and disks.
 - Tightening torque (M8/10.9) MA = 23 Nm
- Prior to putting the unit into operation, observe the specifications and regulations.


14WF8TM319

12. REASSEMBLY SHIFT INTERLOCK

- 1) 1 = Housing
 - 2 = Shift piston
 - 3 = Pressure relief valve
 - 4 =Check valve (008)
 - 5 =Check valve (009)
 - 6 = Check valve (010)
 - 7 = Filter
 - 8 = Lubrication pump
 - 9 = Plug



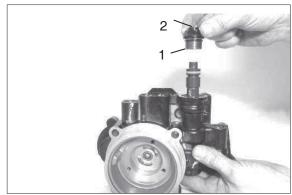
- 2) Put O-ring (see arrow) into annular groove of piston.
 - Lead plastic ring by means of inner installer (S) over piston and position it at O-ring.
 - (S) Inner installer 5870 651 055
- Seal consists of plastic ring and O-ring (see 14WF8TM321~14WF8TM322).


14WF8TM321

- 3) Center plastic ring (see arrow) with calibrating mandrel.
 - (S) Calibrating mandrel 5870 651 056

14WF8TM322

4) Insert compression spring, oil preassembled piston and install.



14WF8TM323

Version I:

5) Fix piston with screw plug (1- with O-ring). Install screw plug (2 – with seal ring).

Screw plug (M24×1.5) Ma = 50 NmScrew plug (M10×1) MA = 15 Nm

14WF8TM324

Version II (14WF8TM325 ~ 14WF8TM327):

6) Oil O-ring and insert it into annular groove of plug.

14WF8TM325

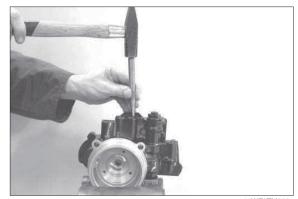
- 7) Fix plug by engaging retaining ring into annular groove of housing.
- * Pay attention to spring preload protect against movement.

14WF8TM326

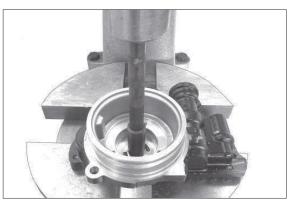
8) Mount screw plug with seal.

Tightening torque (M10×1) MA = 15 Nm

9) Install single parts according to adjacent illustration.


 $\begin{array}{ll} 1 = \text{Pressure relief valve cpl.} & \text{MA} = 10 \text{ Nm} \\ 2 = \text{Check valve cpl.} & \text{MA} = 10 \text{ Nm} \\ 3 = \text{Check valve cpl.} & \text{MA} = 10 \text{ Nm} \\ 4 = \text{Check valve cpl.} & \text{MA} = 10 \text{ Nm} \\ \end{array}$

 Observe installation position of the different check valves (see also 14WF8TM320).

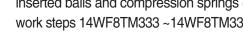

14WF8TM328

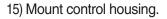
10) Secure check valves and pressure relief valves with two center punch marks each.

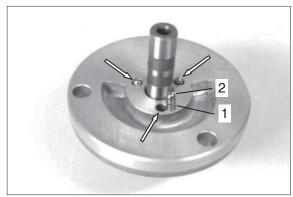
14WF8TM329

- 11) Insert needle sleeve to installation dimension X into housing.
 - $X = 0.2 \sim 0.7$ mm below plane face/housing
 - (S) Driver tool 5870 705 003
- W Use of specified driver ensures exact installation position.
- Insert needle sleeve with marked front face showing upwards.
- * Check opening of orifice / oil hole in housing bottom.
- 12) Insert ball bearing onto pump shaft and fix it by engaging retaining ring into annular groove of pump shaft.

14WF8TM33


14WF8TM331


13) Press preassembled pump shaft into pump cover and fix it by engaging retaining ring into annular groove of pump cover.


14WF8TM332

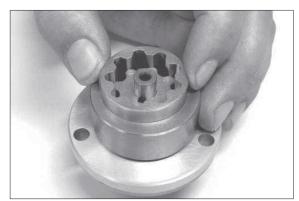
- 14) Insert compression springs (1) and ball (2) into holes (see arrows - 3x).
- A Prior to installation, oil single parts of pump/ rotor set (control housing, inner and outer rotor) - use oil (lubrication)
- Keep preassembled single parts in vertical position - pay attention to position of inserted balls and compression springs (see work steps 14WF8TM333 ~14WF8TM338).

Control housing, inner and outer rotor = rotor set

14WF8TM333


14WF8TM334

16) Position ball - (see arrow -engagement for inner rotor) with grease into countersink of pump shaft


14WF8TM335

- 17) Mount inner rotor.
- Place groove of inner rotor over ball (see arrows).

14WF8TM336

18) Mount outer rotor.

14WF8TM337

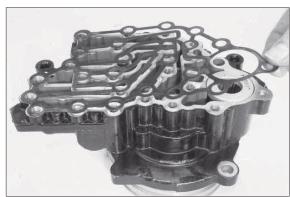
19) Maintain pump in vertical position while inserting housing with mounted needle sleeve onto preassembled pump.

14WF8TM338

- 20) Rotate housing by 180° and fix pump with hexagon screws.
 - Tightening torque (M6/8.8) MA = 9.5 Nm
- Maintain contact position of inserted pump.

14WF8TM339

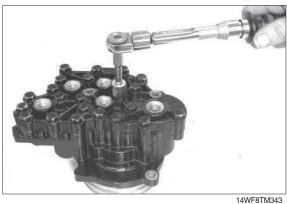
21) With counter-turning motions on pump shaft, swiveling of control housing (stop LH/ RH in pump cover) is audible.


14WF8TM340

22) Insert screen filter.

14WF8TM341

23) Place gasket.



14WF8TM342

24) Place cover and fix with hexagon screws and disks.

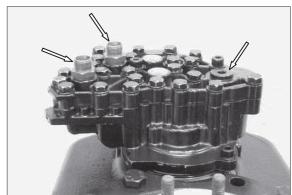
Tightening torque (M8/8.8) $M_A = 23 Nm$

Pay attention to different screw length.

25) Oil both O-rings (arrows) and put them into annular groove of housing.

14WF8TM344

26) Insert cpl. shift interlock and fix with cylindrical screws with disks.


Tightening torque (M8/10.9) $M_A = 23 \text{ Nm}$

Pay attention to different screw length.

27) Install both screw-in sleeves and screw plug (see arrow) with O-rings.

Screw-in sleeve (M 16×1.5) Ma = 30 Nm Screw plug (M 18×1.5) Ma = 35 Nm

28) 1 = Oil tube

 $2 = \text{Hollow screw } (M16 \times 1.5)$

3 = Seal ring

 $4 = \text{Hollow screw } (\text{M14} \times \text{1.5})$

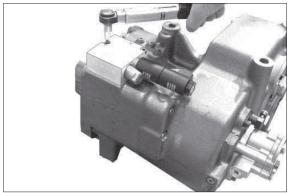
5 = Seal ring

29) Mount oil tubes.

Hollow screw (M14 \times 1.5) Ma = 40 Nm Hollow screw (M16 \times 1.5) Ma = 40 Nm

* Prior to putting the unit into operation, observe the specifications and regulations.

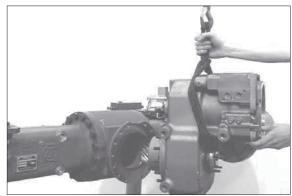
14WF8TM3428


13. VALVE BLOCK (shifting low gear - high gear)

- 1) Insert O-rings (see arrows) into countersinks of valve block.
- * Use grease as assembly aid.

14WF8TM349

2) Fix cpl. valve block with cylindrical screws.Tightening torque (M8/10.9) MA = 23 Nm



14WF8TM350

14. Mount TRANSMISSION to AXLE (only for version axle attachment)

1) Position complete transmission to axle.

(S) Lifting strap 5870 281 026

14WF8TM351

2) Fix transmission to axle with hexagon screws and nuts.

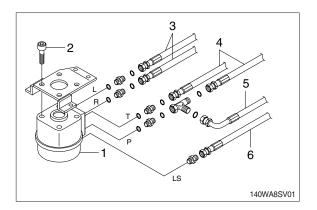
Tightening torque (M12/8.8) MA = 79 Nm

* Prior to putting the unit into operation, observe the specifications and regulations.

14WF8TM352

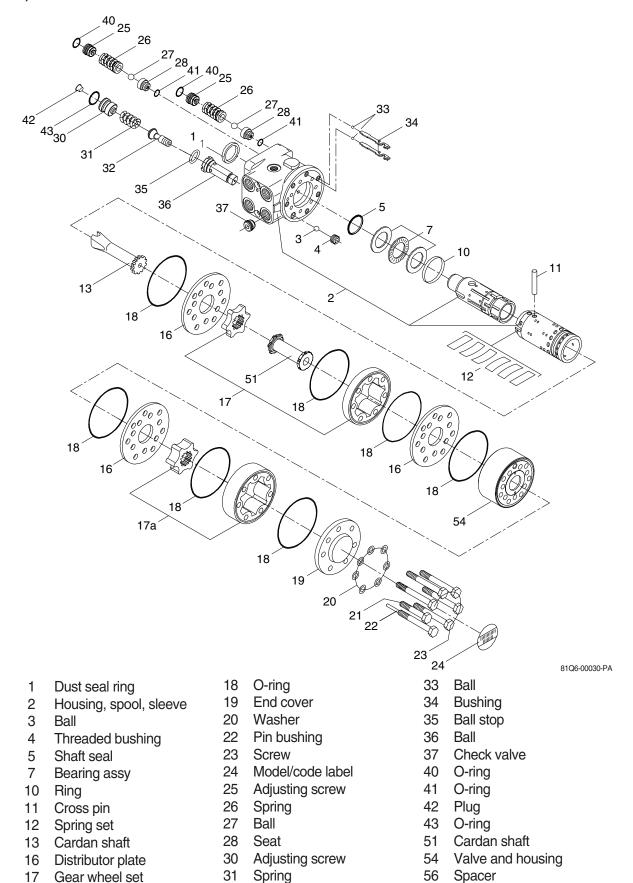
GROUP 8 STEERING VALVE

1. REMOVAL AND INSTALL


1) REMOVAL

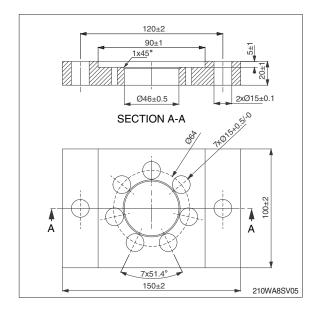
- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Disconnect steering line hoses (3, 4, 5, 6).
- (5) Loosen the socket bolt (2) and remove the steering valve assembly (1).
 - \cdot Tightening torque : 8.27 \pm 1.7 kgf \cdot m (59.8 \pm 12.3 lbf \cdot ft)

2) INSTALL

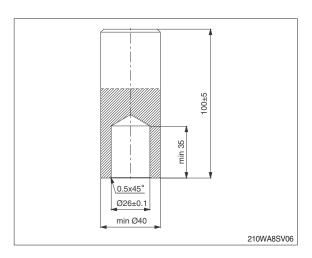

- (1) Carry out installation in the reverse order to removal.
- (2) Confirm the hydraulic oil level and check the hydraulic oil leak or not.
- When removing the steering valve assembly, check that all the hoses have been disconnected.

2. STEERING VALVE

1) STRUCTURE


32

piston


17a Gear wheel set

2) TOOLS

- (1) Holding tool for the entire steering unit.
- * Appropriate metal or hard plastic.

- (2) Assembly tool for dust seal.
- Material: Free cutting steel.

(3) Assembly tool for shaft seal, O-ring.

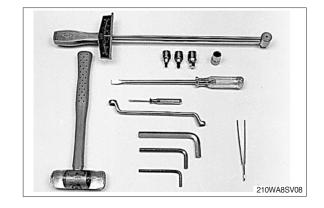
(4) Common tool

Torque wrench : 0~7.1 kgf \cdot m

(0~54.4 lbf · ft)

13 mm socket spanner.

2.75, 5 and 6 mm hex sockets.


12 mm screwdriver.

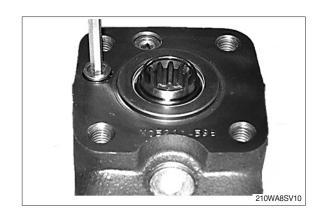
2 mm screwdriver.

13 mm ring spanner.

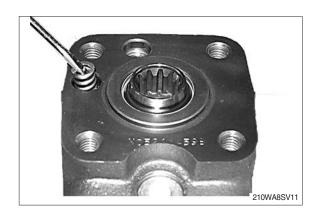
Plastic hammer.

Tweezers.

3) TIGHTENING TORQUE


Screwed connection	Max. tightening torque kgf · m (lbf · ft)			
	With cutting edge	With copper washer	With aluminum washer	O-ring
PF 1/4	3.6 (25.8)	3.6 (25.8)	3.6 (25.8)	-
PF 3/8	7.1 (51.6)	4.6 (33.2)	5.1 (36.9)	-
PF 1/2	10.2 (73.6)	5.6 (40.6)	8.2 (59.0)	-
PF 3/4	18.4 (133)	9.2 (66.4)	13.3 (95.9)	-
7/16-20 UNF	-	-	-	2.0 (14.8)
3/4-16 UNF	-	-	-	6.1 (44.3)
7/8-14 UNF	-	-	-	9.2 (66.4)
11/16-12 UNF	-	-	-	12.2 (88.5)
M12×1.5	3.1 (22.1)	2.0 (14.8)	3.1 (22.1)	2.5 (18.4)
M18×1.5	8.2 (59.0)	5.6 (40.6)	7.1 (51.6)	5.1 (36.9)
M22×1.5	10.2 (73.6)	6.6 (47.9)	8.2 (59.0)	6.1 (44.3)
9/16-18 UNF, ORFS	-	-	-	2.5 (18.4)
11/16-16 UN, ORFS	-	-	-	2.8 (19.9)

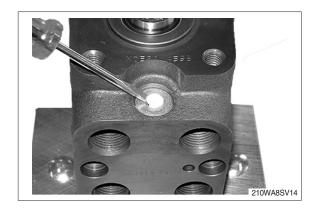
4) DISASSEMBLY


(1) Place the unit in the holding tool on gear set end.

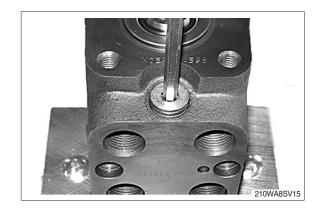
Screw out the adjusting screws for shock valves (25).


O-ring (40) is fitted on adjusting screw (25).

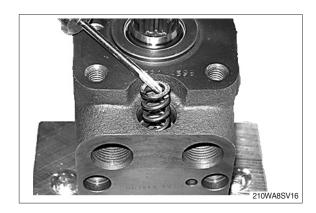
(2) Remove the springs with trust pads for shock valves (26).


(3) Remove the balls for shock valves (27).

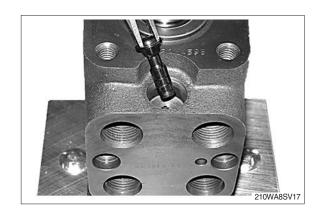
(4) Screw out the seats for shock valves (28). O-ring (41) is fitted on seat (28).



(5) Remove the plastic plug (42).



(6) Screw out the adjusting screw for relief valve (30).


O-ring (43) is fitted on adjusting screw (30).

(7) Remove the spring for relief valve (31).

(8) Remove the piston for relief valve (32).

- (9) Replace the unit in the holding tool on steering column end.
- ① Remove the screws (21, 22 and 23) with washers (20).
- ② Some versions have pin bolt screw (22), threaded bushing (4) and 5 pieces standard screws (23) as shown page 8-178. Other versions (like this taken apart) has threaded bushing with ball stop (4) and 6 pieces standard screws (23).
- ③ All versions have one piece short standard screw (21).
- ④ Screw (21) is threaded in valve housing (54).
- (10) Remove the end cover (19), sideways.

(11) Lift the gearwheel set (17a) off the unit. Remove the two O-rings (18).

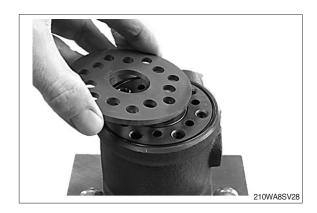
(12) Remove the rear distributor plate (16).

- (13) Remove valve housing assembly (54). Remove the two O-rings (18).
- Do not disassemble the entire valve (54)

(14) Remove the middle distributor plate (16).

(15) Remove the cardan shaft (51).

- (16) Remove spacer (56) if present.
- Spacer is only present in OSPD with GSW1 (17) equal to 100 cm³/rev or larger/ height 13.0 mm or larger.


(17) Lift the gearwheel set (17) off the unit. Remove the two O-rings (18).

(18) Remove the cardan shaft (13).

(19) Remove the distributor plate (16) from the housing.

(20) Remove the threaded bushing/ball stop (4) from housing.


(21) Remove the ball stop (35) from housing.

Ball stop (35), and belonging ball (36) is only present in

OSPD LS with check valve in LS line.

(22) Remove the O-ring (18) from housing.

(23) Shake out the check valve ball (3), suction valve pins (34), balls (33) and ball (36).

(24) Place the housing with the ports facing down on the work bench. Ensure that the cross pin (11) in the spool and sleeve set (2) is in the horizontal position.

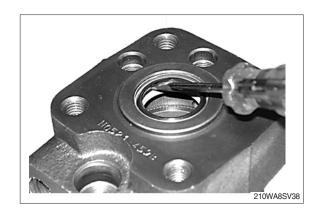
The pin (11) can be observed through the open end of the spool.

Press the spool (2) inwards (from the housing mounting face end) and the sleeve (2), ring (7) and bearing assembly (6) will be pushed out of the housing together.

(25) Take the ring (10), bearing races and needle bearing (7) from the spool and sleeve set (2).

The outer bearing (7) race can sometimes "stick" in the housing, therefore check that it has come out.

(26) Press out the cross pin (11).


(27) Carefully press the spool out of the sleeve.


(28) Press the neutral position springs (12) out of the slot of the spool.

(29) Remove dust seal (1) and shaft seal (Roto Glyd) (5) carefully with a screw driver or similar tool.

(30) The steering unit OSPD is now completely dismantled

Cleaning

Clean all parts carefully in Shellsol K or similar cleaner fluid.

* Inspection and Replacement

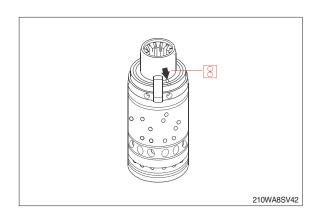
Replace all seals and washers. Check all parts carefully and make any replacements as is necessary.

5) ASSEMBLY

springs.

(1) Place the two flat neutral position springs in the slot.

Place the curved springs between the flat ones and press them into place.



(2) Configuration of spring set (12). There can be different numbers of curved springs depending on configuration of spring set. There can be 2, 4 or 6 curved

ed of ed

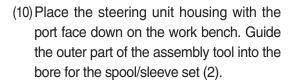
210WA8SV41

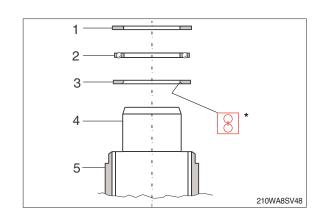
(3) Spool and sleeve must be positioned correctly relatively to each other. Small marks are present on both spool and sleeve close to one of the slots for the spring set.

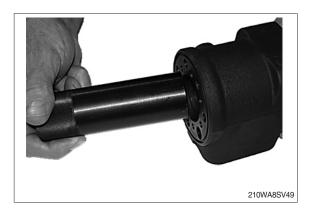
(4) Guide the spool into the sleeve (2). If the spool and sleeve has marks as shown above, these must be placed on same side. Make sure the centering springs (12) are placed into the slot.

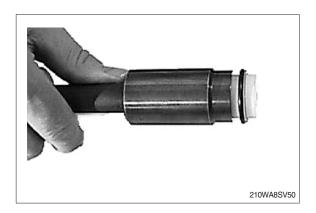
(5) Line up the spring set (12).

(6) Guide the ring (10) down over the sleeve. The ring should be able to move free of the springs.

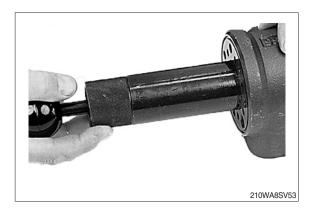

(7) Fit the cross pin (11) into the spool/sleeve.



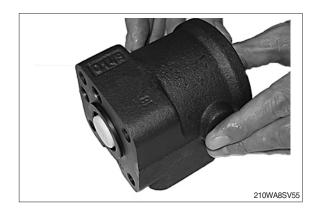

(8) Fit bearing races and needle bearing (7) as shown on the next drawing.


- (9) Assembly pattern for standard bearing
 - 1 Outer bearing race
 - 2 Needle bearing
 - 3 Inner bearing race
 - 4 Spool
 - 5 Sleeve
- * The inside chamfer on the inner bearing race must face the chest of the inner spool.

(11) Grease the shaft seal (Roto Glyd, 5) with hydraulic oil and place them on the tool. Ensure that the Roto Glyd seal is placed on the insertion tool as per the photograph.

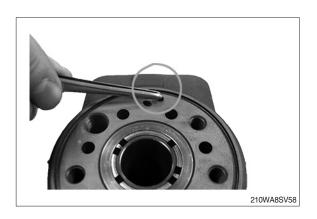

(12) Hold the outer part of the assembly tool in the bottom of the steering unit housing and guide the inner part of the tool right to the bottom.

(13) Press and turn the shaft seal (5) into position in the housing.


(14) Draw the inner and outer parts of the assembly tool out of the steering unit bore, leaving the guide from the inner part in the bore.

(15) With a light turning movement, guide the spool and sleeve into the bore.Fit the spool set holding the cross pin (11) horizontal.

(16) The spool set will push out the assembly tool guide. The shaft seal (5) is now installed.


(17) Place the steering unit housing on the holding tool on the steering column end. Put the check valve ball (3) into the hole indicated by the circle.

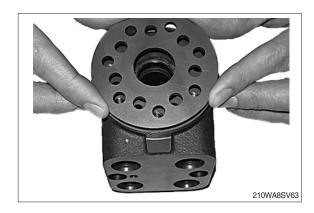
(18) Screw the threaded bushing/ball stop (4) lightly into the check valve bore. The top of the bush must lie just below the surface of the housing.

(19) Put the check valve ball (36) into the hole indicated by the circle.Ball (36) is only present in OSPD LS with check valve in LS line.

(20) Screw the ball stop (35) into the LS check valve bore.

 $1\!\pm\!0.1~N\!\cdot\!m$ [8.85 $\!\pm\!0.885$ lbf·in].

(21) Place a ball (33) in the two bolt holes indicated by the circles.


(22) Place the pins (34) in the same two bolt holes.

(23) Insert the O-ring (18) in the grove on the housing.

(24) Place the distributor plate (16) so that the channel holes match the holes in the housing.

(25) Guide the cardan shaft (13) down into the bore so that the slot is parallel with the connection flange ports and lines up with the cross pin (11).

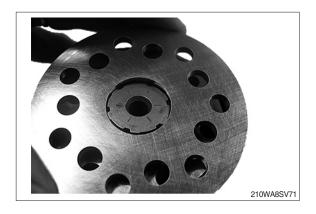
- (26) Place the 2 O-rings (18) in the two groves in the gear rim.
 - Fit the gearwheel and rim (17) on the cardan shaft (13).
- Place the gear wheel side with all the deeper splines facing downwards. Only this side will fit on the cardan shaft due to all gear sets used in OSPD V2 has timing securing: splines of gear wheel and cardan shaft can only be assembled with correct timing.

(27) Place the spacer (56) if present.

Spacer is only present in OSPD with GSW1 (17) equal to or larger than 100 cm3.

(28) Place and rotate the cardan shaft (51) with the big diameter end until it moves in gear with gear wheel of gear set (17).

(29) Place the middle distributor plate (16) so that the channel holes match the holes in the gear set.



(30) Place the 2 O-rings (18) in the two groves in the valve housing assembly (54). Place the valve housing assembly so that the one and only M8 thread whole points upwards and direction port face. Make sure that channel holes match the holes in the distributor plate (16).

(31) Place the rear distributor plate (16) so that the channel holes match the holes in valve housing assembly (54).

(32) Place the 2 O-rings (18) in the two groves in the gear rim.

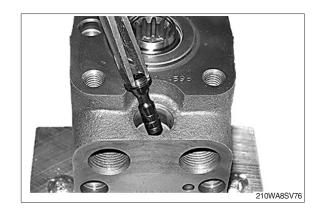
Fit the gearwheel and rim (17a) on the cardan shaft (51).

Place the gear wheel side with all the deeper splines facing downwards. Only this side will fit on the cardan shaft due to all gear sets used in OSPD V2 has timing securing: splines of gear wheel and cardan shaft can only be assembled with correct timing.

210WA8SV72

(33) Place the end cover (19) in position. Ensure that the bar codes and writing are parallel with port face.

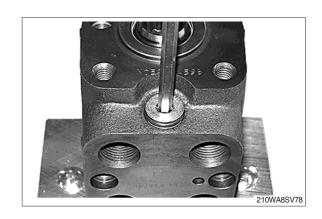
(34) Fit the short screw (22) with new washer (20) and place it in the hole shown.


(35) Fit the six screws (23) with new washers (20) and insert them. In case the unit has pin bolt screw, this must be inserted where the circle is marked: Cross-tighten all the screws (22 and 23) with a torque of $30\pm6~\rm N\cdot m$ [265.5 $\pm53~\rm lbf\cdot in$].

Replace the unit in the holding tool on gear set end.


The OSPD V2 can now be function tested manually: it must be possible to rotate input shaft with torque < 3.5 N·m [31.0 lbf·in].

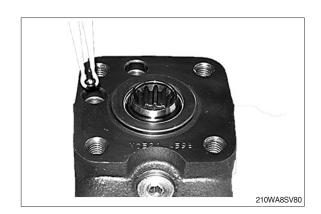
(36) Install the piston (32) to housing.



(37) Install the spring (31) on top of the piston (32).

(38) Place O-ring (43) on adjusting screw (30). Screw in the adjustment screw (30) with a 6 mm Allan key. Make the pressure setting on a test panel according to valve setting specification.

Insert plastic protection plug (42) to the adjustment screw (30).



(39) Place O-ring (41) on the shock valve seats (28). Screw in the seats (28) with a 2.75 mm allan key into the cavities indicated by the circles.

Torque $6 \pm N \cdot m$ [53.1 ± 8.85 lbf·in].

(40) Place one ball (27) in each of the shock valve cavities.

(41) Place springs with trust pads (26) over the two balls.

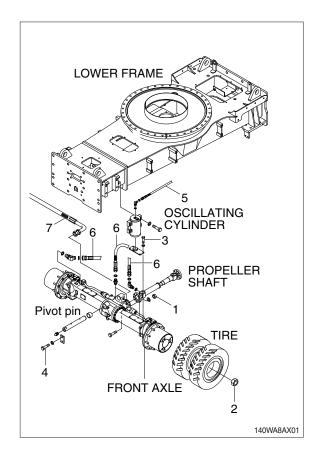
(42) Place O-rings (40) on adjusting screws (25).

Screw in the two adjusting screws (25) using a 5 mm allan key.

Make the pressure setting on a test panel according to valve setting specification.

- Plug all ports, established 35 bar, hydraulic pressure on T and check the unit is completely leak free.
- (43) Place the dust seal ring (1) in the housing.

(44) Fit the dust seal ring in the housing using special tool for dust seal assembly and a plastic hammer.


(45) Screw in the plastic plugs into the connection ports to keep the ports clean during storage and transportation.

GROUP 9 FRONT AXLE

1. REMOVAL FRONT AXLE

- 1) Propeller shaft mounting nut (1, M10)
 - \cdot Tightening torque : 5.9 \pm 0.6 kgf \cdot m $$(42.7\!\pm\!4.3\ \text{lbf}\cdot\text{ft})$$
- 2) Wheel nut (2, M22)
 - \cdot Tightening torque : 60 \pm 5.0 kgf \cdot m (433 \pm 36.2 lbf \cdot ft)
- 3) Oscillating cylinder supporting mounting bolt (3, M16)
 - \cdot Tightening torque : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)
- 4) Pivot pin lock plate mounting bolt (4, M12)
 - \cdot Tightening torque : 12.8 \pm 3.0 kgf \cdot m (92.6 \pm 25.7 lbf \cdot ft)
- 5) Pipe assy (5)
- 6) Hose assy (6, 7)
- 7) Front axle weight: 637 kg (1400 lb)

2. GENERAL INSTRUCTIONS

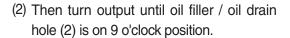
1) GENERAL WORKING INSTRUCTIONS

- (1) This manual has been developed for the skilled serviceman, trained by the ZF-Passau.
- (2) During all operations, pay attention to cleanliness and skilled working. Therefore, axle removed from the machine, must be cleaned prior to open them.
- (3) We assume that the special tools, specified by ZF, will be used. The special tools are available from ZF-Passau.
- (4) After the disassembly, all components must be cleansed, especially corners, cavities and recesses of housing and covers.
- (5) The old sealing compound must be carefully removed.
- (6) Check lubricating holes, grooves and pipes for free passage. They must be free of residues, foreign material or protective compounds.
- (7) The latter refers especially to new parts.
- (8) Parts which have been inevitably damaged in a disassembly operation, must be generally replaced by new ones, e.g. rotary seal rings, O-rings, U-section rings, cap boots, protective caps etc..
- (9) Components such as roller bearings, thrust washers, synchronizing parts etc. which are subject to normal wear in automotive operation, must be checked by the skilled Serviceman. He will decide if the parts can be reused.
- (10) For the heating of bearings etc., hot plates, rod heaters or heating furnaces must be used.
- (11) Never heat parts directly with the flame. An auxiliary solution would be to immerse the bearing in a vessel filled with oil, which is then heated with the flame. In this way, damage to the bearings could be avoided.
- (12) Ball bearings, covers, flanges and parts like that must be heated to about 90 to 100°C.
- (13) Hot-mounted parts must be reset after cooling in order to assure a proper contact.
- (14) Before pressing shafts, bearings etc. in position, both parts must be lubricated.
- (15) During to reassembly, all specified adjustment values, testing specifications and tightening torque must be respected.
- (16) After the repair, units are filled up with oil.
- (17) After the oil filling, the oil level plugs and oil drain plugs must be tightened to the specified tightening torque.

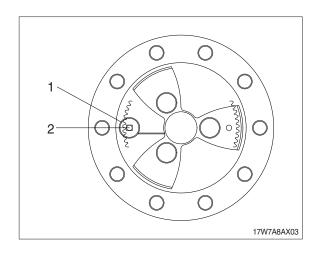
2) IMPORTANT INSTRUCTIONS CONCERNING THE LABOUR SAFETY

- (1) In principle, repairers are themselves responsible for the labour safety.
- (2) The observance of all valid safety regulations and legal rules is a precondition to prevent damage to individuals and products during the maintenance and repair operations.
- (3) Before starting the work, the repairers have to make themselves familiar with these regulations.
- (4) The proper repair of these products requires especially trained personnel.
- (5) The repairer himself is obliged to provide for the training.

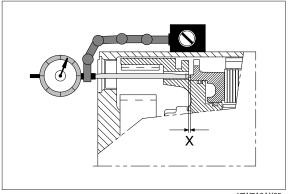
3) LUBRICANT SPECIFICATIONS


- (1) Gear oils with limited slip additives.
- (2) API GL-5
- (3) MIL-L-2105D (SAE 85W-90 LSD or UTTO)

4) BRAKE LINING WEARING TEST


(1) The measurement of wear on the multidisc brake only gives limited information on the total state of the plate pack without disassembling the output.

Make measurement of lining wear at least once per year, in particular, however, in case of a different braking behaviour, like:

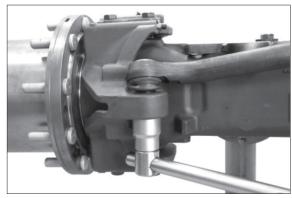

- Braking noises
- Reduced braking power
- Different deceleration
- Different brake oil level
- Different braking pressure
- To avoid injury when opening the oil drain/ oil filler plug (1), due to a possible pressure build-up in the planetary carrier bring drain hole to topmost position (12 o'clock) and carefully unscrew oil drain and filler plug (1).

- 1 = Oil filler-/oil drain hole
- 2 = Gauge hole (\emptyset =10 mm) in ring gear 9 o'clock position
- 3 = Dial indicator with solenoid support
- 4 = Planetary carrier
- 5 = Ring gear
- 6 = Piston
- 7 = Plate pack
- X = Piston stroke

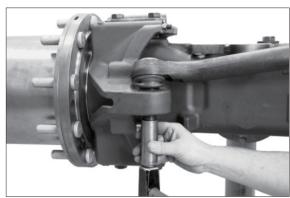

17W7A8AX05

3. DISASSEMBLY

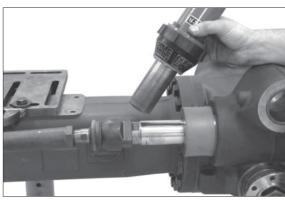
1) STEERING


(1) Fix the axle to the assembly truck.

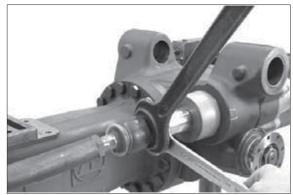
(S) Assembly truck 5870 350 000 (S) Support 5870 350 106


17W98FA001

(2) Loosen locknut.


17W98FA002

- (3) Force out tie rod from bevel seat.
- W Use suitable mandrel (brass or aluminum).


17W98FA003

- (4) Warm up piston rod by means of hot air blower.
- * Axial joint is installed with Loctite no. 243.



17W98FA004

- (5) Separate both tie rods from piston rod.
- * If work is just to be done on piston rod, guide or sealing elements, no disassembly of the steering cylinder assy is required.

- (6) Loosen hexagon screws.
- Mark radial installation position of steering cylinder to axle housing - assembly aid.

17W98FA006

- (7) Drive out steering cylinder assy from axle housing hole.
- * Use a plastic hammer.

17W98FA007

(8) Unsnap the retaining ring and remove the releasing flange.

17W98FA008

(9) Unsnap retaining ring.

17W98FA009

(10) Push/force the brake head into the cylinder tube, until the retaining ring (see figure FA011) can be removed.

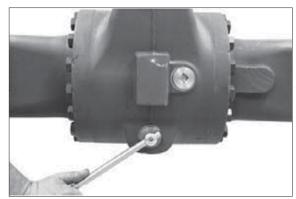
17W98FA010

(11) Unsnap retaining ring.

Then drive out piston rod together with brake head from cylinder tube.

17W98FA011

(12) Pull off brake head from the piston rod.


Then remove all sealing elements from piston rod, brake head and cylinder tube.

17W98FA012

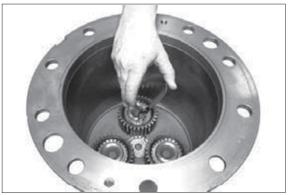
2) OUTPUT

(1) Loosen screw plug and drain oil from the axle.

17W98FA013

- (2) Loosen screw plug and drain oil from the planetary carrier.
- * To avoid injury due to a possible pressure build-up in the oil system of the planetary carrier, bring oil filler and control plug to 12 o'clock position and carefully unscrew. Then bring drain hole to 6 o'clock position and drain oil.
- * Use suitable collecting basin environmental protection.

17W98FA014

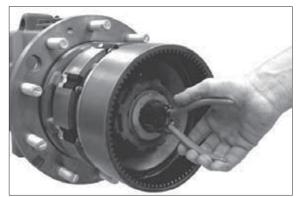

(3) Planetary carrier

Loosen both hexagon screws and separate planetary carrier from hub.


17W98FA015

(4) Unsnap retaining ring.

17W98FA016


(5) Pull off planetary gear together with cylindrical roller bearing.

17W98FA017

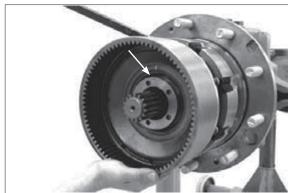
(6) Brake

Unsnap retaining ring and remove both thrust washers.

17W98FA018

(7) Loosen cylindrical screw (slotted nut fixing).

17W98FA019


- (8) Loosen slotted nut.
 - (S) Socket wrench 587

17W98FA020

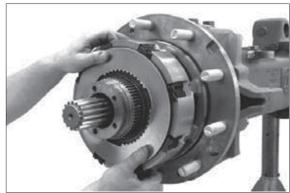
- (9) Press off ring gear together with piston from joint housing.
 - (S) Assembly lever 5870 345 036
- * Pay attention to releasing O-ring (arrow).

17\MQ8FA021

(10) Loosen hexagon screws and remove releasing spring sleeves and compression springs.

17W98FA022

(11) Press off piston from ring gear.


17W98FA023

(12) Remove sealing elements from the annular grooves (see arrows) of the ring gear.

17W98FA024

(13) Remove disk package.

17\MQ8FA025

- (14) Remove O-ring (see arrow) and lift off disk carrier from the joint housing.
 - (S) Adjusting device 5870 400 001

17W98FA026

(15) Hub

Remove O-ring (see arrow).

Secure hub with lifting bracket (S) and pull from joint housing by means of a two armed puller.

(S) Lifting bracket 5870 281 043 (S) Pressure piece 5870 100 067

- Pay attention to releasing bearing inner ring.
- (16) Use a lever to lift-off shaft seal ring (see arrow) from hub hole and force both bearing outer rings out of the hub.

17W98FA027

17W98FA028

(17) Remove spacer bushing.

17W98FA029

(18) Pull tapered roller bearing from joint housing.

(S) Grab sleeve	5873 003 022
(S) Pressure piece	5870 100 067

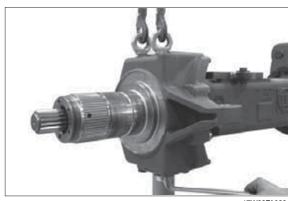


17W98FA030

(19) Knuckle housing

Loosen threaded joint and remove upper bearing pin.

- Pay attention to releasing O-ring.
- * Remove lower bearing pin only after securing the knuckle housing (see figure FA032).

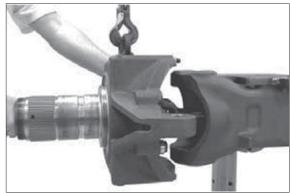


17W98FA031

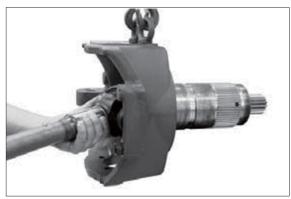
(20) Secure knuckle housing by means of lifting tackle.

Then loosen threaded joint and remove lower bearing pin.

(S) Eyebolts (M 16) 5870 804 001


17W98FA032

(21) Use lever to remove tapered roller bearing (1) from bearing pin, remove releasing sealing cap (2) and the O-ring lying behind.

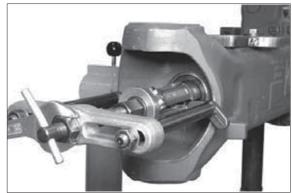

17W98FA033

- (22) Separate knuckle housing with double u-joint shaft from the axle housing.
- Pay attention to shaft seal ring in the axle housing risk of damage.

17W98FA034

- (23) Pull out double u-joint shaft from knuckle housing.
- Pay attention to shaft seal ring in the knuckle housing risk of damage.

17W98FA035


- (24) Pull out shaft seal ring and afterwards the bushing behind from the axle housing.
 - (S) Internal extractor 5870 300 007 (S) Counter support 5870 300 020

17W98FA036

(25) Pull out shaft seal ring and afterwards the bushing behind from the axle housing.

(S) Internal extractor 5870 300 017 (S) Counter support 5870 300 020

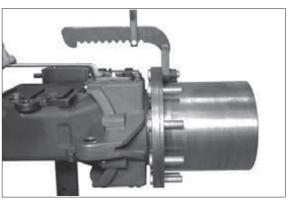
17W98FA037

(26) Pull out both bearing outer rings from the pivot bearing holes.

(S) Internal extractor	5870 300 019
(S) Counter support	5870 300 020

17W98FA038

(27) Output assy


* If work is required on the differential or pinion, you may disassembly the output as complete unit (operation FA039 and FA040).

Secure output assy by means of lifting tackle (S).

(S) Lifting bracket 5870 281 043

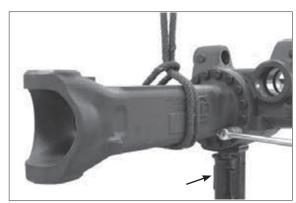
Then loosen threaded joints of both bearing pins.

(28) Remove both bearing pins and separate the output assy from the axle housing.

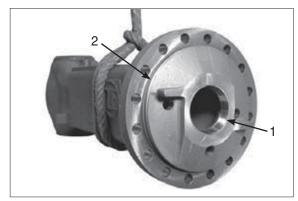
17W98FA039

17W98FA040

3) INPUT

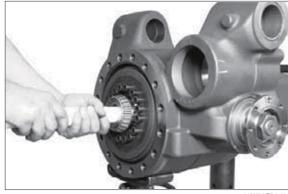

(1) Support axle to axle drive housing (see arrow).

Then secure axle housing (crown wheel side) by means of lifting tackle and loosen threaded joint.


Then separate axle housing from axle drive housing.

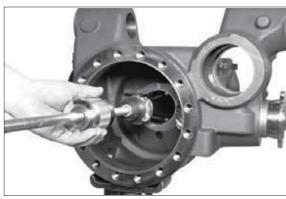
- Pay attention to possibly releasing differential.
- (2) Pull bearing outer ring (arrow 1) from the bearing hole and remove releasing shim. Then remove O-ring (arrow 2).
 - (S) Striker

5870 650 004



17W98FA041

17W98FA042


- (3) Lift differential out of the axle drive housing.
- Disassembly of the differential is described as of page 8-219.

17W98FA043

- (4) Use striker (S) to pull bearing outer ring out of the bearing hole (axle housing) and remove releasing shim.
 - (S) Striker

5870 650 004

17W98FA044

(5) Warm up hexagon nut by means of hot air blower.

Then loosen hexagon nut and remove the releasing shim.

(S) Clamping fork 5870 240 025

* Hexagon nut is installed with Loctite no. 262.

17W98FA045

(6) Pull input flange from pinion.
If necessary, remove screen sheet from flange.

17W98FA046

(7) Use a lever to remove the shaft seal ring from the housing hole.

17W98FA047

- (8) Force out input pinion and remove releasing roller bearing.
- W Use plastic hammer.
- If tapered roller bearings should not be replaced, pay attention that the outer bearing inner ring with all its rolls is in contact with bearing outer ring when forcing out the input pinion.

17W98FA048

(9) Remove spacer ring.

17W98FA049

(10) Press roller bearing from input pinion.

(S) Grab sleeve

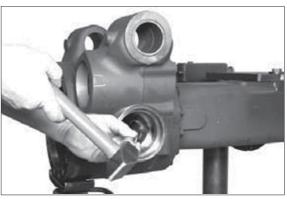
5873 001 037

17W98FA05

(11) Pull off outer bearing outer ring from bearing hole.

(S) Internal extractor

5870 300 019

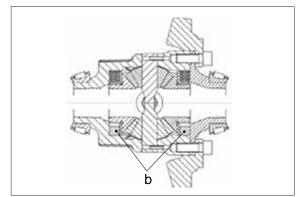

(S) Counter support

5870 300 020

17W98FA051

- (12) Force out bearing outer ring from the inner bearing hole pay attention to the shim behind.
- Mark shim (with regard to position/bearing allocation) assembly aid.

17W98FA052

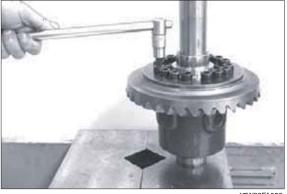

- (13) If necessary, provide bushings with a separating slot (see arrow) and remove from holes.
- Bushings are destroyed by this.

17W98FA053

4) DIFFERENTIAL

(1) Differential - versions: b = Constant spacers

17W98FA054


(2) Pull both tapered roller bearings from differential carrier.

(S) Grab sleeve 5873 011 019 (S) Basic tool 5873 001 000 (S) Pressure piece 5870 100 009

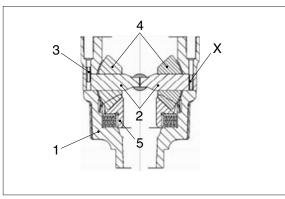
17W98FA055

(3) Use press to fix differential and loosen threaded joint crown wheel / differential carrier.

(4) Press crown wheel from differential.

17W98FA057

(5) Remove single parts.
Remove axle bevel gear together with thrust washer and constant spacer from the differential carrier.


17W98FA058

(6) Force slotted pins (considering position "X", see subsequent sketch FA060) into the spider shafts.

17W98FA059

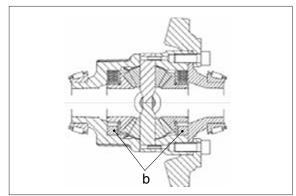
- (7) Comment on sketch:
 - 1 = Differential carrier
 - 2 = Spider shafts (short)
 - 3 = Slotted pins
 - 4 = Differential bevel gears
 - 5 = Axle bevel gear
 - X = Position of the slotted pin to force out the spider shafts

17W98FA060

(8) Force out both spider shafts (short).

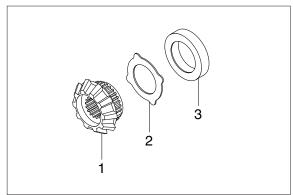
17W98FA061

(9) Remove all single parts.



17W98FA062

4. REASSEMBLY


1) DIFFERENTIAL

(1) b = Constant spacers

17W98FA054

- (2) All outer and inner disks are replaced by a constant spacer (see figure FA066).
 - 1 = Axle bevel gear
 - 2 = Pressure disk
 - 3 = Constant ring
- No measuring / setting of the axial play of the two axle bevel gears is required, therefore single parts can be immediately oiled.

17W98FA065

(3) Insert premounted axle bevel gear into the differential carrier.

17W98FA066

- (4) Insert differential bevel gears (1) with thrust washers (2) and fix with spider shafts (3 and 4).
- Pay attention to radial installation position of the thrust washers.

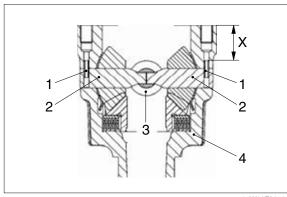
17W98FA067

- (5) Check axial play of the axle bevel gear 0.0~ 0.15 mm.
- If the axial play is not within the specified tolerance, correct with the corresponding outer disks.

After the setting procedure separate the single parts again.

Then oil and reassemble all single parts again.

- Make sure that thickness and arrangement of the second disk package are identical (figure FA071).
- (6) Fix both spider shafts (short) by means of slotted pins (considering installation dimension, see sketch FA070).



17W98FA068

17W98FA069

- (7) Comment on sketch:
 - 1 = Slotted pin
 - 2 = Spider shaft (short)
 - 3 = Spider shaft
 - 4 = Differential carrier
 - $X = Installation dimension 34 \pm 0.5 mm$

17W98FA070

- (8) Mount second axle bevel gear with thrust washer and constant spacer (see also figure FA065).
- Mount the pressure disk with the coated surface showing to the outer disk.
- * Thickness and arrangement of the disk package must be identical on both sides of the differential gear.

17W98FA071

- (9) Check axial play of the second axle bevel gear 0.0~0.15 mm.
- If the axial play is not within the specified tolerance, correct with the corresponding outer disks.

After the resetting procedure remove the second axle bevel gear together with the disk package from the differential carrier.

Then oil and reassemble all single parts.

(S) Adjusting screws (M12 \times 1.5) 5870 204 027

17W98FA072

17W98FA073

(11) Press crown wheel onto the cover / differential carrier until contact position is obtained.

17W98FA074

(12) Fix differential with press and tighten crown wheel with cylindrical screws.

Tightening torque (M12×1,5/12.9) MA = 145

Nm

17W98FA075

- (13) Press on both bearing inner rings until contact is obtained.
- W Use an appropriate support (arrow) differential may not be supported on the bearing cage.

17W98FA076

2) INPUT

(1) Input pinion

* The following measuring procedures must be carried out with utmost accuracy. Inaccurate measurements lead to an incorrect contact pattern and another disassembly and reassembly of the input pinion is required.

(2) Determine thickness of the shim to obtain a correct contact pattern

Read dimension I from the axle drive housing.

Dimension I e.g 154.05 mm

17W98FA077

(3) Read dimension II (pinion dimension).

In case of a + or - deviation of the pinion dimension for production reasons the relevant value is marked by hand on the pinion.

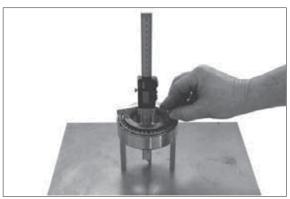
Pinion dimension (without + or - deviation) = 116.0 mm

Pinion dimension with an indicated + 0.1

deviation = 116.1 mm

Pinion dimension with an indicated -0.1

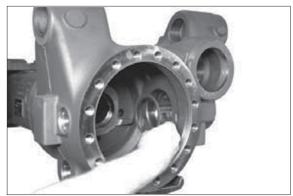
deviation = 115.9 mm



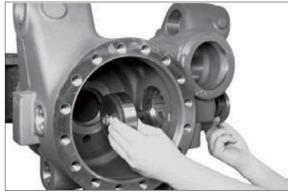
17W98FA078

- (4) Determine dimension III (bearing width).
- Make sure that the rollers are located without any play (rotate bearing g inner ring several times in both directions roller setting).

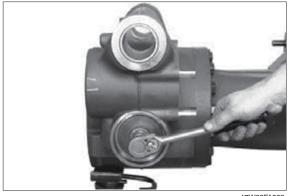
Since the installed roller bearing is subject to a pre-load in installation position, consider an experience deduction of 0.1 mm.


Dimension III, e.g. 36.60 mm – 0.1 mm = 36.50 mm

17W98FA079


(5) Calculation example "B":

Insert the determined shim (e.g. s = 1.55 mm) into the inner bearing hole.


17W98FA080

- (6) Undercool bearing outer ring (see arrow) and bring into contact position in the bearing hole by using the assembly fixture (S).
 - (S) Assembly fixture 5870 345 049 (S) Pressure ring 5870 345 056

17W98FA081

- (7) Undercool outer bearing outer ring and insert into bearing hole until contact is obtained.
 - (S) Assembly fixture 5870 345 049 (S) Pressure ring 5870 345 056

17W98FA082

(8) Setting of rolling torque of the input pinion bearing 1.0 ... 3.0 Nm (without shaft seal ring)

Warm up roller bearing and insert until contact is obtained.

* Adjust bearing after cooling down.

17W98FA083


- (9) Insert spacer ring (e.g. s = 16.96 mm).
- ** According to our experience, the necessary rolling torque is obtained when reusing the spacer ring which has been removed during disassembly (e.g. s = 16.96 mm).

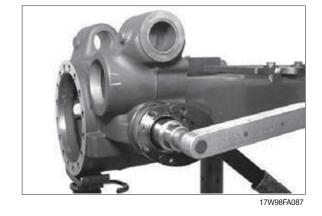
A later check of the rolling torque, however, is absolutely necessary.

17W98FA084

(10) Insert the preassembled input pinion into the axle housing and mount the heated roller bearing until contact is obtained.

17W98FA085

- (11) Press screen sheet (see arrow) onto the input flange until contact is obtained.
- The shaft seal ring is mounted only after contact pattern check.

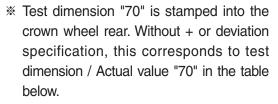


17W98FA086

(12) Mount input flange, fix with disk and hexagon nut.

..... MA = 600 Nm (S) Clamping fork 5870 240 025

During the tightening process rotate the input pinion several times in both directions.



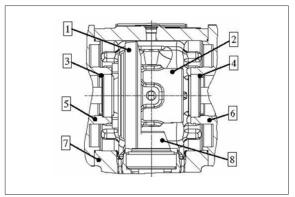
- (13) Check rolling torque (1.0 ... 3.0 Nm without shaft seal ring).
- * When installing new bearings try to achieve the upper value of the rolling torque.
- In case of deviations from the necessary rolling torque correct with a corresponding spacer ring (figure FA084) as specified below.

Insufficient rolling torque install thinner spacer ring Excessive rolling torque install thicker spacer ring.

- (14) Determine shim for setting the bearing rolling torque (differential bearing) and
- * The required shims must be determined on the basis of the read value (test dimension / crown wheel) and the corresponding specifications of the table next page: (KRS - SET - RIGHT): Read test dimension from crown wheel rear.

backlash (bevel gear set).

According to this value the necessary shims are allocated in the table next page.


- In case of + or deviation of the test dimension for production reasons, it is additionally signed on the crown wheel rear (e.g. - 20 or - 10 . 10 or 20) .
- In accordance with this deviation the necessary shims are allocated in the below table.

(15) Comment on sketch:

1 = Crown wheel 2 = Differential carrier

3 = Shim 4 = Shim

(crown wheel side) (diff. carrier side) $5 = Axle \text{ housing} \qquad 6 = Axle \text{ housing}$ $7 = Axle \text{ drive housing} \qquad 8 = Input \text{ pinion}$

17W98FA090

Setting disks for differential												
Test dimension/Marking of crown wheel 70 and deviation	-20	-10	0	10	20							
Result → Test dimension / Act. value	69.80	69.90	70.0	70.10	70.20							
Shim/Diff. carrier side Required disk thickness	0.95	1.05	1.15	1.25	1.35							
Shim no.	ZGAQ-00545	ZGAQ-00547	ZGAQ-00549	ZGAQ-00552	ZGAQ-00554							
Shim/Crown wheel side Required disk thickness	1.35	1.25	1.15	1.05	0.95							
Shim no.	ZGAQ-00554	ZGAQ-00552	ZGAQ-00549	ZGAQ-00547	ZGAQ-00545							

- (16) Insert the determined shim (e.g. s = 1.15 mm) and the bearing outer ring into the hole of the axle housing on the differential carrier side.
- Pivot axle housing 90°.

17W98FA091

(17) Insert the determined shim (e.g. s = 1.15 mm) and the bearing outer ring into the hole of the axle housing on the crown wheel side.

17W98FA092

(18) Check the contact pattern of the bevel gear set

Wet some drive and coast flanks of the crown wheel with marking ink.

17W98FA093

- (19) Insert the preassembled differential into the axle drive housing.
 - (S) Internal extractor 5870 300 005

17W98FA094

(20) Use lifting tackle to mount the axle housing (crown wheel side) and preliminarily fix with hexagon screws.

Preliminarily fix axle housing without O-ring.

17W98FA095

- (21) Roll the crown wheel by rotation on the input flange several times in both directions over the input pinion.

 Then remove axle housing again and lift differential out of the axle drive housing.

 Compare the obtained contact pattern with contact pattern example page 0/4 and 0/5.
- In case of a contact pattern deviation a measuring mistake was made when determining the shim (figure FA080), which must be absolutely corrected.

17W98FA096

(22) Grease O-ring (see arrow) and mount to axle housing.

17W98FA097

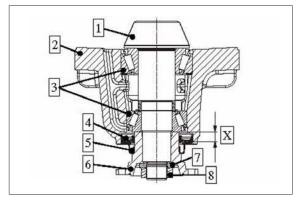
(23) Use lifting tackle to mount the axle housing (part II), finally tighten with hexagon screws.

Then bring axle into horizontal position and reassemble the second clamping angle (S) (see also figure FA001).

17W98FA098

(24) Mount shaft seal ring (input flange)

Loosen hexagon nut and pull the input flange from the input pinion.


(S) Clamping fork 5870 240 025

17W98FA099

(25) Comment on sketch:

- 1 = Input pinion
- 2 = Axle drive housing
- 3 = Tapered roller bearing
- 4 = Shaft seal ring
- 5 = Screen sheet
- 6 = Input flange
- 7 = Disk
- 8 = Hexagon nut
- $X = Installation dimension \rightarrow 13.5 + 0, 2 mm$

17W98FA100

- (26) Mount shaft seal ring with the seal lip showing to the oil chamber.
 - (S) Driver tool

5870 048 286

- We Use of the specified driver tool (S) ensures the exact installation position of the shaft seal ring.
- Just before fitting, wet contact face shaft seal ring/axle drive housing with lubricant. Apply grease on seal and dust lip of the shaft seal ring.

17W98FA10

(27) Mount input flange, finally tighten with disk and hexagon nut.

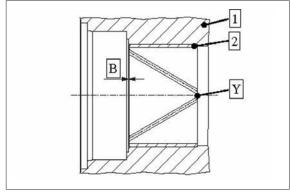
(S) Clamping fork 5870 240 025

Wet thread of the hexagon nut with Loctite no. 262.

17W98FA102

3) OUTPUT

(1) Preassembly axle housing

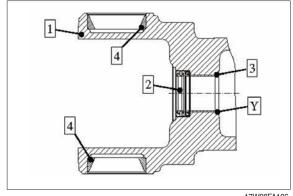

Insert bushing into hole of axle housing considering installation dimension "B" and installation position "Y" (see also sketch FA104 and FA106).

(S) Driver tool 5870 055 081 (S) Handle 5870 260 002

17W98FA103

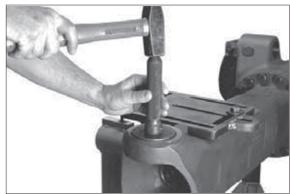
- (2) Comment on sketch:
 - 1 = Axle housing
 - 2 = Bushing
 - B = Installation dimension 1.0 ± 0.3 mm
 - Y = Installation position / lubrication groove outlet of bushing (top view)
- ** Lubrication groove outlet (V-point) must be mounted in 6 o'clock position (bottom) and showing to the oil chamber side.
- We use of the specified driver tool (S) ensures the exact installation depth of the bushing.
- (3) Flush-mount seal ring with the seal lip showing to the oil chamber (see sketch FA106) into the axle housing hole.
 - (S) Driver tool 5870 055 081 (S) Handle 5870 260 002
- W Use of the specified driver tool (S) ensures the exact installation position of the shaft seal ring.

17W98FA104

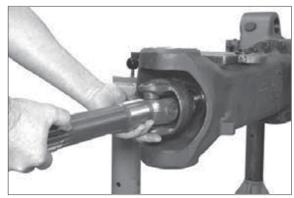


17W98FA105

* Just before fitting wet the contact face shaft seal ring/axle drive housing with lubricant.


Apply grease on seal and dust lip of the shaft seal ring.

- (4) Comment on sketch:
 - 1 = Axle housing
 - 2 = Shaft seal ring
 - 3 = Bushing
 - 4 = Bearing outer rings (pivot bearing)
 - Y = Lubrication groove outlet (V-point in6 o'clock position and on oil chamber side)



17W98FA106

- (5) Insert both bearing outer rings into the pivot bearing holes of the axle housing.
 - (S) Driver tool 5870 058 058
 - (S) Handle 5870 260 002

- (6) Install the u-joint shaft by inserting the u-joint shaft into the axle bevel gear teeth.
- * Pay attention to shaft seal ring in the axle housing risk of damage.



17W98FA108

(7) Knuckle housing (pivot bearing-SET-RIGHT)

Seal machining openings of oil supply holes - position 1 and 2 with plugs.

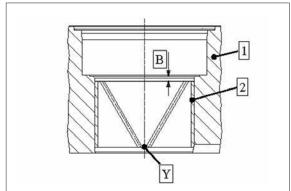
- (S) Lever riveting tongs 5870 320 016
- * Operation is only required when using a new knuckle housing.

17W98FA109

(8) Insert bushing into the hole of the knuckle housing considering the installation dimension "B" and installation position "Y" (see also sketch FA111 and FA113).

(S) Driver tool 5870 055 090

(S) Handle 5870 260 002

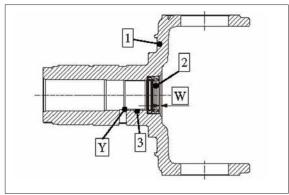


17W98FA110

- (9) Comment on sketch:
 - 1 = Knuckle housing
 - 2 = Bushing
 - B = Installation dimension. . . 2.0 ± 0.2 mm
 - Y = Installation position / lubrication groove outlet of the bushing
- Lubrication groove outlet (V-point) must be mounted in 6 o'clock position (bottom) and showing to the oil chamber side (referred to the axle fitted into the vehicle).
- We use of the specified driver tool (S) ensures the exact installation depth of the bushing.
- (10) Insert shaft seal ring into the hole of the knuckle housing with the seal lip showing to the oil chamber – considering the installation dimension "W" (see also sketch below).

(S) Driver tool 5870 055 081 (S) Handle 5870 260 002

W Use of the specified driver tool (S) ensures the exact installation position of the shaft seal ring.



17W98FA111

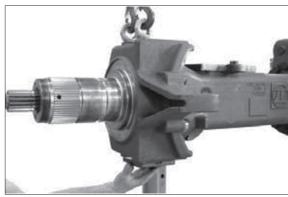
17W98FA112

- (11) Comment on sketch:
 - 1 = Knuckle housing
 - 2 = Shaft seal ring
 - 3 = Bushing
 - W = Installation dimension shaft seal ring 2.0 ± 0.2 mm
 - Y = Lubrication groove outlet (V-point)
 must be mounted in 6 o'clock
 position and showing to the oil
 chamber side (referred to the axle
 fitted into the vehicle)
- ¾ Just before fitting wet contact face shaft seal ring/knuckle housing with sealing agent.
 - Apply grease on seal and dust lip of the seal ring.
- (12) Grease O-ring (see arrow) and insert it into the groove of the bearing pin.

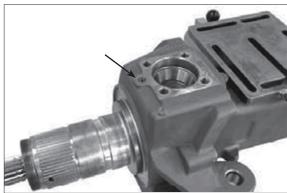
17W98FA113

17W98FA114

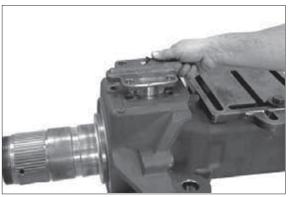
(13) Place sealing cap (see arrow) and mount the tapered roller bearing until contact position is obtained.


17W98FA115

- (14) Locate pre-assembled knuckle housing on axle housing and carefully mount u-joint shaft.
 - (S) Eyebolts (M 16) 0636 804 001
- Pay attention to shaft seal ring in the knuckle housing risk of danger.


17W98FA116

- (15) Insert the pre-assembled lower bearing pin and preliminarily fix with hexagon screws.
- Pay attention to installation position mount bearing pin with lubrication nipple showing to axle centre.


17W98FA117

- (16) Insert O-ring (see arrow) or O-rings into countersink of the knuckle housing.
 - 1 ps for version with breather valve in the knuckle housing
 - 2 pcs for version with breather valve in the bearing pin

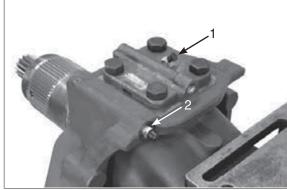
17W98FA118

- (17) Insert pre-assembled upper bearing pin.
- Observe installation position mount bearing pin with oil supply holes showing to axle centre.

17W98FA119

1	(18)	Fix	hoth	hearing	nins	definitely	,
١	l IO	/ I I / A	DOUL	Dearing	DIIIO	aciii iitci	٧.

※	Tightening torque (M 16/10.9)	
	MA = 280 Nr	n

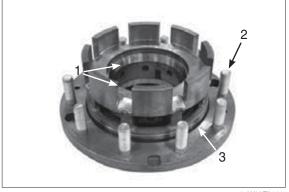

17W98FA120

(19) Mount lubrication nipple in both bearing pins (arrow 1 showing to the axle centre) and apply grease to the pivot bearing.

Tightening torque (M 10×1) MA = 3 Nm

Mount breather valve (arrow 2, position depending on version: integrated in the knuckle housing or in the bearing lid) and provide with dust cap.

Tightening torque (M $14 \times 1,5$) MA = 20 Nm


17W98FA121

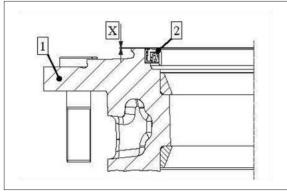
4) HUB (Hub bearing-SET-RIGHT)

 Insert both bearing outer rings (1) of the hub bearing until contact position is obtained.


Press wheel bolts (2) into the hub until contact position is obtained.

Oil O-ring (3) and locate in annular groove of hub.

17W98FA122


- (2) Press shaft seal ring with the marking "OUT SIDE" showing outside (upwards) into the hub.
 - (S) Driver tool 5870 051 035
- We Use of the specified driver tool (S) ensures the exact installation position of the shaft seal ring.
- Wet the outer diameter of the shaft seal ring with Loctite no. 574.

17W98FA123


- (3) Comment on sketch:
 - 1 = Hub
 - 2 = Shaft seal ring

X = Installation dimension - Shaft seal ring 0.0~0.3 mm

17W98FA124

(4) Heat the tapered roller bearing and mount until contact position with the knuckle housing is obtained.

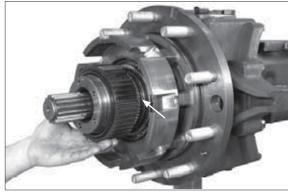
17W98FA125

(5) Insert spacer bushing.

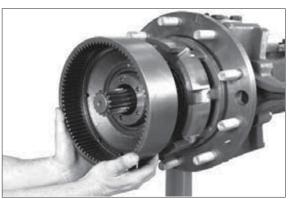
17W98FA126

- (6) Install preassembled hub until contact is obtained and fix with heated tapered roller bearing.
 - (S) Lifting bracket

5870 281 043


¾ Just before fitting wet the seal lips of the shaft seal ring with lubricant.

17W98FA127


(7) Oil O-ring and insert it into the annular groove (see arrow) of the knuckle housing.

Then install disk carrier.

17W98FA128

(8) Bring disk carrier and hub bearing into contact position (figure FA129 and FA130) Install ring gear (without sealing elements).

17W98FA129

- (9) Bring hub bearing into contact position for this purpose tighten slotted nut with a tightening torque of max. 1400 Nm.
 - (S) Socket wrench 5870 656 097
- While tightening the slotted nut rotate hub in both directions several times roller setting.
- Apply lubricant to thread knuckle housing / slotted nut.
- (10) Loosen slotted nut again and remove ring gear.

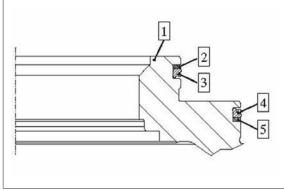
17W98FA130

17W98FA131

5) DISK BRAKE

- (1) Install disk package alternately starting with an outer disk.
- * Take the actually required disk fitting / arrangement from the corresponding spare parts list.
- Bring inner clutch disks in a position where one of the tooth recesses (see arrow) is in 6 o'clock position with axle being installed in the vehicle.
- (2) Oil O-ring and locate in annular groove of disk carrier.

17W98FA132


17W98FA133

- (3) Oil U- and support rings and insert them into the annular grooves of the ring gear.
- Observe installation position, see sketch below.

17W98FA134

- (4) Comment on sketch:
 - 1 = Ring gear
 - 2 = Support ring
 - 3 = U-ring
 - 4 = U-ring
 - 5 = Support ring

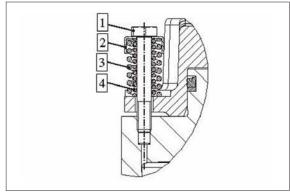
17W98FA135

- (5) Mount cylindrical pins into piston, considering installation dimension "X".
 - X = Installation dimension 18.00 mm

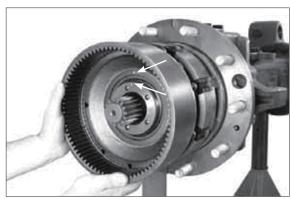
17W98FA136

(6) Install piston on ring gear.

17W98FA137


(7) Fix piston with "new" hexagon screws (1), spring sleeves (2) and compression springs (3 and 4).

* Use hexagon screws just once.


17W98FA138

- (8) Comment on sketch:
 - 1 = Hexagon screw (special version)
 - 2 = Spring sleeve
 - 3 = Compression spring
 - 4 = Compression spring

17W98FA139

- (9) Mount preassembled ring gear considering the installation position (markings O in 12 o'clock position - see arrows).
- Ensure exact toothing position of oil supply holes knuckle housing / ring gear (pressure oil supply to brake piston).

17W98FA140

(10) Oil O-ring and insert in recess (see arrow).

17W98FA141

(11) Fix ring gear with slotted nut.

Tightening torque:


 $(M 110 \times 1.5) \dots MA = 1400 + 200 Nm$

(S) Socket wrench 5870 656 097

* First tighten slotted nut with 1400 Nm, then retighten slotted nut until a fixing hole overlaps a threaded hole in the knuckle housing.

While tightening the slotted nut rotate hub in both directions several times roller setting.

Wet thread knuckle housing/slotted nut with lubricant.

(12) Make leakage test of multi-disk brake

Mount threaded coupling (S) and connect HP pump.

(S) HP pump 5870 287 007 (S) Threaded coupling (M14x1.5) 5870 950 102 (S) Breather bottle 5870 286 072

* Breathe brake completely before starting the test.

Test media:

Motor oils SAE-10W

High-pressure test:

Build up test pressure p = 100 bar and close locking valve of HP pump.

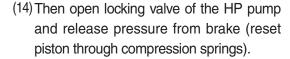
A pressure drop by max. 3 bar is permissible during a 5-minute test duration.

Low pressure test:

Reduce test pressure p = 5 bar and close locking valve.

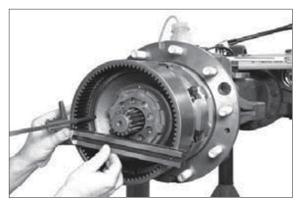
No pressure drop is allowed during a 5-minute testing duration.

17W98FA143

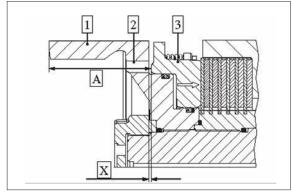

(13) Adjust and check piston stroke

Piston stroke / disk clearance = 0.7 1.3 mm Build up braking pressure (100 bar) and close locking valve of the HP pump.

Determine dimension "A", from face of the ring gear (1) through measuring hole (see also sketch FA145) to the face of the piston (3).


Dimension "A" e.g. 83.10 mm

Breathe brake completely before starting the measuring operation.



Determine dimension "B", from the face of the ring gear (1) through the measuring hole (see also sketch FA146) to the face of the piston (3).

Dimension "B" e.g. 82.10 mm

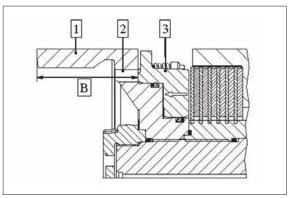
17W98FA144

17W98FA145

(15) CALCULATION EXAMPLE:

Dimension "A" e.g. 83.10 mm

Dimension "B" e.g. - 82.10 mm


Difference = Piston stroke = 1.00 mm

If the required piston stroke (0.7 ... 1.3 mm) is not achieved, correct it with the corresponding inner clutch disk (s) – refer to corresponding spare parts list.

Then remove HP pump (S), breather bottle (S) and threaded coupling (S).

Comment on sketch 43 and 44:

- 1 = Ring gear
- 2 = Measuring hole
- 3 = Piston
- X = Piston stroke / disk clearance
- (S) Straightedge 5870 200 022

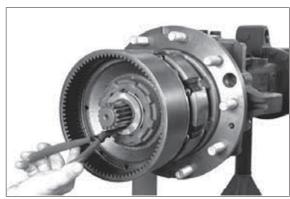
17W98FA146


(16) Secure slotted nut with cylindrical screw (please also refer to figure FA142)

17W98FA147


(17) Insert thrust washer.

* Observe installation position ensure that both lugs of the thrust washer are engaged each in a spare fixing hole of the slotted nut.


17W98FA148

(18) Mount thrust washer with shoulder showing to the retaining ring (outwards).

17W98FA149

(19) Fix thrust washers by using a retaining ring.

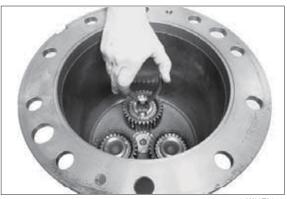
17W98FA150

6) PLANETARY CARRIER

- (1) Press thrust washer into the planetary carrier until contact position is obtained.
 - (S) Driver tool

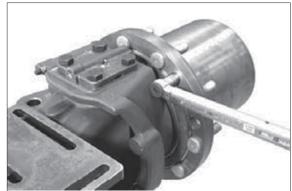
5870 048 245

- (2) Insert the cylindrical roller bearing into the planetary gear for this purpose press the cylindrical roller bearing through the packaging sleeve until the snap ring engages into the annular groove of the planetary gear.
- W Use packaging sleeve to facilitate assembly.
 - 1 = Cylindrical roller bearing
 - 2 = Packaging sleeve
 - 3 = Snap ring
 - 4 = Planetary gear


17W98FA152

- (3) Warm up bearing inner ring and install pre-assembled planetary gear until contact is obtained.
- Mount bearing inner ring with large radius, showing to the planetary carrier (downwards).

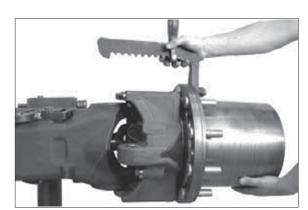
17W98FA153


(4) Fix planetary gear by means of retaining ring.

17W98FA154

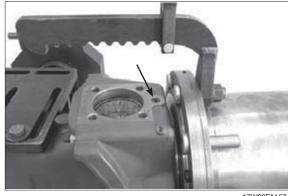
(5) Install preassembled planetary carrier and fix with hexagon screws.

T	ΪQ	gŀ	nt	е	n	iir	JĆ	3 .	tc	r	Q	Įι	le	9	(Λ	/	1	2	/8	3	3.	3))											
_			_	_	_	_			_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	ľ	V	ΙA	١	=	5	5	N	n	n	

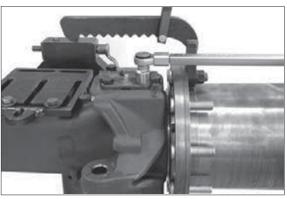


17W98FA155

(6) Output assy


Locate output assy on the axle by means of the lifting bracket (S) by installing the u-joint shaft in the axle bevel gear toothing.

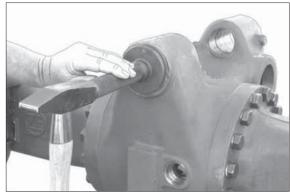
- (S) Lifting bracket 5870 281 043
- Pay attention to shaft seal ring in the axle housing risk of damage.


17W98FA156

- (7) Insert O-ring (see arrow) or O-rings into the countersink (s) of the knuckle housing.
 - 1 pc for version with breather valve in knuckle housing.
 - 2 pcs. for version with breather valve in bearing pin.

17W98FA157

- (8) Mount both bearing pins and fix with hexagon screws or locking screws.
- * Observe installation position, mount upper bearing pin with oil supply holes showing to axle centre.



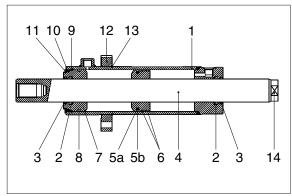
17W98FA158

(9) Pivot bearing

Super-cool bushings and insert into the heated pivot bearing hole until contact is obtained.

- * Observe installation position for bushing version with slot, insert bushings with slot in 12 o'clock position.
- Prior to putting the axle into operation, fill in oil.

17\MQ8EA15

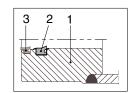

7) STEERING

(1) Comment on sketch:

- 1 = Steering cylinder
- 2 = Grooved ring
- 3 = Scraper
- 4 = Piston rod
- 5a = O-ring

5b = Form seal ring Piston sealing

- 6 = Guide ring
- 7 = Brake head
- 8 = Dual ring
- 9 = Retaining ring
- 10 = O-Ring (only for version "with" O-ring)
- 11 = Retaining ring
- 12 = Flange
- 13 = Retaining ring
- 14 = Wrench point of attack (piston rod)

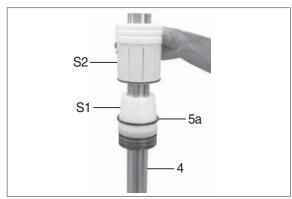

17W98FA160

(2) Preassemble steering

Mount U-ring (2) and scraper (3) in the steering cylinder (1).

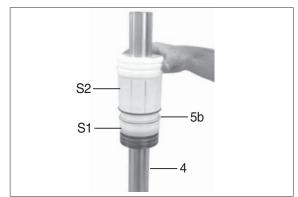
Observe installation position – see detailed sketch.

Detailed sketch:

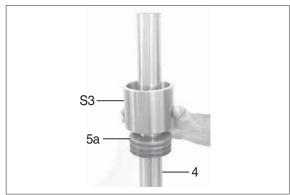

17W98FA161

(3) Position inner installer (S1) on piston rod (4).

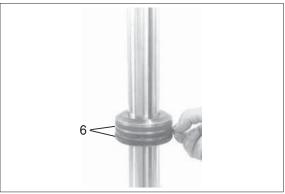
Mount O-ring (5a) and press with inner installer (S2) into annular groove (arrow) of the piston (4).


(S) Inner installer (S1) 5870 651 086

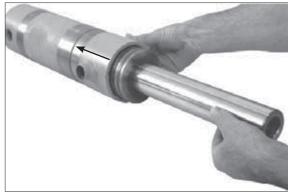
(S) Inner installer (S2) 5870 651 087


17W98FA162

(4) Install form seal ring (5b) and press with inner installer (S2) into the annular groove of the piston (4).

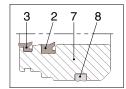

17W98FA163

- (5) Calibrate form seal ring (5b) with calibration bushing (S3).
 - (S) Calibration bushing (S3) 5870 651 090


17W98FA164

(6) Place both guide rings (6) into the annular grooves of the piston rod.

17W98FA165


- (7) Insert preassembled piston rod into the steering cylinder.
- Slightly oil all sealing elements before installing the piston rod.
- ** Observe installation position, insert piston rod with wrench point of attack (14, see also sketch FA160) showing in direction of arrow.

17W98FA166

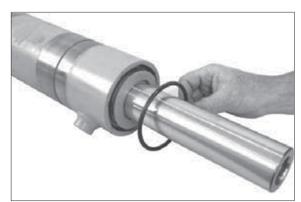
- (8) Insert U-ring (2), scraper (3) and dual ring (8) into the grooves of the brake head (7).
- Observe installation position in this connection refer to detailed sketch.

Detailed sketch:

17W98FA167

- (9) Push preassembled brake head into the steering cylinder so that the retaining ring (see figure FA169) can be mounted.
- Slightly oil all sealing elements before inserting the brake head.

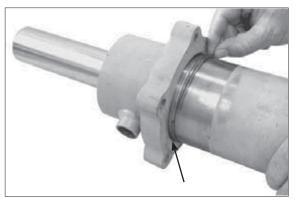
17W98FA168


(10) Engage retaining ring (9) into the groove of the cylinder tube.

17W98FA169

(11) Position the inserted brake head (7) on the snap ring (9) until contact is obtained (arrow).

Only for version with O-ring (see corresponding spare parts list): Oil O-ring (10) and place into the recess.


17W98FA170

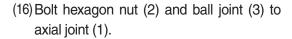
(12) Fix brake head (7) with retaining ring (11).

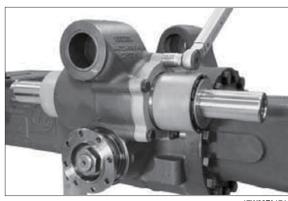
17W98FA171

- (13) Install flange (12) and engage retaining ring (13).
- * Observe installation position of flange mount flange with chamfer (see arrow) showing to the snap ring.

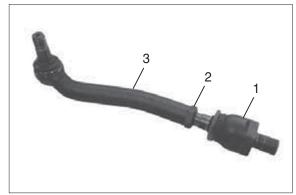
17W98FA172

(14) Mount steering


Apply anti-corrosive agent (Weicon Anti-Seize) on contact faces (cylinder tube / axle housing, see arrow).

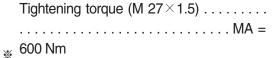

17W98FA173

(15) Insert preassembled steering cylinder into
axle housing and fix with hexagon screws.
Tightening torque (M 12/8.8)
MA = 79 Nm


- * The radial installation position of the
- steering cylinder (position of the hydr. connections) is customer specific see also disassembly instructions figure FA018.
- Wet the thread of the hexagon screws with Loctite no. 243.

Do not tighten hexagon nut before setting the track.

17W98FA174



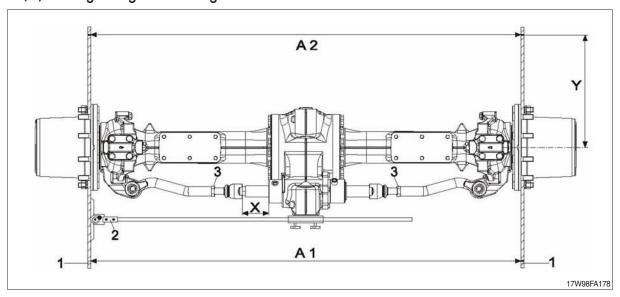
17W98FA175

(17) Fix both tie rods to piston rod (with offset showing to the axle housing).

Tightening torque (M30×1.5)
MA =
450 Nm

- (S) Socket wrench (SW 55) 5870 656 100 Wet thread of the axial joint with Loctite no. 243.
- (18) Install tie rod into knuckle housing and fix with "new" locking nut.

Use locking screws just once.



17W98FA176

17W98FA177

(19) Steering setting and checking

1 = (S) Straightedge 5870 200 029

2 = (S) Measuring device 5870 200 033

3 = Hexagon nut

X = Installation dimension (central position – piston rod)

Y = Distance – wheel center to rim flange

(20) Basic track setting

Bring piston rod in central position.

Dimension X = 119 mm (measured from front face/steering cylinder to contact face/axial joint).

* Do not change axial position of piston rod any more during track setting.

Mount straightedge (1) in horizontal and central axis position.

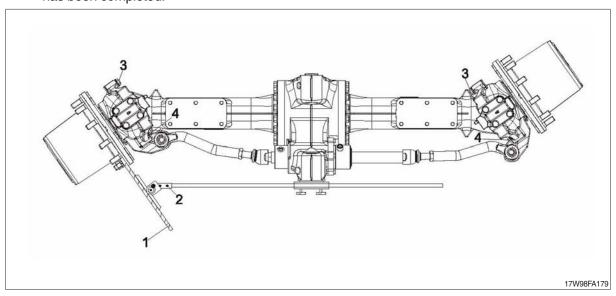
Fix measuring device (2) to yoke.

Loosen hexagon nut (3) and set length of tie rod (axial joint) until the measuring device (2) indicates 0° (corresponds to a track setting of zero mm).

- * For a toe-in and toe-out setting, which might be required, stick to the vehicle manufacturer's specification.
- Make setting on both output sides.

Check track setting (0°):

Determine dimension A1.


Rotate both outputs by 180° – dimension A2 must equal dimension A1.

Dimension "Y" = distance between rim center and rim flange.

Then fix both tie rods (axial joint) by means of hexagon nut (3).

(21) Steering angle setting

When track setting is required, steering angle setting may only be carried out after track setting has been completed.

1 = (S) Straightedge 5870 200 029

2 = (S) Measuring device 5870 200 033

3 = Stop screw with stop washer (optional)

4 = Stop screw with hexagon nut

Mount straightedge (1) in horizontal and central axis position.

Fix measuring device (2) to yoke.

Pivot output until the required steering angle (e.g. 35°) is indicated on the measuring device (2).

* Take the value of the steering angle to be set from the vehicle manufacturer's specifications.

Bring the stop screw (4) on the axle housing in contact position and lock with hexagon nut.

Tightening torque (M18/10.9) MA = 300 Nm

Then set inner stop by means of stop screw (3) and stop washer (s = optional).

Tightening torque (M18/10) MA = 390 Nm

Make setting on both output sides.

(22) Check leakage of steering

Make leakage test of steering in both steering directions by means of HP pump.

Test pressure: 200 bar

Test medium: Engine oils SAE 10W

Test pressure p = Build up 200 bar (bleed pressure chamber).

Then close connection to HP pump by means of locking valve.

A 5 bar pressure drop is permissible during a test duration of 20 sec.

(S) HP pump 5870 287 007 (S) Reduction 5870 950 161 (S) Clutch 0501 207 939

Prior to putting the axle into operation fill it with oil.

17\MQ8FA18

5. SPECIAL TOOLS FOR DISASSEMBLY AND REASSEMBLY

No.	Figure	Designation order no.	Qty	Page
1	180W9A8FA501	Assembly truck assy with tilting device 5870 350 000	1	8-206 8-279
2	180W9A8FA502	Supporting bracket 5870 350 106	1	8-206 8-279
3	180W9A8FA503	Socket wrench 5870 656 097	1	8-210 8-279
4	180W9A8FA504	Assembly lever 5870 345 036	1	8-211 8-280
5	180W9A8FA505	Adjusting device 5870 400 001	2	8-212 8-281

No.	Fig	ure	Designation order no.	Qty	Page
6		180W9A8FA506	Lifting bracket 5870 281 043	1	8-212, 215, 240, 248 8-281, 283, 307, 315
7	0	180W9A8FA507	Pressure piece 5870 100 067 (FR axle) 5870 100 063 (RR axle)	1 1	8-212, 213 8-281, 282
8	FR axle	RR axle	Grab sleeve 5873 003 022 (FR axle) 5873 013 015 (RR axle)	1	8-213 8-282
9		180W9A8FA509	Grab sleeve HW180 / HW210 5873 004 026	1	-
10		180W9A8FA510	Grab sleeve HW210 5873 004 022	1	-

No.	Figure	Designation order no.	Qty	Page
11	180W9A8FA511	Eyebolts (FR axle) 0636 804 001 (M16)	2	8-237
12	180W9A8FA512	Eyebolts (FR axle) 5870 204 085 (M18)	2	-
13	180W9A8FA513	Eyebolts (FR axle) HW210 0636 804 003 (M20)	2	-
14	180W9A8FA514	Inner installer (FR axle) 5870 300 007 (Ø 46 ~ 56 mm)	1	8-214
15	180W9A8FA515	Inner installer (FR axle) 5870 300 017 (Ø 56 ~ 70 mm)	1	8-215

No.	Figure	Designation order no.	Qty	Page
16	180W9A8FA516	Counter support 5870 300 020	1	8-215, 218 8-287
17	180W9A8FA517	Inner installer 5870 300 019 (Ø 56 - 110 mm)	1	8-215, 218 8-287
18	180W9A8FA518	Striker 5870 650 004	1	8-216 8-282, 285, 286
19	180W9A8FA519	Clamping fork 5870 240 025	1	8-217, 228, 232 8-292, 301, 305
20	180W9A8FA520	Grab sleeve 5873 001 037	1	8-218 8-287

No.	Figure	Designation order no.	Qty	Page
21	180W9A8FA521	Grab sleeve 5873 011 019	1	8-219 8-288
22	180W9A8FA522	Basic tool 5873 001 000	1	8-219 8-288
23	180W9A8FA523	Pressure piece 5870 100 009	1	8-219 8-288
24	180W9A8FA524	Adjusting screws 5870 204 027 (M12×1.5)	1	8-224 8-293
25	180W9A8FA525	Assembly fixture 5870 345 049	1	8-226 8-300

No.	Figure	Designation order no.	Qty	Page
26	180W9A8FA526	Pressure ring 5870 345 056	1	8-226 8-300
27	180W9A8FA527	Internal extractor 5870 300 005 (Ø 36 ~ 46 mm)	1	8-230 8-296
28	180W9A8FA528	Driver tool (FR axle) 5870 048 286	1	8-232
29	180W9A8FA529	Driver tool (FR axle) 5870 055 081	1	8-235
30	180W9A8FA530	Driver tool (FR axle) 5870 055 090	1	8-235

No.	Figure	Designation order no.	Qty	Page
31	180W9A8FA531	Handle (FR axle) 5870 260 002	1	8-233, 234, 235
32	180W9A8FA532	Driver tool 5870 058 058	1	8-234
33	180W9A8FA533	Driver tool 5870 058 022	1	8-234
34	180W9A8FA534	Driver tool (FR axle) HW210 5870 058 078	1	-
35	180W9A8FA535	Lever riveting tongs (RR axle) 5870 320 016	1	8-234, 306

No.	Figure	Designation order no.	Qty	Page
36	180W9A8FA536	Driver tool 5870 051 035	1	8-239 8-307
37	180W9A8FA537	Driver tool HW210 5870 051 068	1	-
38	180W9A8FA538	HP pump 5870 287 007	1	8-244, 256 8-312
39	180W9A8FA539	Threaded coupling 5870 950 102 (M14×1.5)	1	8-246 8-312
40	180W9A8FA540	Breather bottle 5870 286 072	1	8-246 8-312

No.	Figure	Designation order no.	Qty	Page
41	180W9A8FA541	Straightedge 5870 200 022	1	8-245 8-313
42	180W9A8FA542	Driver tool 5870 048 245	1	8-247
43	180W9A8FA543	Driver tool HW180 / HW210 5870 048 263	1	-
44	180W9A8FA544	Inner installer (FR axle) 5870 651 086	1	8-230
45	180W9A8FA545	Inner installer (FR axle) 5870 651 087	1	8-250

No.	Figure	Designation order no.	Qty	Page
46	180W9A8FA546	Inner installer (FR axle) 5870 651 088	1	-
47	180W9A8FA547	Inner installer 5870 651 089	1	-
48	180W9A8FA548	Calibration bushing 5870 651 090	1	8-250
49	180W9A8FA549	Calibration bushing 5870 651 091	1	-
50	180W9A8FA550	Socket wrench 5870 656 100 (SW 55) 5870 656 097	1	8-210, 241, 244, 253 8-279, 308, 312

No.	Figure	Designation order no.	Qty	Page
51	180W9A8FA551	Socket wrench (FR axle) HW210 5870 656 099 (SW 75)	1	-
52	180W9A8FA552	Straightedges (FR axle) 5870 200 029	1	8-254, 255
53	180W9A8FA553	Measuring device (FR axle) 5870 200 033	1	8-254, 255
54	180W9A8FA554	Reduction (FR axle) 5870 950 161	1	8-256
55	180W9A8FA555	Clutch (FR axle) 0501 207 939	1	8-256

6. COMMERCIAL TOOLS FOR DISASSEMBLY AND REASSEMBLY

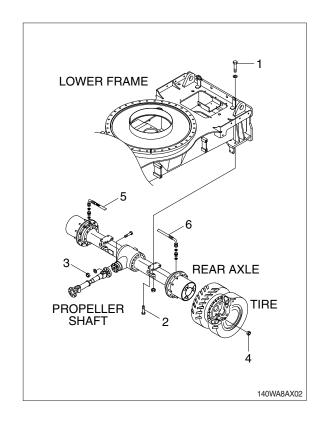
No.	Figure	Designation order no.	Qty	Remark
1	180W9A8FA556	Magnetic stand 5870 200 055	1	Universal
2	180W9A8FA557	Dial indicator 5870 200 057	1	Universal
3	180W9A8FA558	Gauge blocks 5870 200 066 (70 mm) 5870 200 067 (100 mm)	1	Universal 8-295
4	180W9A8FA559	Digital depth gauge 5870 200 072 (200 mm) 5870 200 114 (300 mm)	1	Universal
5	180W9A8FA560	Digital caliper gauge 5870 200 109 (150 mm)	1	Universal

No.	Figure	Designation order no.	Qty	Remark
6	180W9A8FA561	Torque wrench 5870 203 030	1	Universal
7	180W9A8FA562	Hot air blower 5870 221 500 230 V 5870 221 501 115 V	1	Universal
8	180W9A8FA563	Plastic hammer 5870 280 004 Ø 60 mm Substitute nylon insert 5870 280 006	1	Universal
9	180W9A8FA564	Lifting strap 5870 281 026	1	Universal

No.	Figure	Designation order no.	Qty	Remark
10	180W9A8FA565	Lifting chain 5870 281 047	1	Universal
11	180W9A8FA566	Pry bar 5870 345 071	1	Universal
12	180W9A8FA567	Striker 5870 650 004	1	Universal
13	A A A A A A A A A A A A A A A A A A A	Set of internal pliers I1-I2-I3-I4 5870 900 013	1	Universal
14	A A A A A A A A A A A A A A A A A A A	Set of internal pliers I11-I21-I31-I41 90° 5870 900 014	1	Universal

No.	Figure	Designation order no.	Qty	Remark
15	A A A A A A A A A A A A A A A A A A A	Set of external pliers A1-A2-A3-A4 5870 900 015	1	Universal
16	A A A A A A A A A A A A A A A A A A A	Set of external pliers A01-A02-A03-A04 90° 5870 900 016	1	Universal
17	180W9A8FA572	Two-armed puller 5870 970 001 Jaw width 80 mm Throat depth 100 mm 5870 970 002 Jaw width 120 mm Throat depth 125 mm 5870 970 003 Jaw width 170 mm Throat depth 125 mm 5870 970 004 Jaw width 200 mm Throat depth 175 mm 5870 970 006 Jaw width 350 mm Throat depth 250 mm 5870 970 007 Jaw width 520 mm Throat depth 300 ~ 500 mm 5870 970 026 Jaw width 250 mm Throat depth 250 mm Throat depth 300 ~ 500 mm 5870 970 026 Jaw width 250 mm Throat depth 200 mm Throat depth 300 mm	1	Universal

No.	Figure	Designation order no.		Qty	Remark
No.	Figure Figure 180W9A8FA573	Designation Two-armed pulled 5870 971 001 Jaw width Throat depth 5870 971 002 Jaw width Throat depth 5870 971 003 Jaw width Throat depth 5870 971 004 Jaw width Throat depth 5870 971 005 Jaw width Throat depth 5870 971 005 Jaw width Throat depth		Qty 1	Remark
		Jaw width Throat depth	640 mm 300 mm		


GROUP 10 REAR AXLE

1. REMOVAL FRONT AXLE

- 1) Rear axle mounting nut (1, M20)
 - \cdot Tightening torque : 58.4 \pm 6.8 kgf \cdot m (422 \pm 45.5 lbf \cdot ft)

Rear axle mounting nut (2, M20)

- \cdot Tightening torque : 62.8 \pm 9.4 kgf \cdot m (454 \pm 68 lbf \cdot ft)
- 2) Propeller shaft mounting bolt (3, M10)
 - \cdot Tightening torque : 5.9 \pm 0.6 kgf \cdot m $(42.7 \pm 4.3 \text{ lbf} \cdot \text{ft})$
- 3) Wheel nut (4, M22)
 - \cdot Tightening torque : 60 \pm 5.0 kgf \cdot m (433 \pm 36.2 lbf \cdot ft)
- 4) Hose assy (5, 6)
- 5) Axle weight: 534 kg (1180 lb)

2. GENERAL INSTRUCTIONS

1) GENERAL WORKING INSTRUCTIONS

- (1) This manual has been developed for the skilled serviceman, trained by the ZF-Passau.
- (2) During all operations, pay attention to cleanliness and skilled working. Therefore, axle removed from the machine, must be cleaned prior to open them.
- (3) We assume that the special tools, specified by ZF, will be used. The special tools are available from ZF-Passau.
- (4) After the disassembly, all components must be cleansed, especially corners, cavities and recesses of housing and covers.
- (5) The old sealing compound must be carefully removed.
- (6) Check lubricating holes, grooves and pipes for free passage. They must be free of residues, foreign material or protective compounds.
- (7) The latter refers especially to new parts.
- (8) Parts which have been inevitably damaged in a disassembly operation, must be generally replaced by new ones, e.g. rotary seal rings, O-rings, U-section rings, cap boots, protective caps etc..
- (9) Components such as roller bearings, thrust washers, synchronizing parts etc. which are subject to normal wear in automotive operation, must be checked by the skilled Serviceman. He will decide if the parts can be reused.
- (10) For the heating of bearings etc., hot plates, rod heaters or heating furnaces must be used.
- (11) Never heat parts directly with the flame. An auxiliary solution would be to immerse the bearing in a vessel filled with oil, which is then heated with the flame. In this way, damage to the bearings could be avoided.
- (12) Ball bearings, covers, flanges and parts like that must be heated to about 90 to 100°C.
- (13) Hot-mounted parts must be reset after cooling in order to assure a proper contact.
- (14) Before pressing shafts, bearings etc. in position, both parts must be lubricated.
- (15) During to reassembly, all specified adjustment values, testing specifications and tightening torque must be respected.
- (16) After the repair, units are filled up with oil.
- (17) After the oil filling, the oil level plugs and oil drain plugs must be tightened to the specified tightening torque.

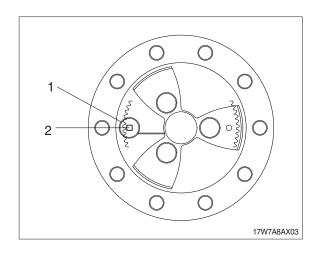
2) IMPORTANT INSTRUCTIONS CONCERNING THE LABOUR SAFETY

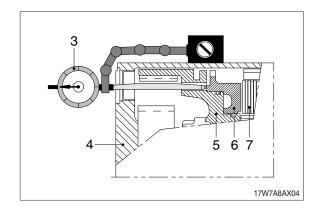
- (1) In principle, repairers are themselves responsible for the labour safety.
- (2) The observance of all valid safety regulations and legal rules is a precondition to prevent damage to individuals and products during the maintenance and repair operations.
- (3) Before starting the work, the repairers have to make themselves familiar with these regulations.
- (4) The proper repair of these products requires especially trained personnel.
- (5) The repairer himself is obliged to provide for the training.

3) LUBRICANT SPECIFICATIONS


- (1) Gear oils with limited slip additives.
- (2) API GL-5
- (3) MIL-L-2105D (SAE 85W-90 LSD or UTTO)

4) BRAKE LINING WEARING TEST


(1) The measurement of wear on the multidisc brake only gives limited information on the total state of the plate pack without disassembling the output.


Make measurement of lining wear at least once per year, in particular, however, in case of a different braking behaviour, like:

- Braking noises
- Reduced braking power
- Different deceleration
- Different brake oil level
- Different braking pressure
- To avoid injury when opening the oil drain/ oil filler plug (1), due to a possible pressure build-up in the planetary carrier bring drain hole to topmost position (12 o'clock) and carefully unscrew oil drain and filler plug (1).

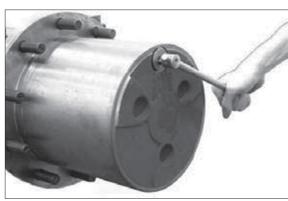
- 1 = Oil filler-/oil drain hole
- 2 = Gauge hole (\emptyset =10 mm) in ring gear 9 o'clock position
- 3 = Dial indicator with solenoid support
- 4 = Planetary carrier
- 5 = Ring gear
- 6 = Piston
- 7 = Plate pack
- X = Piston stroke

3. DISASSEMBLY

1) OUTPUT

(1) Attach axle to the assembly truck.

(S) Assembly truck 5870 350 000 (S) Supporting bracket 5870 350 106

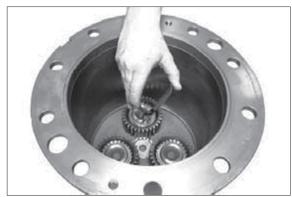

17W98RA001

(2) Loosen screw plug and drain oil from the axle.

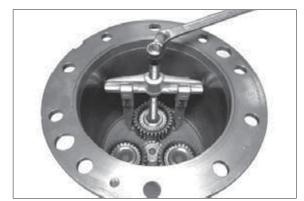
17W98RA002


- (3) Loosen screw plug and drain oil from the planetary carrier.
- To avoid any risk of injury due to a possible pressure buildup in the oil system of the planetary carrier, bring oil filler / level check plug to the uppermost position (12 o'clock) and turn it out carefully. Then bring drain hole to 6 o'clock position and drain oil.
- W Use suitable oil reservoir environmental protection.

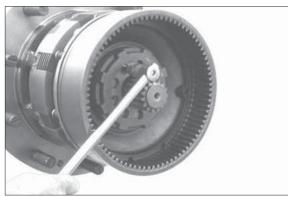
17W98RA003


(4) Planetary carrier

Loosen both hexagon screws and separate planetary carrier from the hub.


17W98RA004

(5) Snap out retaining ring.

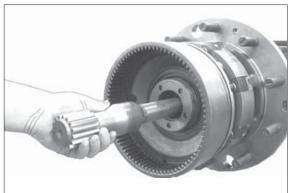

17W98RA005

(6) Pull off planetary gear together with cylindrical roller bearing.

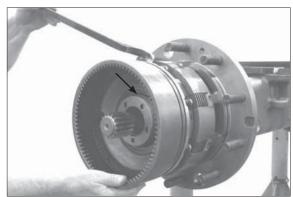
17W98RA006

(7) Brake
Loosen cylindrical screw (slotted nut fixing).

17W98RA007


- (8) Loosen slotted nut.
 - (S) Socket wrench

5870 656 097


17W98RA008

(9) Pull sun gear together with stub shaft out of the axle housing.

17W98RA009

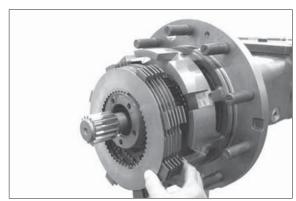
- (10) Press ring gear together with piston off the hub carrier.
 - (S) Assembly lever 5870 345 036
- Pay attention so that the O-ring (arrow) does not drop.

17W98RA010

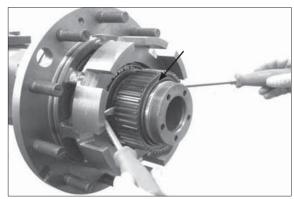
(11) Loosen hexagon screws and remove releasing spring sleeves and compression springs.

17W98RA011

(12) Press piston off the ring gear.


17W98RA012

(13) Remove sealing elements from the annular grooves (see arrows) of the ring gear.


17W98RA013

(14) Remove disk package.

17W98RA014

- (15) Remove O-ring (seee arrow) and use a lever to remove disk carrier from hub carrier.
 - (S) Resetting device 5870 400 001

17W98RA015

(16) Hub

Remove O-ring (see arrow).

Secure hub with lifting bracket (S) and pull it off the hub carrier by means of a two armed puller.

(S) Lifting bracket 5870 281 043 (S) Pressure piece 5870 100 063

Pay attention that the releasing bearing inner ring does not drop.


17W98RA016

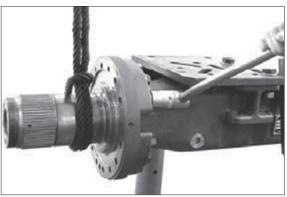
(17) Use a lever to remove the shaft seal ring (see arrow) from the hub hole and force both bearing outer rings out of the hub.

17W98RA017

(18) Remove spacer bushing.

17W98RA018

(19) Pull tapered roller bearing off the hub.


(S) Grab sleeve 5873 013 015 (S) Pressure piece 5870 100 063

17W98RA019

(20) Secure hub carrier with lifting tackle, loosen threaded joint and separate hub carrier from the axle housing.

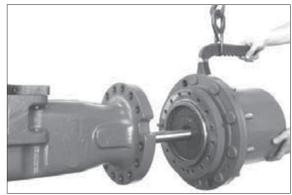
Then remove single parts such as screw neck, breather valve and O-ring from the hub carrier.

17W98RA020

(21) Output assy

If work is to be done on the differential or pinion, you may remove the output as a complete unit (operations figure RA021 and RA022).

Secure output by means of lifting tackle (S) and loosen threaded joint.

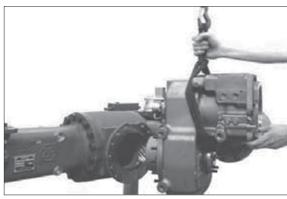

(S) Lifting bracket

5870 281 043

17W98RA021

(22) Separate output assy from the axle housing and pull out stub shaft.

17W98RA022


2) INTPUT

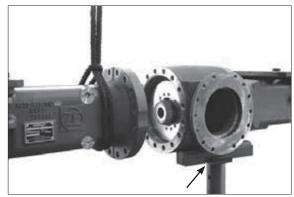
 Secure transmission with lifting tackle and loosen threaded joint (transmission/axle drive housing).

17W98RA023

(2) Separate transmission from the axle.

17W98RA024

(3) Secure axle housing (on crown wheel side) by means of lifting tackle and loosen threaded joint.

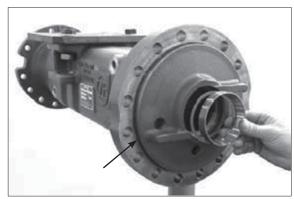


17W98RA025

(4) Support axle at the axle drive housing (see arrow).

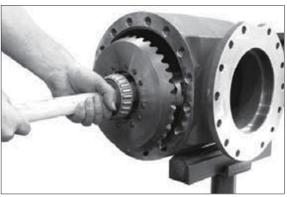
Then separate axle housing from the axle drive housing.

Pay attention that the differential does not drop.


17W98RA026

(5) Pull bearing outer ring out of the bearing hole and remove the releasing shim.

Then remove O-ring (see arrow).


(S) Striker

5870 650 004

17W98RA027

- (6) Lift differential out of the axle drive housing.
- Disassembly of the differential see description on page 8-288 and following.

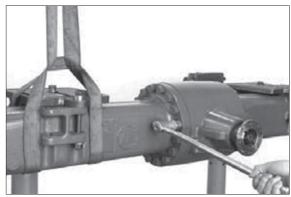


17W98RA028

(7) Use striker (S) to pull bearing outer ring out of the bearing hole (axle housing) and remove the releasing shim.

(S) Striker

5870 650 004

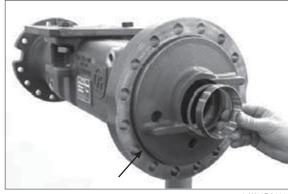


17W98RA029

(8) Secure axle housing (on crown wheel side, part II) by means of lifting tackle and loosen threaded joint.

Then separate axle housing (part II) from the axle drive housing.

Pay attention that the differential does not drop.

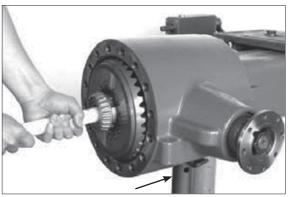

17W98RA030

(9) Pull bearing outer ring out of the bearing hole and remove the releasing shim.

Then remove O-ring (see arrow).

(S) Striker

5870 650 004



17W98RA031

(10) Support axle at the axle drive housing (see arrow).

Then lift differential out of the axle drive housing.

Disassembly of the differential see description on page 8-288 and following.



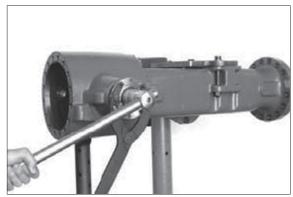
17W98RA032

(11) Use striker (S) to pull bearing outer ring out of the bearing hole (axle housing) and remove the releasing shim.

(S) Striker

5870 650 004

17W98RA033


(12) Heat up hexagon nut with hot-air blower.

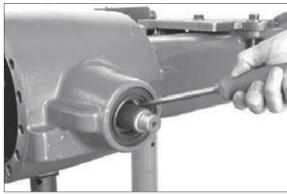
Then loosen hexagon nut and remove the releasing washer.

(S) Clamping fork

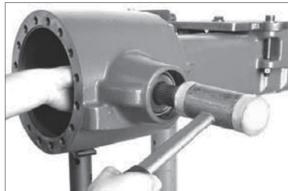
5870 240 025

* Hexagon nut is secured with Loctite no. 262.

17W98RA034


(13) Pull input flange off the pinion.

If required, remove screen sheet from the flange.


17W98RA035

(14) Use a lever to remove the shaft seal ring out of the housing hole.

17W98RA036

- (15) Force out input pinon and remove the releasing roller bearing.
- W Use a plastic hammer.
- If the tapered roller bearings are not replaced, pay attention that all the rollers of the outer bearing inner ring are always in contact with the bearing outer ring when forcing out the input pinion.

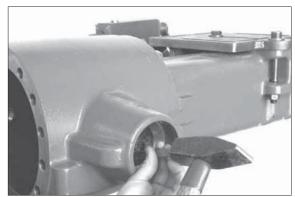
17W98RA037

(16) Remove spacer ring.

17W98RA038

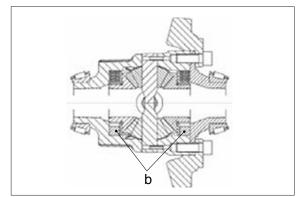
- (17) Press roller bearing off the input pinion.
 - (S) Grab sleeve

5873 001 037


17W98RA039

- (18) Pull external bearing outer ring out of the bearing hole.
 - (S) Internal extractor 5870 300 019
 - (S) Counter support 5870 300 020

17W98RA040

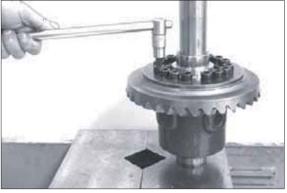

- (19) Force bearing outer ring off the inner bearing hole pay attention to the shim behind.
- Mark shim regarding position/bearing allocation reassembly aid.

17W98RA041

3) DIFFERENTIAL

(1) b = Constant spacers

17W98RA042


(2) Pull both tapered roller bearings from differential carrier.

(S) Grab sleeve	5873 011 019
(S) Basic tool	5873 001 000
(S) Pressure piece	5870 100 009

17W98RA043

(3) Use press to fix differential and loosen threaded joint crown wheel / differential carrier.

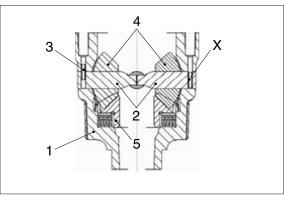
17W98RA044

(4) Press crown wheel from differential.

17W98RA045

(5) Remove single parts.

Remove axle bevel gear together with thrust washer and constant spacer from the differential carrier.


17W98RA046

(6) Force slotted pins (considering position "X", see subsequent sketch) into the spider shafts.

17W98RA047

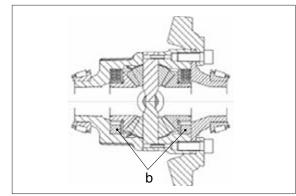
- (7) Comment on sketch:
 - 1 = Differential carrier
 - 2 = Spider shafts (short)
 - 3 = Slotted pins
 - 4 = Differential bevel gears
 - 5 = Axle bevel gear
 - X = Position of the slotted pin to force out the spider shafts

17W98RA048

(8) Force out both spider shafts (short).

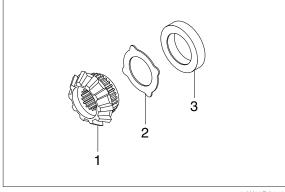
17W98RA049

(9) Remove all single parts.



17W98RA050

4. REASSEMBLY


1) DIFFERENTIAL

(1) b = Constant spacers

17W98RA042

- (2) All outer and inner disks are replaced by a constant spacer (see figure RA054).
 - 1 = Axle bevel gear
 - 2 = Pressure disk
- the two axle bevel gears is required, oiled.
- 3 = Constant ring * No measuring / setting of the axial play of therefore single parts can be immediately

17W98RA053

(3) Insert premounted axle bevel gear into the differential carrier.

17W98RA054

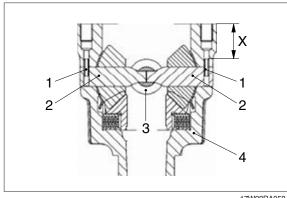
- (4) Insert differential bevel gears (1) with thrust washers (2) and fix with spider shafts (3 and 4).
- * Pay attention to radial installation position of the thrust washers.

17W98RA055

- (5) Check axial play of the axle bevel gear 0.0 ... 0.15 mm.
- * If the axial play is not within the specified tolerance, correct with the corresponding outer disks.

After the setting procedure separate the single parts again.

Then oil and reassemble all single parts again.


- * Make sure that thickness and arrangement of the second disk package are identical (figure RA059).
- (6) Fix both spider shafts (short) by means of slotted pins (considering installation dimension, see sketch RA058).

17W98RA056

- (7) Comment on sketch:
 - 1 = Slotted pin
 - 2 = Spider shaft (short)
 - 3 = Spider shaft
 - 4 = Differential carrier
 - $X = Installation dimension 34 \pm 0.5 mm$

17W98RA058

- (8) Mount second axle bevel gear with thrust washer and constant spacer (see also figure RA053).
- Mount the pressure disk with the coated surface showing to the outer disk.
- * Thickness and arrangement of the disk package must be identical on both sides of the differential gear.

17W98RA059

- (9) Check axial play of the second axle bevel gear 0.0 ... 0.15 mm.
- * If the axial play is not within the specified tolerance, correct with the corresponding outer disks.

After the resetting procedure remove the second axle bevel gear together with the disk package from the differential carrier.

Then oil and reassemble all single parts.

- (10) Mount two adjusting screws (S) and insert cover.
 - (S) Adjusting screws (M12 \times 1.5) 5870 204 027

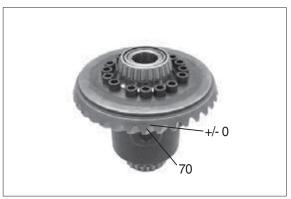
17W98RA061

(11) Press crown wheel onto the cover / differential carrier until contact position is obtained.

(12) Fix differential with press and tighten crown wheel with cylindrical screws.

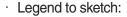
Tightening torque (M12 \times 1.5/12.9)	
	MA =
145 Nm	

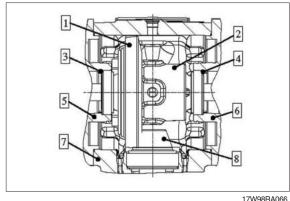
17W98RA063


- (13) Press on both bearing inner rings until contact is obtained.
- We use an appropriate support (arrow) differential may not be supported on the bearing cage.

17W98RA064

2) INPUT


- (1) Determination of shims for setting the bearing rolling torque (differential bearing) and the backlash (bevel gear set).
- Determine the required shims on basis of the read value (test dimension/ crown wheel) and the corresponding specifications of the table next page: (KRS – SET – RIGHT) (KRS = bevel gear set)


17W98RA065

- (2) Test dimension see crown wheel rear side.
- * The test dimension "70" is stamped into the crown wheel rear side. If no + or deviation is indicated, this value corresponds with the test dimension/ actual value "70" in the table below. According to this value, the required shims are allocated in the table below.

Any + or - deviation of the test dimension caused by production is also marked on the crown wheel rear side (e.g. 20 or - 10/ 10 or 20) . In accordance with this deviation, the required shims are allocated in the table below.

- 1 = Crown wheel
- 2 = Differential carrier
- 3 = Shim (crown wheel side)
- 4 = Shim (diff. carrier side)
- 5 = Axle housing
- 6 = Axle housing
- 7 = Axle drive housing
- 8 = Input pinion

Setting disks for differential											
Test dimension/crown wheel marking 70 and deviation	-20	-10	0	10	20						
results in → test dim. / actual value	69.80	69.90	70.0	70.10	70.20						
Shim/ diff. carrier side Required shim thickness	0.95	1.05	1.15	1.25	1.35						
Shim No.	ZGAQ-00545	ZGAQ-00547	ZGAQ-00549	ZGAQ-00552	ZGAQ-00554						
Shim/crown wheel side Required shim thickness	1.35	1.25	1.15	1.05	0.95						
Shim No.	ZGAQ-00554	ZGAQ-00552	ZGAQ-00549	ZGAQ-00547	ZGAQ-00545						

- (3) Place determined shim (e.g. thickness = 1.15 mm) and bearing outer ring into the hole of the axle housing on differential carrier side.
- Rotate axle housing by 90°.

17W98RA067

(4) Place determined shim (e.g. thickness = 1.15 mm) and bearing outer ring into the hole of the axle housing on crown wheel side.

17W98RA068

(5) Contact pattern check of bevel gear set

Cover some drive and coast flanks of the

crown wheel with marking ink.

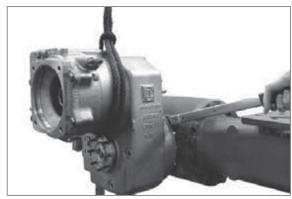
17W98RA069

- (6) Place preassembled differential into the axle drive housing.
 - (S) Internal extractor 5870 300 005

17W98RA070

(7) Use lifting tackle to mount the axle housing (crown wheel side) and preliminarily fix it with hexagon screws.

Preliminarily fix axle housing without O-ring.



17W98RA071

(8) Rotate axle by 90° and support it.

Use lifting tackle to bring HL transmission into contact position with the axle housing and fix it.

Tightening torque MA = 79 Nm


17W98RA072

(9) By rotating the input flange, roll crown wheel over the input pinion in both directions several times.


Then remove transmission and axle housing and lift differential out of the axle drive housing.

Compare the obtained contact pattern.

- In case of a contact pattern deviation, check the pinion shimming of the transmission.
- (10) After contact pattern check, place differential into the axle drive housing.

17W98RA073


17W98RA07

(11) Grease O-ring (see arrow) and mount it to axle housing.

17W98RA075

(12) Use lifting tackle to mount the axle housing and finally tighten it with hexagon screws.

17W98RA076

3) INPUT PINION

The following measuring operations must be carried out with utmost accuracy. Inaccurate measurements lead to an incorrect contact pattern and require an additional disassembly and reassembly of the input pinion.

(1) Determination of shim thickness to obtain a correct contact pattern

Read dimension I from the axle drive housing.

17W98RA077

(2) Read dimension II (pinion dimension).

In case of a + or - deviation of the pinion dimension for production reasons, the respective value is marked by hand on the pinion.

Pinion dim. (without + or - deviation) =

116.0 mm

Pinion dim. with + 0.1 deviation value = 116.1 mm

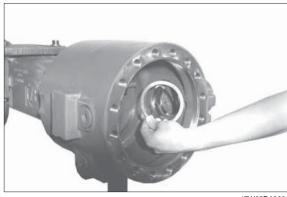
Pinion dim. with - 0.1 deviation value = 115.9 mm

17W98RA078

- (3) Determine dimension III (bearing width).
- Make sure that the rollers are located without any play (rotate bearing inner ring several times in both directions roller setting).

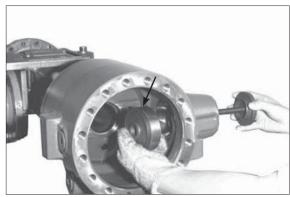
Since the installed roller bearing is subject to a preload in installation position, deduct an experience value of 0.1 mm.

Dimension III, e.g. 36.60 mm - 0.1 mm = 36.50 mm


(S) Gage blocks 5870 200 066

17W98RA079

(4) Calculation example:


Place the determined shim (e.g. thickness = 1.55 mm) into the inner bearing hole.

17W98RA080

(5) Undercool bearing outer ring (see arrow) and bring it into contact position in the bearing hole by using the assembly fixture (S).

(S) Assembly fixture 5870 345 049 (S) Pressure ring 5870 345 056

17W98RA081

(6) Undercool external bearing outer ring and insert it into the bearing hole until contact is obtained.

(S) Assembly fixture 5870 345 049 (S) Pressure ring 5870 345 056

17W98RA082

(7) Adjustment of the rolling torque of input pinion bearing 1.0 ... 3.0 Nm (without shaft seal ring)

Heat up roller bearing and install it until contact is obtained.

Adjust bearing after cooling-down.

17W98RA083

- (8) Mount spacer ring (e.g. thickness = 16.96 mm).
- ** According to our experience, the necessary rolling torque is obtained when reusing the spacer ring which has been removed during disassembly (e.g. thickness = 16.96 mm).

A later check of the rolling torque, however, is absolutely necessary.

17W98RA084

(9) Place the preassembled input pinion into the axle housing and mount the heated roller baring until contact is obtained.

17W98RA085

- (10) Press screen sheet (see arrow) onto the input flange until contact is obtained.
- * Do not fit the shaft seal ring until the contact pattern has been checked.

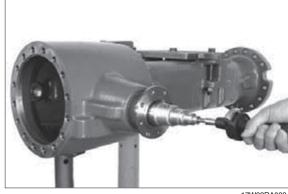
17W98RA086

(11) Mount input flange and fix it with washer and hexagon nut.

MA = 600 Nm

(S) Clamping fork 5870 240 025

* While tightening, rotate the input pinion in both directions several times.



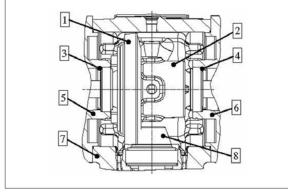
17W98RA087

- (12) Check rolling torque (1.0 ... 3.0 Nm without shaft seal ring).
- * When installing new bearings, try to achieve the upper value of the rolling torque.
- * Any deviation from the required rolling torque must be corrected with an appropriate spacer ring (figure RA110) as specified below.

Insufficient rolling torque - install thinner spacer ring.

Excessive rolling torque - install thicker spacer ring.

17W98RA088


- (13) Determination of shims for setting the bearing rolling torque (differential bearing) and the backlash (bevel gear set)
- Determine the required shims on basis of the read value (test dimension/crown wheel) and the corresponding specifications of the table below:
 - (KRS SET RIGHT) (KRS = bevel gear set) : Test dimension see crown wheel rear side.
- ** The test dimension "70" is stamped into the crown wheel rear side. If no + or deviation is indicated, this value corresponds with the test dimension/ actual value "70" in the table below. According to this value, the required shims are allocated in the table below.
- ** Any + or deviation of the test dimension caused by production is also marked on the crown wheel rear side (e.g. 20 or 10 / 10 or 20). In accordance with this deviation, the required shims are allocated in the table below.

17W98RA089

(14) Legend to sketch:

- 1 = Crown wheel
- 2 = Differential carrier
- 3 = Shim (crown wheel side)
- 4 = Shim (diff. carrier side)
- 5 = Axle housing
- 6 = Axle housing
- 7 = Axle drive housing
- 8 = Input pinion

17W98RA090

Shims for differential											
Test dimension/crown wheel marking 70 and deviation	-20	-10	0	10	20						
results in → test dim. / actual value	69.80	69.90	70.0	70.10	70.20						
Shim/ diff. carrier side Required shim thickness	0.95	1.05	1.15	1.25	1.35						
Shim No.	ZGAQ-00545	ZGAQ-00547	ZGAQ-00549	ZGAQ-00552	ZGAQ-00554						
Shim/crown wheel side Required shim thickness	1.35	1.25	1.15	1.05	0.95						
Shim No.	ZGAQ-00554	ZGAQ-00552	ZGAQ-00549	ZGAQ-00547	ZGAQ-00545						

- (15) Place determined shim (e.g. thickness = 1.15 mm) and bearing outer ring into the hole of the axle housing on differential carrier side (part I).
- Rotate axle housing by 90°.

17\M09D M001

(16) Place determined shim (e.g. thickness = 1.15 mm) and bearing outer ring into the hole of the axle housing on crown wheel side (part II).

17W98RA092

(17) Contact pattern check of bevel gear set

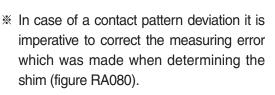
Cover some drive and coast flanks of the crown wheel with marking ink.

17W98RA093

(18) Place preassembled differential into the axle drive housing.

17W98RA094

(19) Use lifting tackle to mount the axle housing (crown wheel side, part II) and preliminarily fix it with hexagon screws.


..... MA = 390 Nm

Preliminarily fix axle housing without O-ring.

17W98BA095

- (20) By rotating the input flange, roll crown wheel over the input pinion in both directions several times.
 - Then remove axle housing and lift differential out of the axle drive housing. Compare the obtained contact pattern with contact pattern.
- shim (figure RA080).

17W98RA096

(21) After contact pattern check, place differential into the axle drive housing.

Grease O-ring (see arrow) and mount it to the axle housing.

17W98RA097

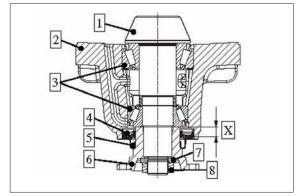
(22) Use lifting tackle to mount the axle housing and finally fix it with hexagon screws.

..... MA = 390 Nm

Then bring axle into horizontal position and reassemble the second supporting bracket (S) (see also figure RA001).

(23) Fitting of shaft seal ring (input flange)

Loosen hexagon nut and pull input flange off the input pinion.


(S) Clamping fork 5870 240 025

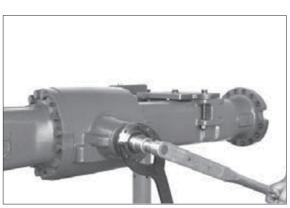
17W98RA099

(24) Legend to sketch:


- 1 = Input pinion
- 2 = Axle drive housing
- 3 = Tapered roller bearing
- 4 = Shaft seal ring
- 5 = Screen sheet
- 6 = Input flange
- 7 = Washer
- 8 = Hexagon nut
- $X = Installation dimension \rightarrow 13.5 + 0.2 mm$

17W98RA100

- (25) Mount shaft seal ring with the sealing lip facing the oil chamber.
 - (S) Driver tool 5870 048 286
- W Use of the specified driver tool (S) ensures the exact installation position of the shaft seal ring.
- ¾ Just before fitting, apply lubricant to the contact face of shaft seal ring/axle drive housing.


Apply grease to seal and dust lip of the shaft seal ring.

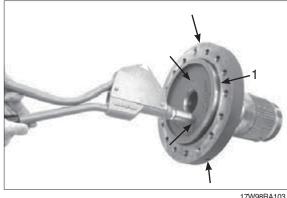
17W98RA101

- (26) Mount input flange and finally fix it with washer and hexagon nut.

 - (S) Clamping fork 5870 240 025
- Wet thread of hexagon nut with Loctite no. 262.

17W98RA102

4) OUTTPUT

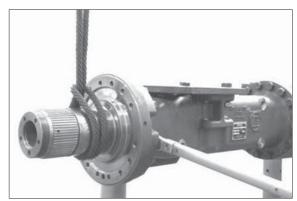

(1) Hub carrier

Grease O-ring (1) and mount it to hub carrier.

The following operation is only required when fitting a new hub carrier:

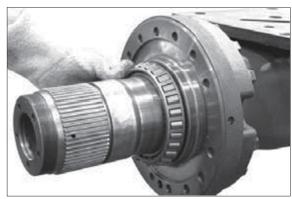
Seal machining openings (arrows) of oil supply holes with plugs.

(S) Lever riveting tongs 5870 320 016

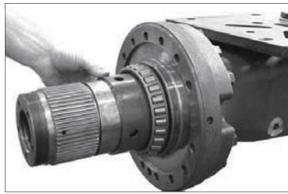


17W98RA103

(2) Mount preassembled hub carrier to the axle housing, considering the installation position, and fix it with hexagon screws.


Tightening torque (M 16/10.9) MA = 280 Nm

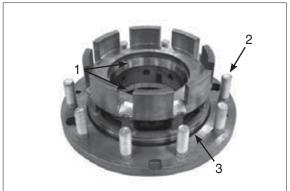
 Ensure radial installation position. Stamped circle (see arrow) must be in uppermost (12 o'clock) position.


17W98RA104

(3) Hub (Hub bearing SET-RIGHT) Heat up tapered roller bearing and mount it to hub carrier until contact is obtained.

17W98RA105

(4) Mount spacer bushing.



17W98RA106

(5) Insert both bearing outer rings (1) of the hub bearing until contact position is obtained.

Press wheel bolts (2) into the hub until contact position is obtained.

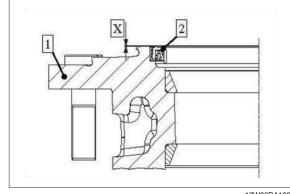
Grease O-ring (3) and place it into the annular groove of the hub.

17W98RA107

- (6) Press shaft seal ring into the hub, with the marking "OUT SIDE" showing outwards (facing up):
 - (S) Driver tool

5870 051 035

- W Use of the specified driver tool (S) ensures the exact installation position of the shaft seal ring.
- Wet outer diameter of the shaft seal ring with Loctite no. 574.


17W98RA108

(7) Legend to sketch:

1 = Hub

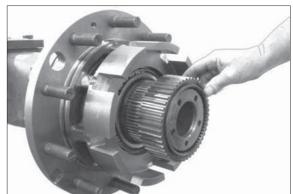
2 = Shaft seal ring

X = Installation dimension - shaft seal ring 0.0~0.3 mm

17W98RA109

- (8) Mount preassembled hub until contact is obtained and fix it with heated tapered roller bearing.
 - (S) Lifting bracket

5870 281 043

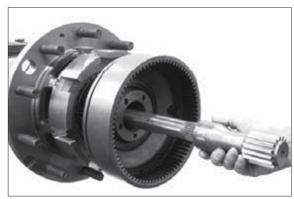

* Just before fitting, wet sealing lips of shaft seal ring with lubricant.

17W98RA110

(9) Oil O-ring and insert it into the annular groove (see arrow) of the hub carrier.


Then mount disk carrier.

17W98RA111


(10) Bring disk carrier and hub bearing into contact position (figure no. RA112 ... RA115):

Mount ring gear (without sealing elements).

17W98RA112

(11) Insert stub shaft and sun gear shaft for supporting the socket wrench (see following figure).

17W98RA113

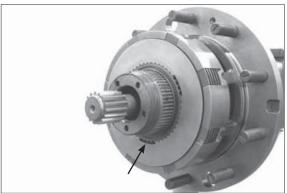
- (12) Bring hub bearing into contact position for this purpose tighten slotted nut with a tightening torque of 1400 Nm max.
 - (S) Socket wrench 5870 656 097
- While tightening the slotted nut rotate hub in both directions several times roller setting.
- Apply lubricant to thread of knuckle housing/slotted nut.

17W98RA114

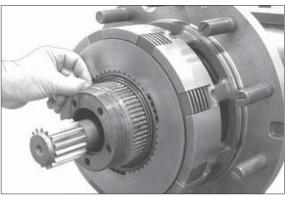
(13) Loosen slotted nut and remove ring gear.

17W98RA115

(14) Multi-disk brake


Mount outer and inner disks of the disk package alternately, starting with an outer disk.

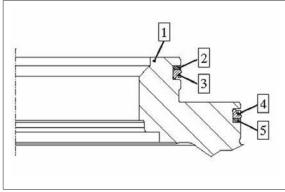
For the actually required disk fitting/ arrangement please refer to the corresponding spare parts list.


17W98RA116

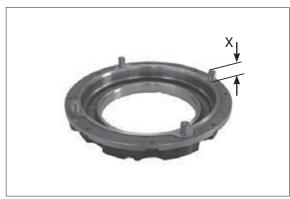
(15) Bring inner clutch disks into a position where one of the tooth recesses is in 6 o'clock position after installation of the axle into the vehicle.

17W98RA117

(16) Oil O-ring and place it into the annular groove of the disk carrier.


17W98RA118

- (17) Oil grooved and back-up rings and insert them into the annular grooves of the ring gear.
- Observe installation position, see sketch below.


17W98RA119

- (18) Legend to sketch:
 - 1 = Ring gear
 - 2 = Back-up ring
 - 3 = Grooved ring
 - 4 = Grooved ring
 - 5 = Back-up ring

17W98RA120

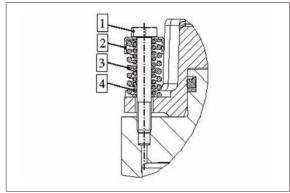
- (19) Fit cylindrical pins into the piston, considering the installation dimension "X".
 - X = Installation dimension 18.00 mm

17W98RA121

(20) Mount piston onto ring gear.

17W98RA122

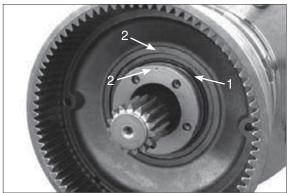
(21) Fix piston with "new" hexagon screws (1), spring sleeves (2) and compression springs (3 and 4).


We Use hexagon screws just once.

17W98RA123

(22) Legend to sketch:

- 1 = Hexagon screw (special version)
- 2 = Spring sleeve
- 3 = Compression spring
- 4 = Compression spring


17W98RA124

- (23) Mount preassembled ring gear, considering the installation position (markings O in 12 o'clock position see arrows).
- Ensure exact toothing position of oil supply holes – hub carrier/ring gear (pressure oil supply to brake piston).

17W98RA125

- (24) Oil O-ring and insert it into the recess (see arrow 1).
- Arrows (2) show once more the markings O and the installation position of hub carrier and ring gear.

17W98RA126

(25) Fix ring gear with slotted nut.

- (S) Socket wrench 5870 656 097
- Pretighten slotted nut with 1400 Nm, then continue tightening the slotted nut until a fixing hole overlaps a threaded hole in the knuckle housing.

While tightening the slotted nut rotate hub in both directions several times – roller setting.

Apply lubricant to thread of knuckle housing/slotted nut.

17W98RA127

(26) Leakage test of multi-disk brake

Fit breather (arrow) and threaded coupling (S), then connect HP pump.

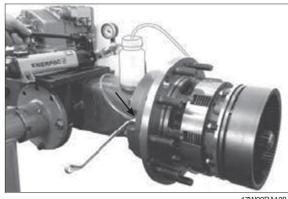
- (S) HP pump 5870 287 007
- (S) Threaded coupling (M14 \times 1.5) 5870 950 102
- (S) Breather bottle 5870 286 072

Breathe brake completely before starting the test.

Test media:

Motor oils SAE-10W

High-pressure test:


Build up test pressure p = 100 bar and close shut-off valve of HP pump.

A maximum pressure drop of 3 bar is permissible during a 5-minute test.

Low-pressure test:

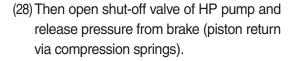
Reduce test pressure to p = 5 bar and close shut-off valve.

No pressure drop is allowed during a 5-minute test.

17W98RA12

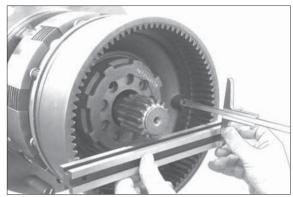
(27) Adjustment and check of piston stroke

Piston stroke / disk clearance =

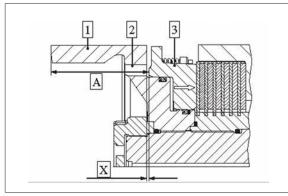

0.7 ... 1.3 mm

Build up brake pressure (100 bar) and close shut-off valve of HP pump.

Determine dimension "A", from face of the ring gear (1) through the measuring hole (see also sketch 43) to the face of the piston (3).


Dim. "A" e.g. 83.10 mm

Breathe brake completely before starting the measuring operation.



Determine dimension "B", from the face of the ring gear (1) through the measuring hole (see also sketch RA131) to the face of the piston (3).

Dimension "B" e.g 82.10 mm

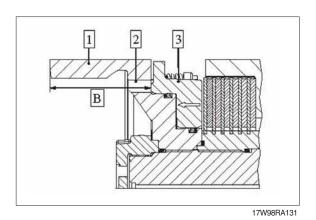
17W98RA129

17W98RA130

(29) Calculation example:

Dimension "A" e.g. 83.10 mm

Dimension "B" e.g. - 82.10 mm


Difference = piston stroke = 1.00 mm

If the required piston stroke (0.7 ... 1.3 mm) is not achieved, correct it with (a) corresponding inner clutch disk(s) – see respective spare parts list.

Then remove HP pump (S), breather bottle (S) and threaded coupling (S).


Legend to sketches RA130 and RA131:

- 1 = Ring gear
- 2 = Measuring hole
- 3 = Piston
- X = Piston stroke/disk clearance
- (S) Straightedge 5870 200 022

(30) Secure slotted nut with cylindrical screw (see also figure RA127).

T	ig	h	te	ni	n	g	to	rq	ĮU	е	(N	1	1()/	8.	8)									
																		Λ	Λ	Δ	=	3	2	Ν	Jr	n

17W98RA132

(31) Planetary carrier

Press thrust washer into the planetary carrier until contact is obtained.

5870 048 245

(S) Driver tool

7W98RA133

- (32) Insert the cylindrical roller bearing into the planetary gear for this purpose press the cylindrical roller bearing through the packaging sleeve until the snap ring engages into the annular groove of the planetary gear.
- W Use packaging sleeve to facilitate assembly.
 - 1 = Cylindrical roller bearing
 - 2 = Packaging sleeve
 - 3 = Snap ring
 - 4 = Planetary gear

17W98RA134

- (33) Heat up bearing inner ring and mount preassembled planetary gear until contact is obtained.
- Mount bearing inner ring with the large radius facing the planetary carrier (downwards).

17W98RA135

(34) Fix planetary gear by means of retaining ring.

17W98RA136

(35) Mount preassembled planetary carrier and fix it with hexagon screws.

Tightening torque (M12/8.8)	
MA = 55 Nn	n

17W98RA137

(36) Output assy

Use lifting tackle (S) to locate the output assy at the axle, mount stub shaft into the teeth of the axle bevel gear and fix output assy with hexagon screws.

Tightening torque (M16	6/10.9)
	MA = 280 Nm
(S) Lifting bracket	5870 281 043

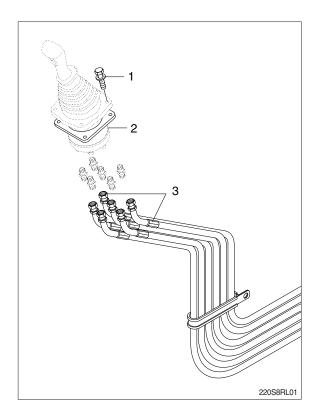
17W98RA138

Prior to putting the axle into operation, fill in oil.

Observe the vehicle manufacturer's instructions and specifications for the installation and commissioning of the unit.

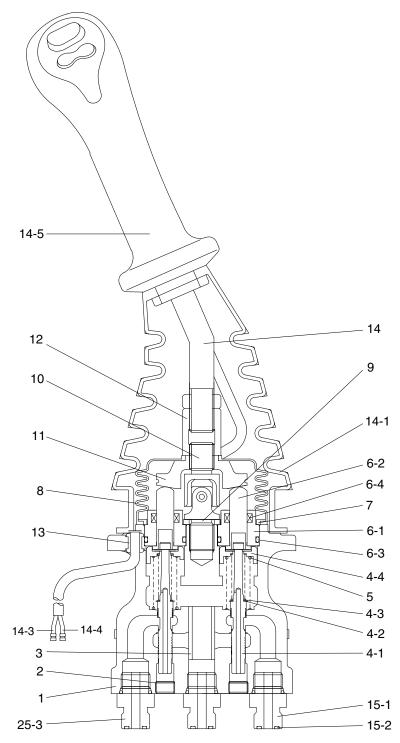
GROUP 11 RCV LEVER

1. REMOVAL AND INSTALL


1) REMOVAL

- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- (4) Loosen the socket bolt (1). Tightening torque : 1.05 \pm 0.2 kgf \cdot m (7.6 \pm 1.45 lbf \cdot ft)
- (5) Remove the cover of the console box.
- (6) Disconnect pilot line hoses (3).
- (7) Remove the pilot valve assembly (2).
- When removing the pilot valve assembly, check that all the hoses have been disconnected.

2) INSTALL


- (1) Carry out installation in the reverse order to removal.
- (2) Confirm the hydraulic oil level and check the hydraulic oil leak or not.

2. DISASSEMBLY AND ASSEMBLY

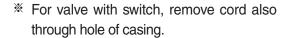
1) STRUCTURE

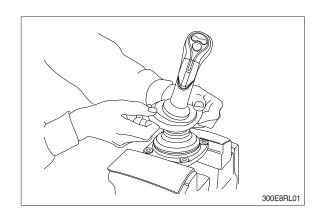
140WA2RL06

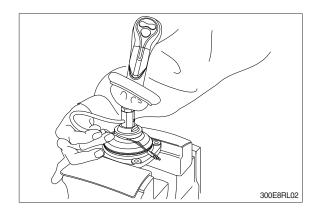
1	Case	5	Spring	9	Spacer	14-3	Housing
2	Plug	6-1	Plug	10	Joint Assy	14-4	Housing
3	Bushing	6-2	Push rod	11	Swash plate	14-5	Handle
4-1	Spool	6-3	O-ring	12	Adjusting nut	14-6	Lock nut
4-2	Shim	6-4	Rod seal	13	Bushing	15-1	Filter
4-3	Spring	7	Spacer	14-1	Boot	15-2	Connector
4-4	Spring seat	8	Boot	14-2	Spring pin	15-3	Connector

2) TOOLS AND TIGHTENING TORQUE

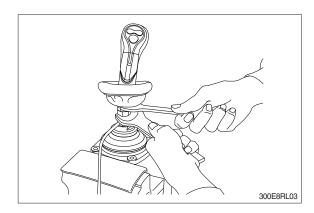
(1) Tools

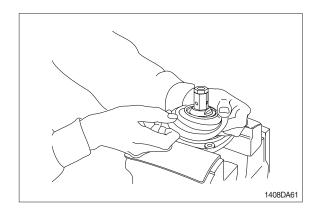

Tool name	Remark						
Allen wrench	6 B						
Channe	22						
Spanne	27						
(+) Driver	Length 150						
(-) Driver	Width 4~5						
Torque wrench	Capable of tightening with the specified torques						

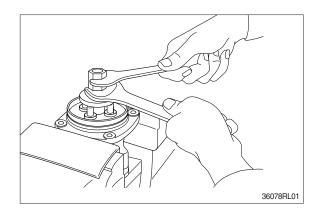

(2) Tightening torque

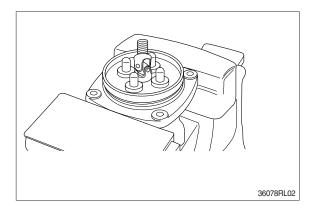

Part name	Item	Size	Torque				
Faithaine	nem	Size	kgf · m	lbf ⋅ ft			
Joint	10	M14	3.5	25.3			
Swash plate	11	M14	5.0±0.35	36.2±2.5			
Adjusting nut	12	M14	5.0±0.35	36.2±2.5			
Lock nut	14-6	M14	5.0±0.35	36.2±2.5			

3) DISASSEMBLY

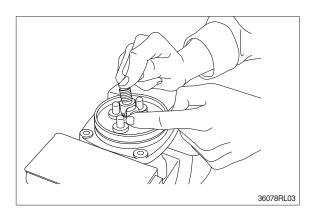

- * Procedures are based on the type M25.
- (1) Clean pilot valve with kerosene.
- Put blind plugs into all ports
- (2) Fix pilot valve in a vise with copper (or lead) sheets.
- (3) Remove end of boot (14-1) from case (1) and take it out upwards.

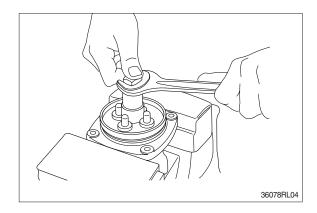


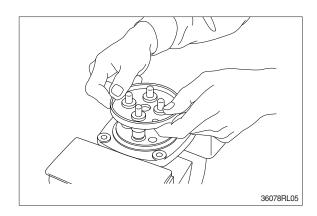

(4) Loosen lock nut (14-6) and adjusting nut (12) with spanners on them respectively, and take out handle section as one body.



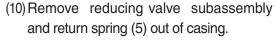
(5) Remove the boot (8).

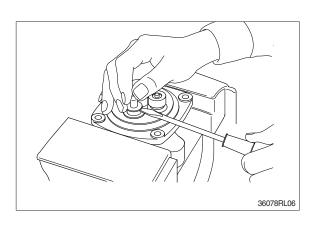


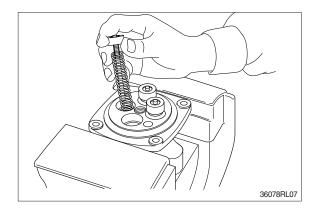

(6) Loosen adjusting nut (12) and swash plate (11) with spanners on them respectively, and remove them.



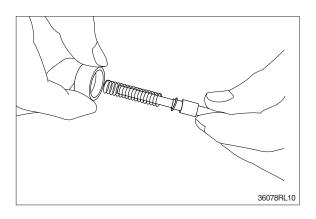
- (7) Turn joint anticlockwise to loosen it, utilizing jig (Special tool).
- When return spring (5) is strong in force, plate (7), plug (6-1) and push rod (6-2) will come up on loosening joint. Pay attention to this.



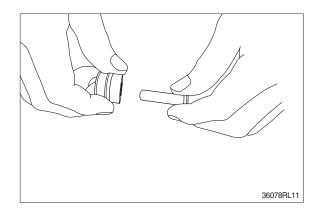

(8) Remove plate (7-1).



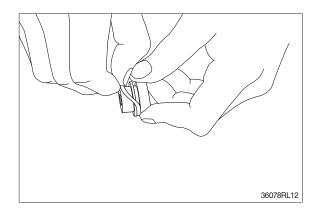
- (9) When return spring (5) is weak in force, plug (6-1) stays in casing because of sliding resistance of O-ring.
- * Take it out with minus screwdriver. Take it out, utilizing external periphery groove of plug and paying attention not to damage it by partial loading.
- During taking out, plug may jump up due to return spring (5) force.
 Pay attention to this.

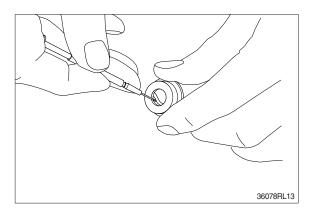


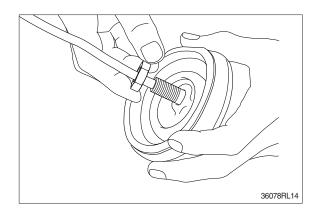
** Record relative position of reducing valve subassembly and return springs.

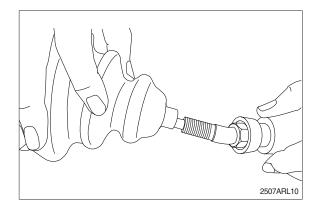


- (11) Separate spool (4-1), spring seat (4-4), spring (4-3) and shim (4-2) individually.
- Pay attention not to damage spool surface.
- Record original position of spring seat (4-4).
- W Until being assembled, they should be handled as one subassembly group.




(12) Take push rod (6-2) out of plug (6-1).

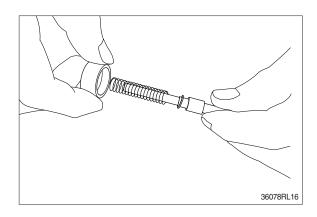

(13) Remove O-ring (8-3) and seal (6-4) from plug (6-1).


Use small minus screwdriver or so on to remove this seal.

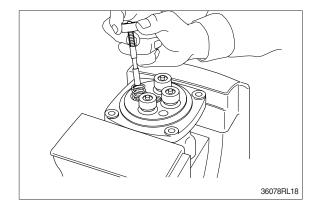
(14) Remove lock nut (14-6) and then boot (14-1).

(15) Cleaning of parts

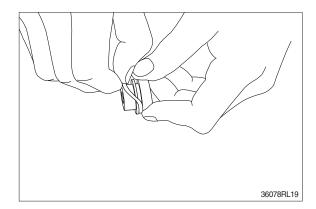
- ① Put all parts in rough cleaning vessel filled with kerosene and clean them (rough cleaning).
- If dirty part is cleaned with kerosene just after putting it in vessel, it may be damaged. Leave it in kerosene for a while to loosen dust and dirty oil.
- If this kerosene is polluted, parts will be damaged and functions of reassembled valve will be degraded.
 - Therefore, control cleanliness of kerosene fully.
- ② Put parts in final cleaning vessel filled with kerosene, turning it slowly to clean them even to their insides (finish cleaning).
- ** Do not dry parts with compressed air, since they will be damaged and/or rusted by dust and moisture in air.

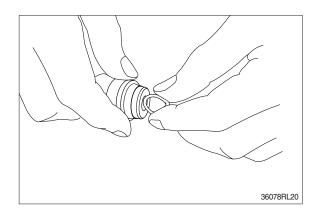

(16) Rust prevention of parts

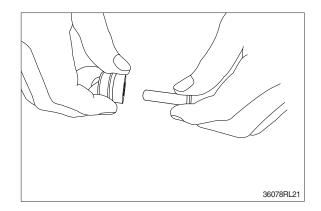
Apply rust-preventives to all parts.

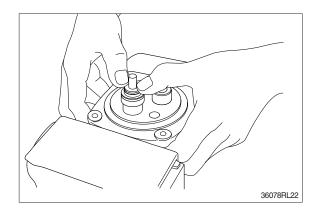

If left as they after being cleaned, they will be rusted and will not display their functions fully after being reassembled.

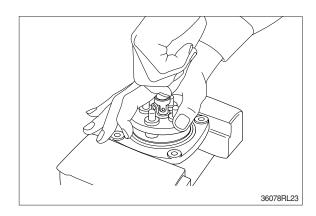
4) ASSEMBLY

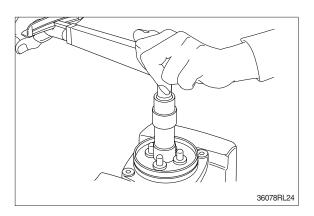

(1) Put shim (4-2), springs (4-3) and spring seat (4-4) onto spool (3) in this order.

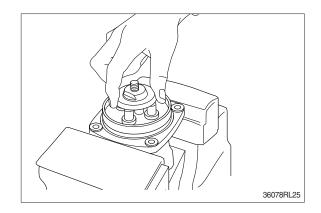

- (2) Assemble spring (5) into casing (1).
 Assemble reducing valve subassembly into casing.
- Assemble them to their original positions.

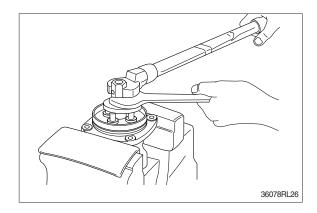

(3) Assemble O-ring (8-3) onto plug (6-1).

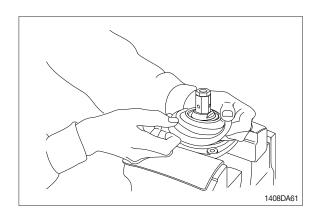

- (4) Assemble seal (6-4) to plug (6-1).
- Assemble seal in such lip direction as shown below.

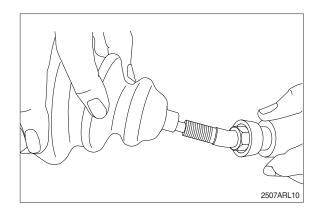

- (5) Assemble push rod (6-2) to plug (6-1).
- * Apply working oil on push-rod surface.

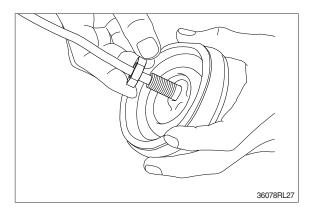

- (6) Assemble plug subassembly to casing.
- When return spring is weak in force, subassembly stops due to resistance of O-ring.


(7) When return spring is strong in force, assemble 4 sets at the same time, utilizing plate (7), and tighten joint (10) temporarily.

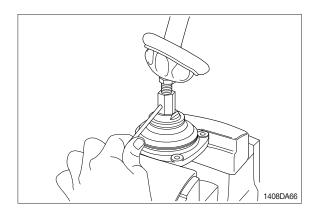

- (8) Fit plate (7).
- (9) Tighten joint (10) with the specified torque to casing, utilizing jig.


- (10) Assemble swash plate (11) to joint (10).
- Screw it to position that it contacts with 4 push rods evenly.
- Do not screw it over.

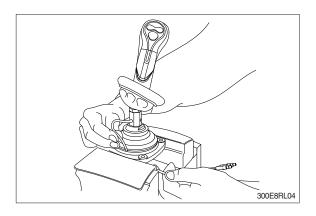

- (11) Assemble adjusting nut (12), apply spanner to width across flat of plate (11) to fix it, and tighten adjusting nut to the specified torque.
- During tightening, do not change position of disk.

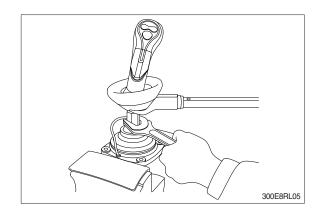


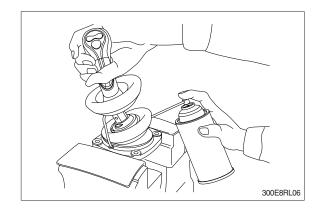
(12) Fit boot (8) to plate.

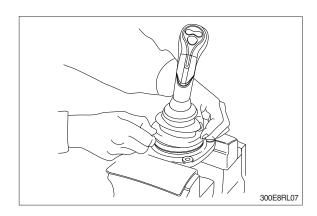


(13) Fit boot (14-1) and lock nut (14-6), and handle subassembly is assembled completely.




(14) Pull out cord and tube through adjusting nut hole provided in direction 60 °to 120 °from casing hole.

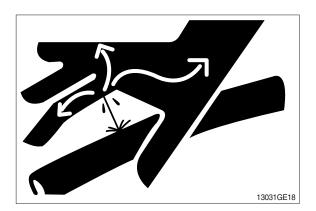

- (15) Assemble bushing (13) to plate and pass cord and tube through it.
- Provide margin necessary to operation.

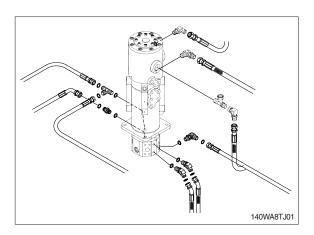

(16) Determine handle direction, tighten lock nut (14-6) to specified torque to fix handle.

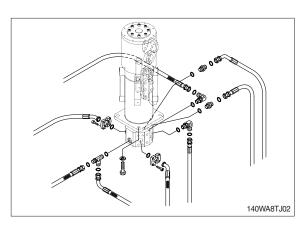
(17) Apply grease to rotating section of joint and contacting faces of disk and push rod.

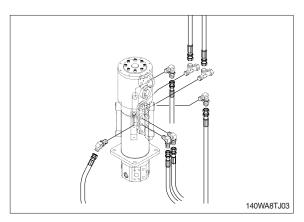
- (18) Assemble lower end of bellows to casing.
- (19) Inject volatile rust-preventives through all ports and then put blind plugs in ports.

GROUP 12 TURNING JOINT

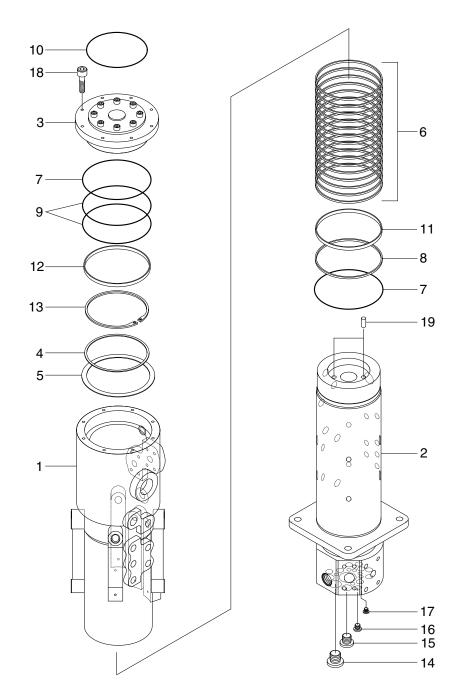

1. REMOVAL AND INSTALL


1) REMOVAL


- (1) Lower the work equipment to the ground and stop the engine.
- (2) Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- (3) Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ▲ Escaping fluid under pressure can penetrate the skin causing serious injury.
- When pipes and hoses are discon-nected, the oil inside the piping will flow out, so catch it in oil pan.
- (4) Disconnect all hoses.
- (5) Sling the turning joint assembly (1) and remove the mounting bolt (2).
 - · Weight: 117 kg (260 lb)
 - \cdot Tightening torque : 12.8 \pm 3.0 kgf \cdot m (92.6 \pm 21.7 lbf \cdot ft)
- (6) Remove the turning joint (1) assembly.
- When removing the turning joint, check that all the hoses have been disconn-ected.


2) INSTALL

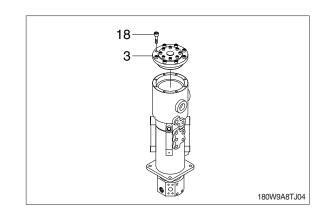
- (1) Carry out installation in the reverse order to removal.
- * Take care of turning joint direction.
- Assemble hoses to their original positions.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.



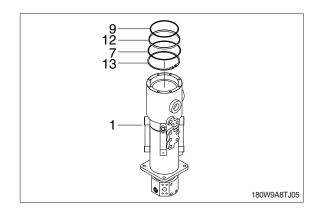
2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE

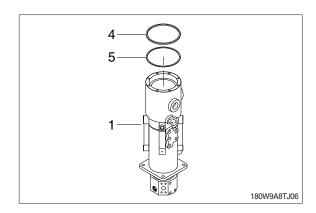
180W9A8TJ03

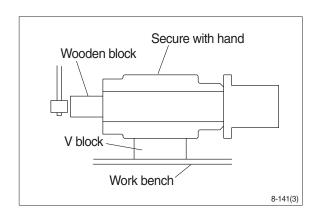

- 1 Hub
- 2 Shaft
- 3 Cover
- 4 Spacer
- 5 Shim
- 6 Slipper seal
- 7 O-ring

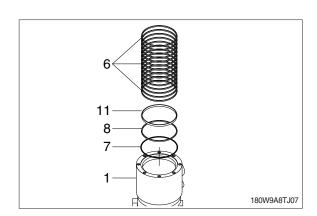
- 8 O-ring
- 9 O-ring
- 10 O-ring
- 11 Wear ring
- 12 Wear ring
- 13 Retainer ring
- 14 Plug


- 15 Plug
- 16 Plug
- 17 Plug
- 18 Socket bolt
- 19 Spring pin

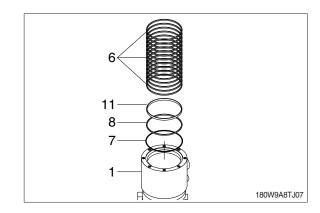
2) DISASSEMBLY


- Before the disassembly, clean the turning joint.
- (1) Loosen the socket bolt (18) and remove cover (3).

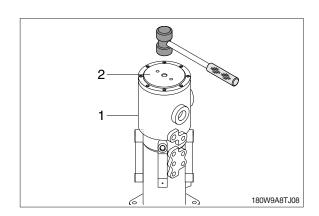

(2) Remove O-ring (9), wear ring (12), O-ring (7) and retainer ring (13) from hub (1).


(3) Remove spacer (4) and shim (5) from hub (1).

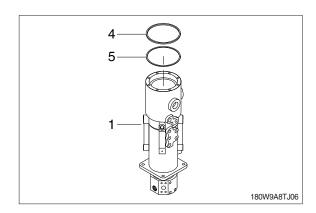
- (4) Place hub (1) on a V-block and by using a wood buffer at the shaft end, hit out shaft (2) to about 1/2 from the hub with a hammer.
- Take care not to damage the shaft (2) when remove hub (1) or rest it sideway.
- * Put a fitting mark on hub (1) and shaft (2).

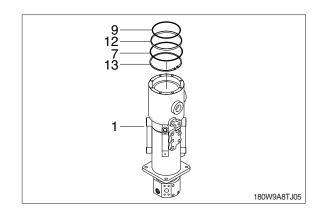


(5) Remove seventeen slipper seal (6), O-ring (7, 8) and wear ring (11) from hub (1).

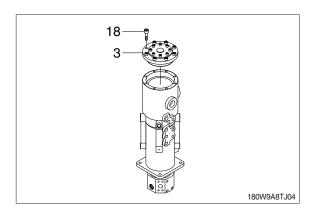


3) ASSEMBLY


- Clean all parts.
- As a general rule, replace oil seals and O-ring.
- Coat the sliding surfaces of all parts with engine oil or grease before installing.
- (1) Fit O-ring (8), seventeen slipper seal (6), and wear ring (11).
- (2) Fit O-ring (7) to shaft (2).


(3) Set shaft (2) on block, tap hub (1) with a plastic hammer to install.

(4) Fit shim (5), and spacer (4) to hub (1) of turning joint upside.

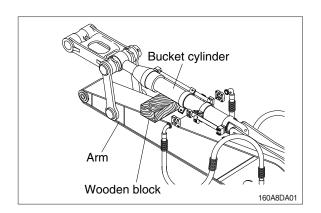


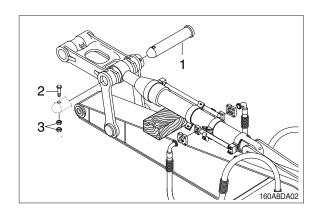
- (5) Fit retainer ring (13), O-ring (7) and wear ring (12) to shaft (2).
- (6) Fit O-ring (9) to hub (1).

(7) Install cover (3) to hub and tighten bolts (18).

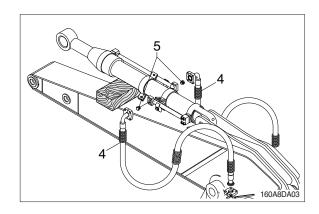
$$\cdot$$
 Torque : 2.35 \pm 0.35 kgf \cdot m (17.0 \pm 2.5 lbf \cdot ft)

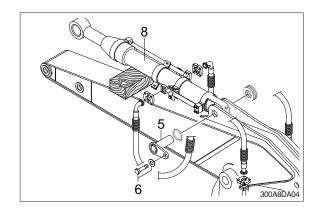
GROUP 13 BOOM, ARM, BUCKET, DOZER AND OUTRIGGER CYLINDER


1. REMOVAL AND INSTALL


1) BUCKET CYLINDER

(1) Removal

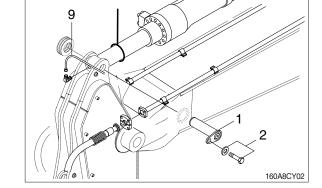

- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Mean of the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between bucket cylinder and arm.
- ② Remove bolt (2), nut (3) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.
 - \cdot Tightening torque (2) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)



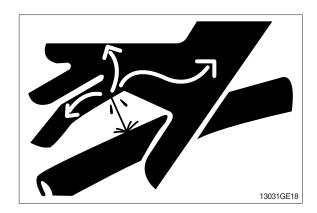
③ Disconnect bucket cylinder hoses (4), and put plugs (5) on cylinder pipe.

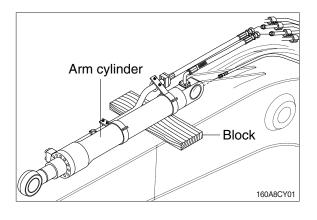
- ④ Sling bucket cylinder assembly (8) and remove bolt (6) then pull out pin (5).
- 5 Remove bucket cylinder assembly (8).
 - · Weight: 104 kg (229 lb)
 - \cdot Tightening torque (6) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)

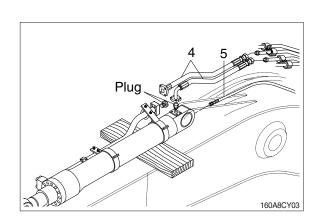
- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the bucket cylinder.
- Confirm the hydraulic oil level and check the hydraulic oil leak or not.

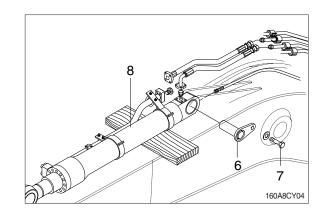

2) ARM CYLINDER

(1) Removal


- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.

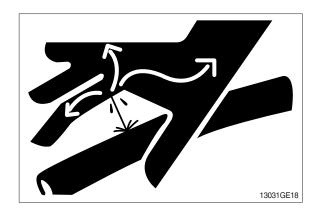

▲ Escaping fluid under pressure can penetrate the skin causing serious injury.

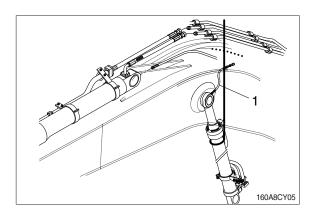

- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Set block between arm cylinder and boom.
- ② Disconnect grease line hose (9).
- 3 Remove bolt (2) and pull out pin (1).
- Tie the rod with wire to prevent it from coming out.
 - \cdot Tightening torque (2) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)

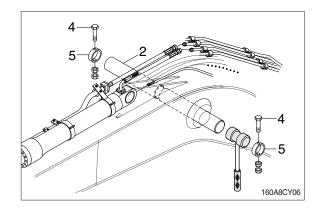

- ④ Disconnect arm cylinder hoses (4) and put plugs on cylinder pipe.
- 5 Disconnect greasing pipings (5).

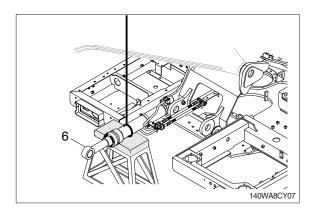
- ⑤ Sling arm cylinder assembly(8) and remove bolt (7) then pull out pin (6).
 - \cdot Tightening torque (7) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)
- 7 Remove arm cylinder assembly (8).
 - · Weight: 145 kg (320 lb)

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the arm cylinder.
- * Confirm the hydraulic oil level and check the hydraulic oil leak or not.

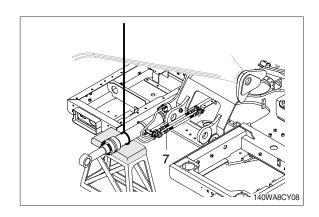

3) BOOM CYLINDER

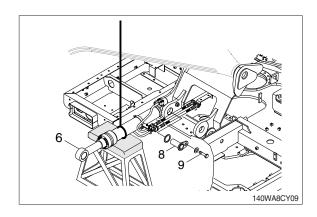

(1) Removal


- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Operate the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.


▲ Escaping fluid under pressure can penetrate the skin causing serious injury.

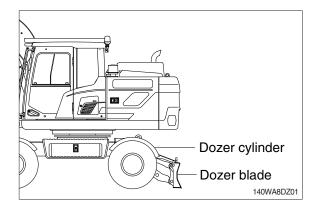
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Disconnect greasing hoses (1).
- ② Sling boom cylinder assembly.
- ③ Remove bolt (4), stopper (5) and pull out pin (2).
- Tie the rod with wire to prevent it from coming out.
 - \cdot Tightening torque (4) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)
- ④ Lower the boom cylinder assembly (6) on a stand.



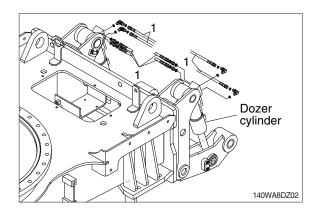


⑤ Disconnect boom cylinder hoses (7) and put plugs on cylinder pipe.

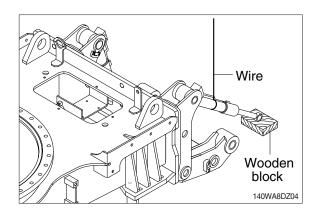
- 6 Remove bolt (9) and pull out pin (8).
 - \cdot Tightening torque (9) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)
- 7 Remove boom cylinder assembly (6).
 - · Weight: 119 kg (262 lb)

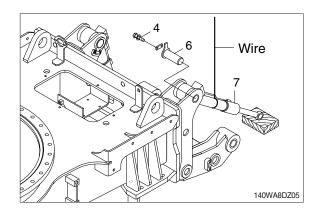

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Bleed the air from the boom cylinder.
- * Conformed the hydraulic oil level and check the hydraulic oil leak or not.

4) DOZER CYLINDER


(1) Removal

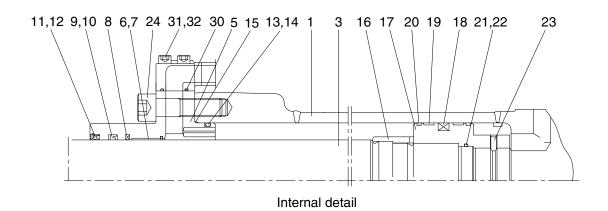
- Expand the arm and bucket fully, lower the work equipment to the ground and stop the engine.
- Mean of the control levers and pedals several times to release the remaining pressure in the hydraulic piping.
- Loosen the breather slowly to release the pressure inside the hydraulic tank.
- A Escaping fluid under pressure can penetrate the skin causing serious injury.
- Fit blind plugs in the hoses after disconnecting them, to prevent dirt or dust from entering.
- ① Lower the dozer blade to the ground.

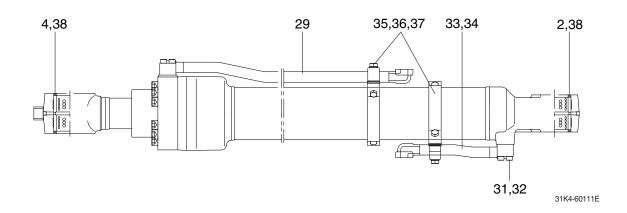

② Disconnect dozer cylinder hoses (1), and put plugs on cylinder pipe.


- ③ Sling dozer cylinder assembly.
- 4 Remove bolt (2) and pull out pin (3).
- Tie the rod with wire to prevent it from coming out.

(5) Lower the dozer cylinder rod side on a wooden block.

- ⑥ Loosen the bolt (4) and nut (5), and pull out pin (6).
 - \cdot Tightening torque (4) : 12.8 \pm 3.0 kgf \cdot m (92.6 \pm 21.7 lbf \cdot ft)
- ? Remove the dozer cylinder assy (7).
 - · Weight: 51 kg (110 lb)

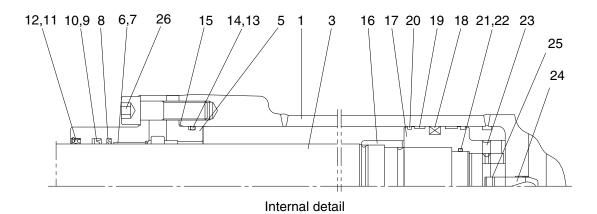


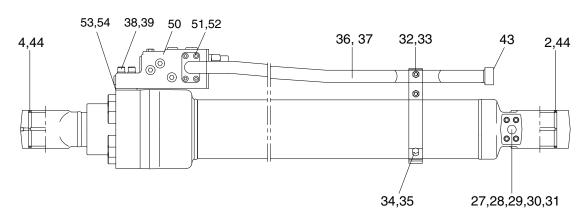

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- * Bleed the air from the dozer cylinder.
- Confirm the hydraulic oil level and check
 the hydraulic oil leak or not.

2. DISASSEMBLY AND ASSEMBLY

1) STRUCTURE

(1) Bucket cylinder (DY POWER)

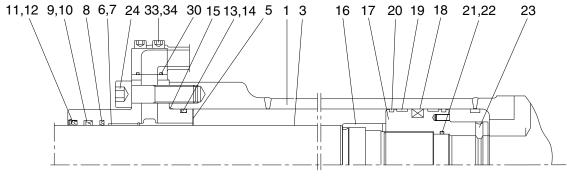




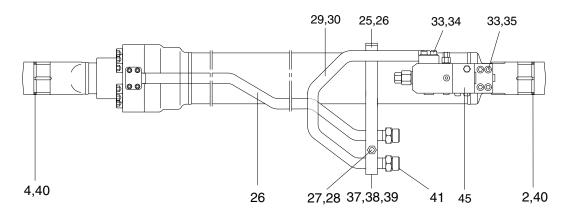
1	Tube assembly	14	Back up ring	27	Hexagon bolt
2	Pin bushing	15	O-ring	28	Spring washer
3	Rod assembly	16	Cushion ring	29	Pipe assy
4	Pin bushing	17	Piston	30	O-ring
5	Rod cover	18	Piston seal	31	Hexagon socket head bolt
6	Rod bushing	19	Wear ring	32	Spring washer
7	Retaining ring	20	Dust ring	33	Pipe assy
8	Buffer seal	21	O-ring	34	O-ring
9	U-packing	22	Back up ring	35	Clamp
10	Back up ring	23	Set screw	36	Spring washer
11	Dust wiper	24	Hexagon socket head bolt	37	Hexagon nut
12	Retaining ring	25	Pipe band assy	38	Pin wiper
13	O-ring	26	Pipe band		

(2) Arm cylinder (DY POWER)

17 Piston

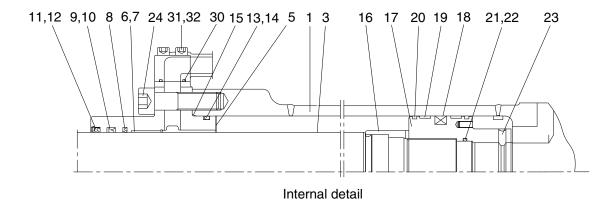


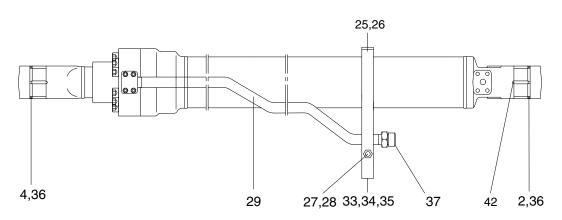
31K4-57130GG


1	Tube assembly	18	Piston seal	35	Spring washer
2	Pin bushing	19	Wear ring	36	Pipe assy
3	Rod assembly	20	Dust ring	37	O-ring
4	Pin bushing	21	O-ring	38	Hexagon socket bolt
5	Rod cover	22	Back up ring	39	Spring washer
6	Rod bushing	23	Set screw	40	U-bolt
7	Retaining ring	24	Cushion plunger	41	Spring washer
8	Buffer seal	25	Stop ring	42	Hexagon nut
9	U-packing	26	Hexagon socket bolt	43	O-ring
10	Back up ring	27	Check	44	Pin washer
11	Dust wiper	28	Spring	50	Lock valve
12	Retaining ring	29	Bracket	51	Spring washer
13	O-ring	30	O-ring	52	Hexaagon socket bolt
14	Back up ring	31	Plug	53	Spacer
15	O-ring	32	Pipe band assy	54	O-ring
16	Cushion ring	33	Pipe band		

34 Hexagon bolt

(3) Boom cylinder (DY POWER)

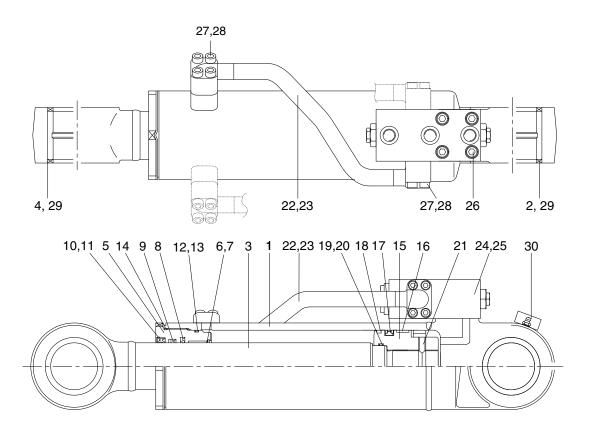

Internal detail



31K4-56111GG

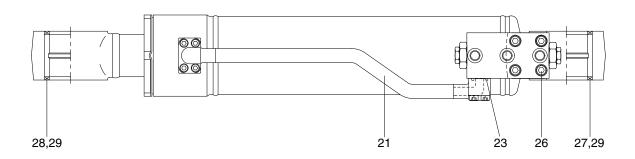
1	Tube assembly	15	O-ring	29	Pipe assembly
2	Pin bushing	16	Cushion ring	30	O-ring
3	Rod assembly	17	Piston	31	Pipe assembly
4	Pin bushing	18	Piston seal	32	O-ring
5	Rod cover	19	Wear ring	33	Spring washer
6	Rod bushing	20	Dust ring	34	Hexagon socket head bolt
7	Retaining ring	21	O-ring	35	Hexagon socket head bolt
8	Buffer seal	22	Back up ring	36	Spring washer
9	U-packing	23	Hex socket headless set screw	37	Clamp
10	Back up ring	24	Hexagon socket head bolt	38	Spring washer
11	Dust wiper	25	pipe band assembly	39	Hexagon bolt
12	Retaining ring	26	Pipe band	40	Pin wiper
13	O-ring	27	Hexagon bolt	41	O-ring
14	Back up ring	28	Spring washer	45	Lock valve

Boom cylinder (DY POWER, 2-piece)



31K4-56172GG

1	Tube assembly	14	Back up ring	27	Hexagon bolt
2	Pin bushing	15	O-ring	28	Spring washer
3	Rod assembly	16	Cushion ring	29	Pipe assembly
4	Pin bushing	17	Piston	30	O-ring
5	Rod cover	18	Piston seal	31	Spring washer
6	Rod bushing	19	Wear ring	32	Hexagon socket head bolt
7	Retaining ring	20	Dust ring	33	Clamp
8	Buffer seal	21	O-ring	34	Spring washer
9	U-packing	22	Back up ring	35	Hexagon bolt
10	Back up ring	23	Hex socket headless set screw	36	Pin wiper
11	Dust wiper	24	Hexagon socket head bolt	37	O-ring
12	Retaining ring	25	pipe band assembly	42	Plug
13	O-ring	26	Pipe band		

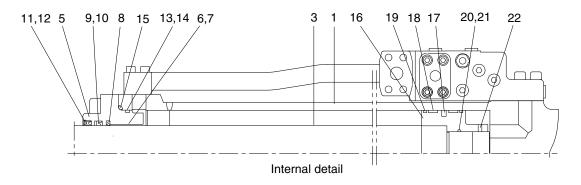

(4) Dozer cylinder (DY POWER, front and rear)

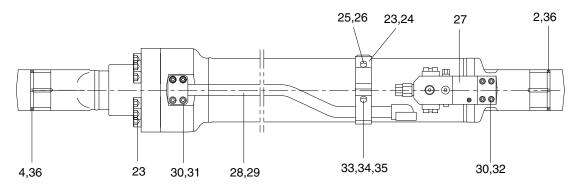


38K4-78151

1	Tube assembly	11	Retaining ring	21	Set screw
2	Dimple bushing	12	O-ring	22	Pipe assembly
3	Rod assembly	13	Back up ring	23	O-ring
4	Dimple bushing	14	O-ring	24	Check valve assembly
5	Rod cover	15	Piston	25	O-ring
6	Rod bushing	16	Wear ring	26	Hexagon socket head bolt
7	Retaining ring	17	Piston seal	27	Hexagon socket head bolt
8	Buffer seal	18	Dust ring	28	Spring washer
9	U-packing	19	O-ring	29	Wiper pin
10	Dust wiper	20	Back up ring	30	Grease nipple

(5) Outrigger cylinder (SHPAC)





31Q4-70211

1	Tube assembly	11	Back up ring	21	Pipe assembly
2	Rod assembly	12	O-ring	22	Hexagon socket head bolt
3	Gland	13	Piston	23	O-ring
4	Dust wiper	14	Piston seal	24	Check valve assembly
5	Retainer ring	15	Dust ring	25	O-ring
6	Rod seal	16	Wear ring	26	Hexagon socket head bolt
7	Back up ring	17	O-ring	27	Pin bushing
8	Buffer ring	18	Back up ring	28	Pin bushing
9	Dry bushing	19	Steel ball	29	Dust seal
10	O-ring	20	Set screw	30	Socket plug

(6) Adjust cylinder (DY POWER)

38K4-52951GG

1	Tube assembly	13	O-ring	25	Spring washer
2	Pin bushing	14	Back up ring	26	Hexagon bolt
3	Rod assembly	15	O-ring	27	Lock vavle
4	Pin bushing	16	Piston	28	Pipe assembly
5	Rod cover	17	Piston seal	29	O-ring
6	Rod bushing	18	Wear ring	30	Spring washer
7	Retaining ring	19	Dust ring	31	Hexagon socket head bolt
8	Buffer seal	20	O-ring	32	Hexagon socket head bolt
9	U-packing	21	Back up ring	33	Clamp
10	Back up ring	22	Hex socket headless set screw	34	Spring washer
11	Dust wiper	23	Band assembly	35	Hexagon bolt
12	Retaining ring	24	Pipe band	36	Pin wiper

2) TOOLS AND TIGHTENING TORQUE

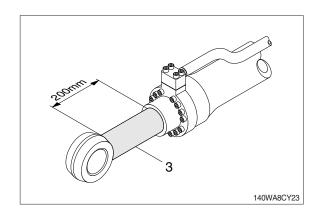
(1) Tools

Tool name	Remark				
	6				
Allen wrongh	8 B				
Allen wrench	14				
	17				
Channer	7				
Spanner	8				
(-) Driver	Small and large sizes				
Torque wrench	Capable of tightening with the specified torques				

(2) Tightening torque

_	Dowl wowe	Hama	Size	Torque			
F	Part name	Item	Size	kgf · m	lbf ⋅ ft		
	Bucket cylinder (★1)	24	M14	19±1.0	137±7.2		
Socket head bolt	Boom cylinder (★1)	24	M14	19±1.0	137±7.2		
	Boom cylinder - 2 pcs (★1)	24	M14	19±1.0	137±7.2		
	Arm cylinder (★1)	26	M16	30±2.0	217±14.5		
	Adjust cylinder (★1)	23	M18	39±3.0	282±28.2		
	Boom cylinder	35	M8	3.0~3.5	21.7~25.3		
	Arm cylinder	52	M10	5.5~6.0	39.8~43.4		
Lock valve mounting	Dozer cylinder - rear	26	M10	5.5~6.0	39.8~43.4		
socket head bolt	Dozer cylinder - front	26	M10	5.5~6.0	39.8~43.4		
	Outrigger cylinder	26	M10	5.4±0.5	39.1±3.6		
	Adjust cylinder	32	M10	5.5~6.0	39.8~43.4		
	Bucket	31	M10	5.5~6.0	39.8~43.4		
	Boom	34	M8	3.0~3.5	21.7~25.3		
	Boom - 2 pcs	32	M8	3.0~3.5	21.7~25.3		
Pipe mounting	Arm	52	M10	5.5~6.0	39.8~43.4		
socket head bolt	Dozer cylinder - rear	27	M8	3.0~3.5	21.7~25.3		
	Dozer cylinder - front	27	M8	3.0~3.5	21.7~25.3		
	Outrigger cylinder	22	M8	2.7±0.3	19.5±2.2		
	Adjust cylinder	31	M10	5.5~6.0	39.8~43.4		
	Bucket cylinder	17	M60	130±13.0	940±94.0		
	Boom cylinder	17	M65	130 \pm 13.0	940±94.0		
	Boom cylinder - 2 pcs	17	M65	130±13.0	940±94.0		
Piston	Arm cylinder	17	M70	190±19.0	1374±131		
FISION	Dozer cylinder - rear	15	M56	130±13.0	940±94.0		
	Dozer cylinder - front	15	M56	130±13.0	940±94.0		
	Outrigger cylinder	13	M45	112±11.2	810±81.0		
	Adjust cylinder	16	M85	190±19.0	1374±131		

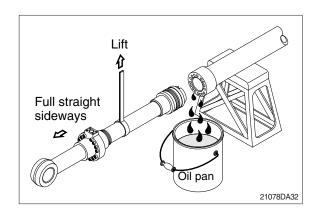
[%] Apply loctite #242 (\bigstar 1) on the thread before tightening.


	Item	Size	Torque		
Part name		item	Size	kgf · m	lbf · ft
	Dozer cylinder -rear	5	M105	75±7.5	542±54.2
Gland (Rod cover)	Dozer cylinder -front	5	M105	75±7.5	542±54.2
(Flod cover)	Outrigger cylinder	3	M115	92±9.2	665±66.5
	Bucket cylinder (★1)	23	M12	5.0~5.5	36.2~39.8
	Boom cylinder (★1)	23	M12	5.0	36.2
	Boom cylinder - 2 pcs (★1)	23	M12	5.0	36.2
Set screw	Arm cylinder	23	M12	5.0	36.2
Set screw	Dozer cylinder -rear	21	M8	1.5	10.8
	Dozer cylinder -front	21	M8	1.5	10.8
	Outrigger cylinder	20	M8	2.7±0.3	19.5±2.2
	Adjust cylinder (★1)	22	M12	5.0	36.2

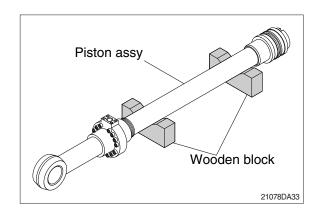
 $[\]ensuremath{\,\%\,}$ Apply loctite #242 (\bigstar 1) on the thread before tightening.


3) DISASSEMBLY

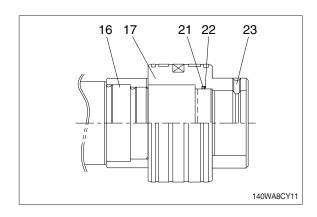
(1) Remove cylinder head and piston rod


- Procedures are based on the bucket cylinder.
- ① Hold the clevis section of the tube in a vise.
- We use mouth pieces so as not to damage the machined surface of the cylinder tube. Do not make use of the outside piping as a locking means.
- Pull out rod assembly (3) about 200mm (7.1in). Because the rod assembly is rather heavy, finish extending it with air pressure after the oil draining operation.

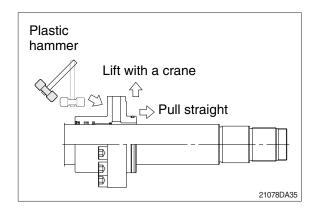
- 3 Loosen and remove socket bolts (24) of the gland in sequence.
- Cover the extracted rod assembly (3) with rag to prevent it from being accidentally damaged during operation.



- ① Draw out cylinder head and rod assembly together from tube assembly (1).
- Since the rod assembly is heavy in this case, lift the tip of the rod assembly (3) with a crane or some means and draw it out. However, when rod assembly (3) has been drawn out to approximately two thirds of its length, lift it in its center to draw it completely.

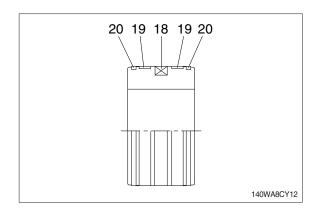

Note that the plated surface of rod assembly (3) is to be lifted. For this reason, do not use a wire sling and others that may damage it, but use a strong cloth belt or a rope.

- ⑤ Place the removed rod assembly on a wooden V-block that is set level.
- Cover a V-block with soft rag.

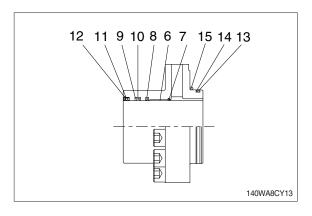


(2) Remove piston and cylinder head

- ① Remove set screw (23).
- ② Remove piston (17) assembly, back upring (22), and O-ring (21).
- Since piston (17) is tightened to a high torque, use a hydraulic and power wrench that utilizers a hydraulic cylinder, to remove the piston.

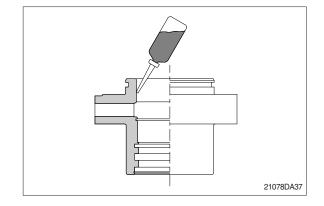


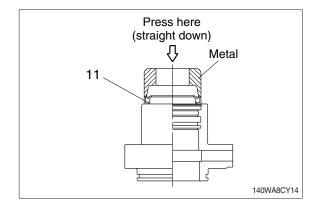
- 3 Remove the cylinder head assembly from rod assembly (3).
- If it is too heavy to move, move it by striking the flanged part of cylinder head with a plastic hammer.
- Pull it straight with cylinder head assembly lifted with a crane.
 Exercise care so as not to damage the lip of rod bushing (6) and packing (8, 9, 10, 11, 12) by the threads of rod assembly (2).


(3) Disassemble the piston assembly

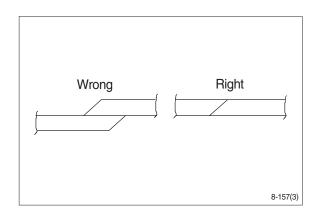
- ① Remove wear ring (19).
- ② Remove dust ring (20) and piston seal (18).
- Exercise care in this operation not to damage the grooves.

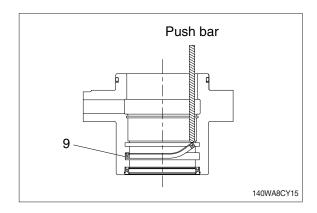
(4) Disassemble cylinder head assembly

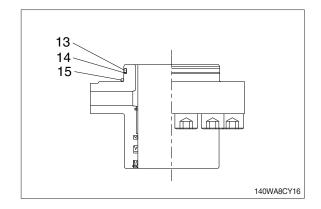

- ① Remove back up ring (14), O-ring (13) and O-ring (15).
- ② Remove retain ring (12), dust wiper (11).
- ③ Remove back up ring (10), U-packing (9) and buffer seal (8).
- Exercise care in this operation not to damage the grooves.
- Do not remove seal and ring, if does not damaged.
- Do not remove bushing (6).


4) ASSEMBLY

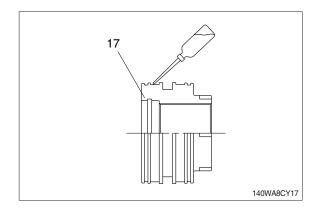
(1) Assemble cylinder head assembly


- * Check for scratches or rough surfaces if found smooth with an oil stone.
- ① Coat the inner face of rod cover (5) with hydraulic oil.

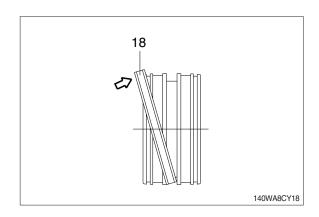

- ② Coat dust wiper (11) with grease and fit dust wiper (11) to the bottom of the hole of dust seal.
 - At this time, press a pad metal to the metal ring of dust seal.
- ③ Fit retaining ring (12) to the stop face.


- ④ Fit back up ring (10), U-packing (9) and buffer real (8) to corresponding grooves, in that order.
- * Coat each packing with hydraulic oil before fitting it.
- Insert the backup ring until one side of it is inserted into groove.

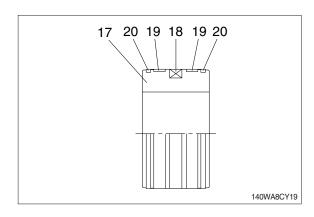
- W U-packing (9) has its own fitting direction.
 Therefore, confirm it before fitting them.
- * Fitting U-packing (9) upside down may damage its lip. Therefore check the correct direction that is shown in fig.



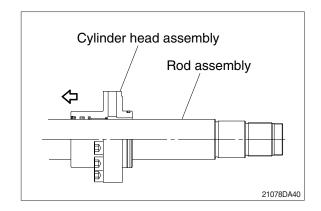
- ⑤ Fit back up ring (14) to rod cover (5).
- Put the backup ring in the warm water of 30~50°C.
- 6 Fit O-ring (13) and O-ring (15) to rod cover (5).



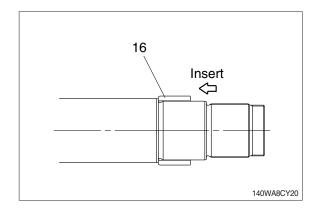
(2) Assemble piston assembly


- * Check for scratches or rough surfaces.
 If found smooth with an oil stone.
- ① Coat the outer face of piston (17) with hydraulic oil.

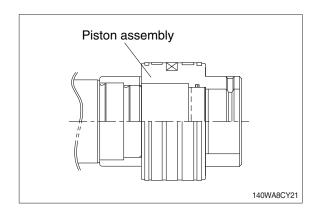
- ② Fit piston seal (18) to piston.
- № Put the piston seal in the warm water of 60~100°C for more than 5 minutes.
- * After assembling the piston seal, press its outer diameter to fit in.



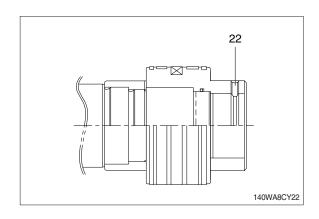
3 Fit wear ring (19) and dust ring (20) to piston (17).



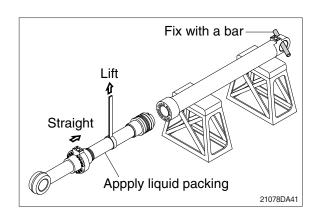
(3) Install piston and cylinder head

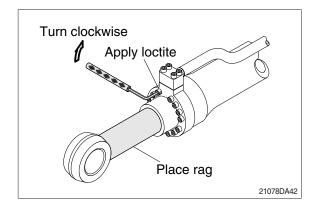

- ① Fix the rod assembly to the work bench.
- ② Apply hydraulic oil to the outer surface of rod assembly (3), the inner surface of piston and cylinder head.
- ③ Insert cylinder head assembly to rod assembly.

- ④ Insert cushion ring (16) to rod assembly.
- Note that cushion ring (16) has a direction in which it should be fitted.


- 5 Fit piston assembly to rod assembly.
 - \cdot Tightening torque : 130 \pm 13.0 kgf \cdot m (940 \pm 94.0 lbf \cdot ft)
- * Refer to page 8-350.

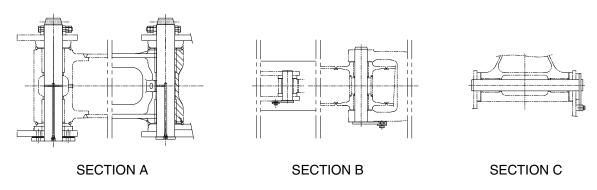
- 6 Tighten the set screw (23).
 - \cdot Tightening torque : 5.0~5.5 kgf \cdot m


 $(36.2~39.8 lbf \cdot ft)$


* Refer to page 8-350.

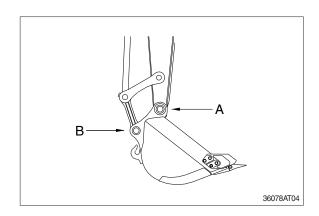
(4) Overall assemble


- ① Place a V-block on a rigid work bench. Mount the tube assembly (1) on it and fix the assembly by passing a bar through the clevis pin hole to lock the assembly.
- ② Insert the rod assembly in to the tube assembly, while lifting and moving the rod assembly with a crane.
- Be careful not to damage piston seal by thread of tube assembly.
- ③ Match the bolt holes in the cylinder head flange to the tapped holes in the tube assembly and tighten socket bolts to a specified torque.
- Refer to the table of tightening torque.

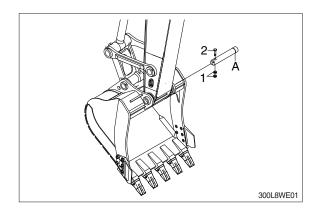


GROUP 14 WORK EQUIPMENT

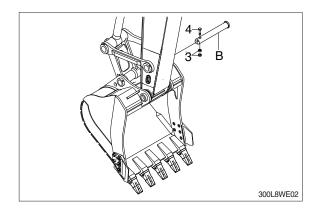
1. STRUCTURE

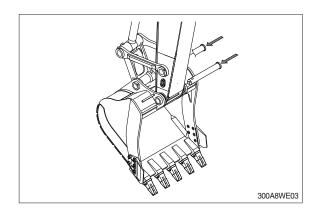

220A8WE10

2. REMOVAL AND INSTALL

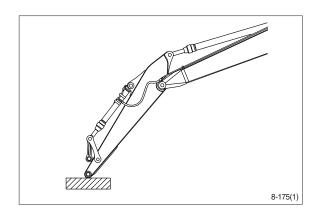

1) BUCKET ASSEMBLY

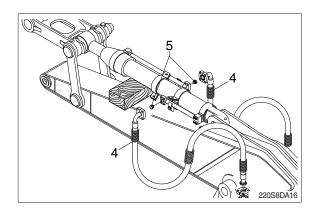
(1) Removal

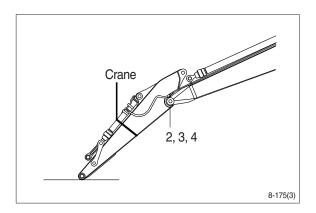

① Lower the work equipment completely to ground with back of bucket facing down.


- ② Remove nut (1), bolt (2) and draw out the pin (A).
 - \cdot Tightening torque (1) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)

- ③ Remove nut (3), bolt (4) and draw out the pin (B).
 - \cdot Tightening torque (3) : 29.7 \pm 4.5 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)

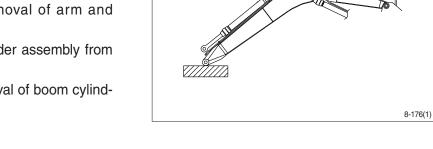

- ① Carry out installation in the reverse order to removal.
- ♠ When aligning the mounting position of the pin, do not insert your fingers in the pin hole.
- Adjust the bucket clearance.
 For detail, see operation manual.



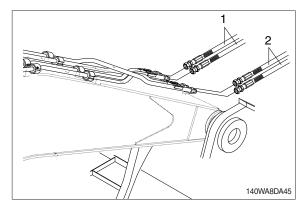

2) ARM ASSEMBLY

(1) Removal

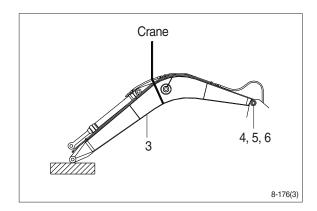
- * Loosen the breather slowly to release the pressure inside the hydraulic tank.
- ♠ Escaping fluid under pressure can penetrated the skin causing serious injury.
- Remove bucket assembly.
 For details, see removal of bucket assembly.
- ② Disconnect bucket cylinder hose (1).
- ♠ Fit blind plugs (5) in the piping at the chassis end securely to prevent oil from spurting out when the engine is started.
- 3 Sling arm cylinder assembly, remove spring, pin stopper and pull out pin.
- Tie the rod with wire to prevent it from coming out.
- ④ For details, see removal of arm cylinder assembly.
 - Place a wooden block under the cylinder and bring the cylinder down to it.
- ⑤ Remove bolt (2), plate (3) and pull out the pin (4) then remove the arm assembly.
 - · Weight: 722 kg (1592 lb)
 - \cdot Tightening torque (2) : 29.7 \pm 45 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)
- When lifting the arm assembly, always lift the center of gravity.

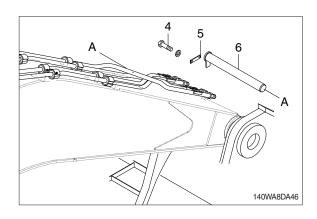

- ① Carry out installation in the reverse order to removal.
- A When lifting the arm assembly, always lift the center of gravity.
- * Bleed the air from the cylinder.

3) BOOM ASSEMBLY


(1) Removal

- Remove arm and bucket assembly.
 For details, see removal of arm and bucket assembly.
- ② Remove boom cylinder assembly from boom.


For details, see removal of boom cylinder assembly.


- ③ Disconnect head lamp wiring.
- ④ Disconnect bucket cylinder hose (2) and arm cylinder hose (1).
- When the hose are disconnected, oil may spurt out.
- 5 Sling boom assembly (3).

- ⑥ Remove bolt (4), plate (5) and pull out the pin (6) then remove boom assembly.
 - · Weight :1115 kg (2458 lb)
 - \cdot Tightening torque (4) : 29.7 \pm 45 kgf \cdot m (215 \pm 32.5 lbf \cdot ft)
- When lifting the boom assembly always lift the center of gravity.

- ① Carry out installation in the reverse order to removal.
- ♠ When lifting the arm assembly, always lift the center of gravity.
- Bleed the air from the cylinder.

